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The Fundamental Problem with Solid Targets

24 GeV Protons on Copper Target
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RF = T501111d-"‘:TlJulse (lf Tsound = Tl)ulse )

d RF=1.0 (lf Tsound = Tplllse )

heated target spot

Tsound =d/N g

Parameters Affecting Shock Level in Solid Target

V. = sound velocity in material
-Heat capacity (controlling temperature spike) .

- Speed of sound in the material

NOTE: If pulse is too short NO reduction in peak
- pulse length stress can be realized since heated zone does not
- coeff. of thermal expansion have time to relax during deposition

-Young's modulus
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What do we need materials to

possess to get us

to multi-MW Power Levels?

low elasticity modulus

(limit =» Stress = EaAT/1-2v)
low thermal expansion

high heat capacity

good diffusivity to move heat
away from hot spots

high strength

resilience to shock/fracture
strength

resilience to irradiation damage
That’s All !



How do these parameters control limits?

Change in hydrostatic pressure 4P is related to the energy density change AE
through the Gruneisen equation of state

AP=Tp AE,,

I' is the Gruneisen parameter related to material thermo-elastic properties such as:
Young’s Modulus E
Poisson’s ratio v
density p
thermal expansion o,
constant volume specific heat c,.

I'=[E/1-2v)] a/(p c,)
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Several “smart” materials or new composites may be able to meet some of
the desired requirements:

- new graphite grades
- customized carbon-carbon composites
- Super-alloys (gum metal, albemet, super-invar, etc.)

While calculations based on non-irradiated material properties
may show that it is possible to achieve 2 or even 4 MW, irradiation

effects may completely change the outlook of a material candidate

ONLY way is to test the material to conditions similar to those expected
during its life time as target
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Bunch length effect on target response
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* Beam on targets (E951)
* Material 1irradiation

e New activities

— 1rradiation studies/beam on targets
— Laser-based shock studies

* Simulations and benchmarking

— LS-DYNA (highly non-linear simulations which reflect
on the 4-MW conditions)
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microstrain

CC Shock Response (BNL E951)

BHL E951 Target Experiment

24GeV 3.0 e12 proton pulse on Carbon-Carbon and ATJ graphite targets

Recorded strain induced by proton pulse
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Irradiation Matrix (2004-05 Run)
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3D CC “annealing” behavior

2D CC “annealing” behavior

Self-Annealing of 2D Carbon-Carbon {fiber plane)
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“annealing” behavior of Super Invar

Coef. Thermal Expansion, 10-6/K

Expansion dL(um)

Dilatometer Measurements

B0

Graphite (1G-43) response to irradiation

T I T Stress-Strain Relation in Irradiated 1G-43 Graphite
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90% cold-worked may be of interest (if it holds these properties after irradiation)
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Stress (MPa)

Stress (MPa)
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Muon Collaboration _

fact (

1 MW ? 4 MW ?
Answer dependant on 2 key parameters:
Answer 1s YES for several 1 —rep rate
materials 2 - beam size compliant with the physics sought

Irradiation damage is of concern

Material irradiation studies are still | Al: for rep-rate > 50 Hz + spot > 2mm RMS
needed => 4 MW possible (see note below)

A2: for rep-rate < 50 Hz + spot < 2mm RMS
=>» Not feasible (ONLY moving targets)

NOTE: While thermo-mechanical shock may be
manageable, removing heat from target at 4 MW
might prove to be the challenge.

CAN only be validated with experiments
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Muon Collaboration

1 MW -50 Hz Target Operating Temperature Assessment

- Primarily function of power and target geometry
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Muon Collaboration

Issues

Beam size

Irradiation damage
Operational challenges

MARS & ANSYS predictions for pion yields, energy depositions and induced stress.
Proton bunch charge resulting in 3.2 x 10"” captured protons.

band material inconel 718 Ti-alloy nickel

proton energy [GeV] 6 24 6 24 6 24
captured 7 yield/proton 0.102 0.303 0.080 0.249 0.102  0.302
captured 7~ yield/proton 0.105 0.273 0.083 0.224 0.105 0.292
ppp>? [1049] 15.5 5.56 19.6 6.78 155  5.39

EX2 kJ] | 149 214 188 260 149 207
32 [1/g] 32.0 31.7 25.6 21.3 325 374

AT32 [°C| 74 73 49 40 71 81

stress, VM2 [MPa] 330 360 72 68 330 340
% of fatigue strength | 53-69%  58-75% | 10-14% 10-13% | N.A. N.A.
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Phase 111 Target Irradiation

Series of Post-Irradiation Tests/Analyses

Off beam Shock Tests
Last (but not least) Beam-Target Simulations
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Materials exhibiting interesting properties

are going back in

GOAL.: assess the relation between damage and self-
healing through annealing

Push for damage up to 1 dpa.
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Off-beam Target Shock Studies
Use of High-Power Laser (BNL) —to be completed by Summer ‘06

Generation of stress waves/shock by transient surface heating

strain gauges

Nd:YAG (400 mJ/pulse)

target

focused beam

[

ASSESS target degradation through
micro-fracturing using ultrasound

TUlirasonic transducers

MuTAC Review - March 15-16 2006



Solid Target Concepts — Neutrino Beam
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High power targets, regardless of the physics they will support, are
inherently coupled with material R&D (shock and irradiation damage)

Information to-date is available from low power accelerators and mostly
from reactor (neutron irradiation) experience. Extrapolation is not
allowed!

Advancements in material technology (alloys, smart materials,
composites) provide hope BUT must be accompanied by R&D for
Irradiation damage

Liquid targets (Hg jets) may be the answer to neutrino factory initiative
BUT the necessary experiments of the integrated system must be performed.
Too many unknowns to be left unexplored

Solid target shock experiments with pulse intensities anticipated in the
multi-MW proton driver are necessary

Simulations of target/beam interaction (solids and liquid jets) that are
benchmarked on the various experiments are a MUST. Predicting the
mechanics of shock and of magneto-hydrodynamics (while benchmarking
simulations to experiments) will allow us to push the envelope to the
conditions of the multi-MW drivers
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