

High Power Target R&D

N. Simos, BNL 2nd Princeton-Oxford High Power Targetry Workshop

Nov. 6-7, 2008

Superbeam Target Concept

Parameter Space

A happy medium between physics goals and engineering reality

0.01 Protons per pulse required for 4 MW Muons/Protons*Ge/ 0.006 0.007 0.007

Efficiency of muon collection at exit neutrino factory of front end

Proton Kinetic Energy

MARS14

 $\overline{P}_{arc}(w) = E[eV] \times N \times e \times f_{ren}[Hz]$

	10 Hz	25 Hz	50 Hz
10 GeV	$250 imes 10^{12}$	$100 imes 10^{12}$	$50 imes 10^{12}$
20 GeV	$125 imes 10^{12}$	$50 imes 10^{12}$	$25 imes 10^{12}$

Maximum Energy Density (GeV/g per proton) COPPER 2.0 Po (GeV/c) 1.0 0.5 0.2 n 0.1 0.2 0.3 0.4 0.5 0.6 σ (mm)

60

Overview of R&D Realized to-date on Solid Targets

Target Shock Studies

Radiation damage Studies

Solid Targets

ORY

Target Shock Studies

Pulse Structure

BROOKHAVEN NATIONAL LABORATORY BROOKHAVEN SCIENCE ASSOCIATES

Time [ns]

trino Fact

Bunch period in BASELINE pulse structure

(12 bunches in 4.2 microsecs)

Beam-induced shock simulation

Beam-induced shock simulation

Beam-induced shock simulation

Pulse Structure

Time [ns]

trino Facto

(12 bunches in 4.2 microsecs)

Solid Target Shock Studies

- Graphite and Carbon composites
- super-alloys

0

BROOKHAVEN SCIENCE ASSOCIATES

15

U.S. DEPARTMENT OF ENERGY

Accelerator (proton irradiated) experience to support this ????

Accelerator Experience:

TRIUMF Target; LANL Target; PSI Target

running through the plates develop at proton fluences above about $2 \times 10^{25} \text{ P/m}^2$. Plates from targets irradiated to about (0.5) of this fluence show extensive delamination, but fack the macroscopic cracks across the a-b planes. These results indicate that pyrolytic graphite is very susceptible to delamination, as would be expected from the law tensile strength in the c direction.

= 10^21 p/cm2

Water-cooled/Edge-cooled TRIUMF target

super-Invar

Irradiated	400°C	550°C	650°C	900°C
High-density dislocations	Reduce of dislocation	Formation of SFT	Dislocation loop	Formation of He bubble
			0	○ 50nm

"Gum" metal

Gum metal

U.S. DEPARTMENT OF ENERGY

20

BROOKHAVEN SCIENCE ASSOCIATES

Other alloys

U.S. DEPARTMENT OF ENERGY

Radiation Damage Studies – High-Z Materials

0.3

0.25

-W_0dpa_TC1

W_0dpa_TC2

U.S. DEPARTMENT OF ENERGY

Thermal Expansion of Unirradiated Tungsten

Path forward

Protons on graphite/CC (> fluence threshold) under different environment (vacuum or helium)

Study of Albemet to high fluences

Understanding damage via photon scattering (effort under way) maybe explore the effect of shock and fatigue on target material microstructure

