<u>PLAN</u>

MATERIAL STUDIES FOR PULSED HIGH-INTENSITY PROTON BEAM TARGETS

Nicholas Simos, Harold Kirk, Hans Ludewig, Peter Thieberger, W-T Weng BNL Kirk McDonald, Princeton U K. Yoshimura, KEK

J. Shepard, SLAC

CHALLENGES FOR THE INTEGRATED TARGET SYSTEMS AS WE GET TO 1+ MW SYSTEM

•Heat generation and removal from the target system

•Target thermo-mechanical response from energetic, high intensity protons

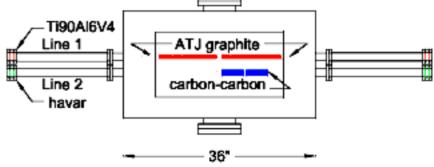
•Irradiation and corrosion effects on materials

•Beam window survivability

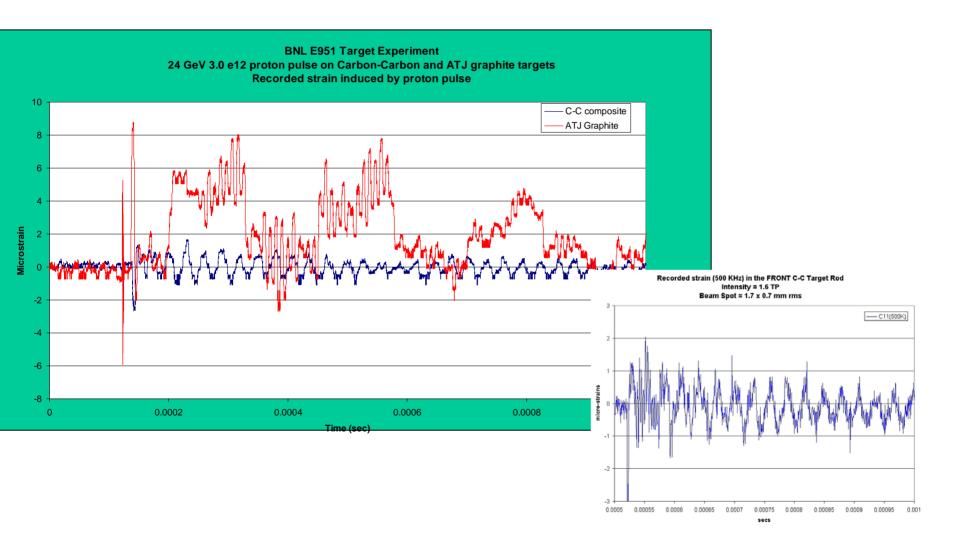
SOLUTION:

Look for new materials that are continuously being developed for other applications but seem to fit the bill as targets

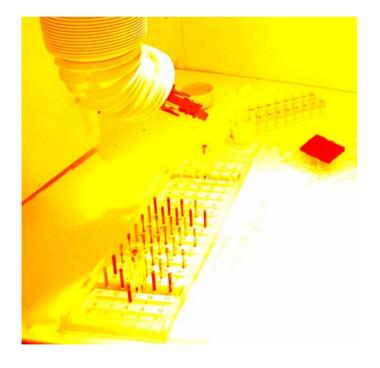
There is a catch !


These materials have not been tested for their resilience to radiation exposure The collaboration has been looking into these materials for some time

Candidate materials studied for applications as targets windows are:

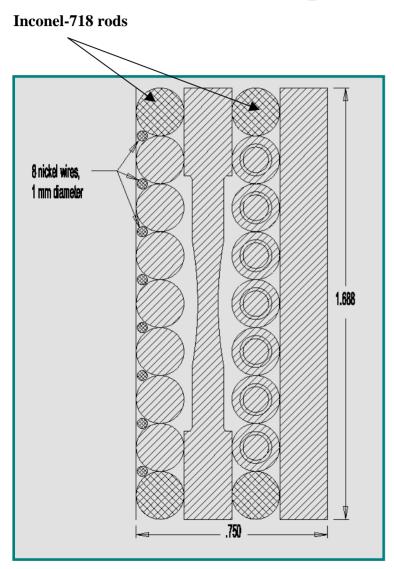

- •Inconel-718
- •Aluminum-3000
- •Havar
- •Ti-6Al-6V
- •Graphite (ATJ)
- •Carbon-Carbon
- •SuperInvar

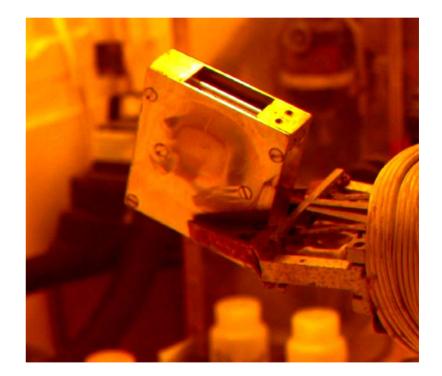
PHASE I: Graphite & Carbon-Carbon Targets

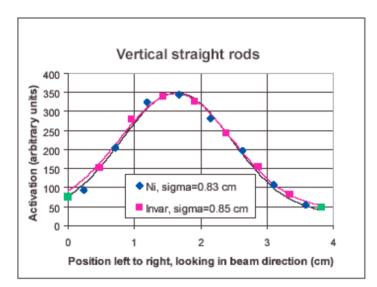

E951 Results: **ATJ Graphite vs. Carbon-Carbon Composite** The results demonstrate the superiority of CC in responding to Beam SHOCK. The question is: Will it maintain this key feature under irradiation ??? We will find out in the course of this irradiation phase

Irradiation Studies to Assess how Super-Invar responds to radiation.

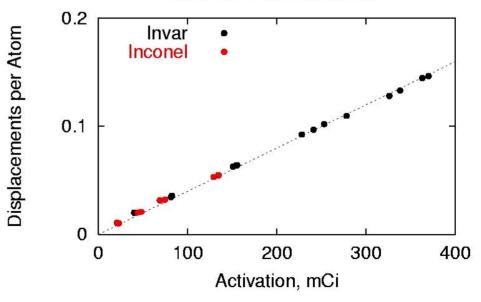
Its key feature (low CTE up to 150 °C) needed to be scrutinized

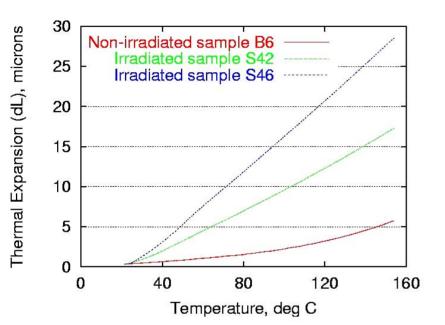

Specimens and dilatometer in hot cell



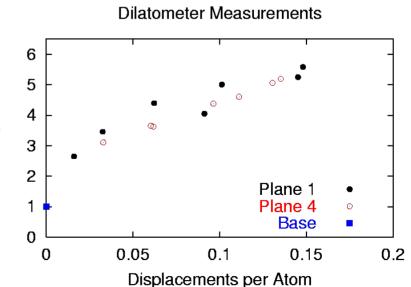


BNL Irradiation Studies

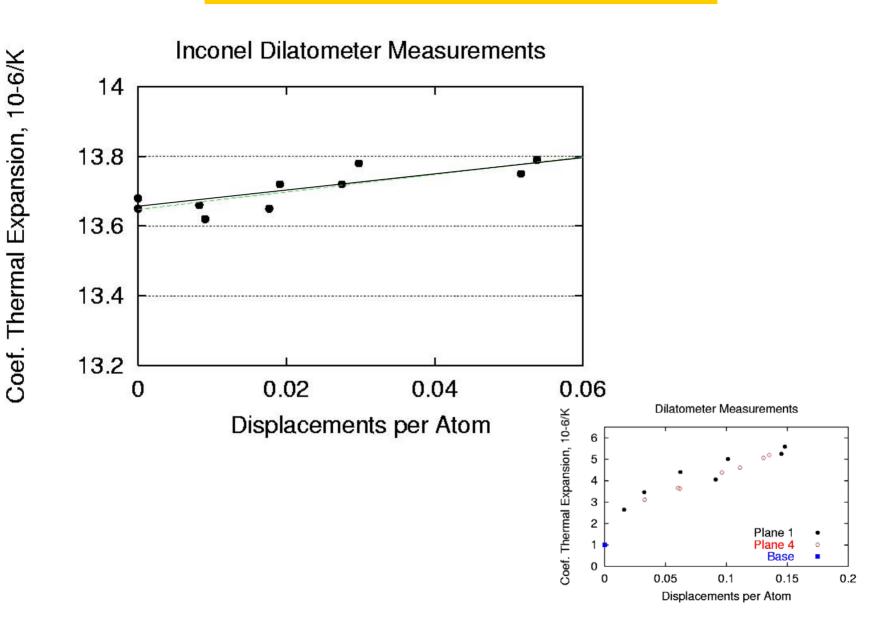

Super Invar & Inconel-718



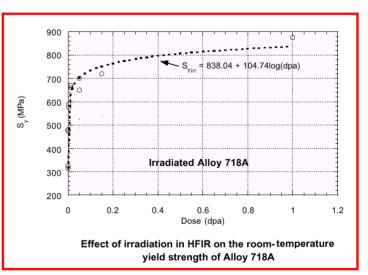
Activation Measurements



Super-Invar Irradiation Study – CTE assessment

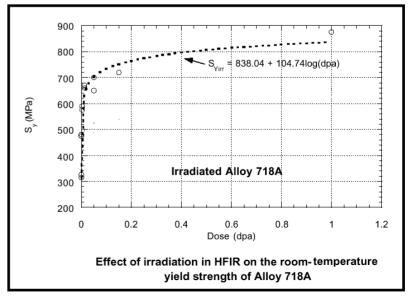




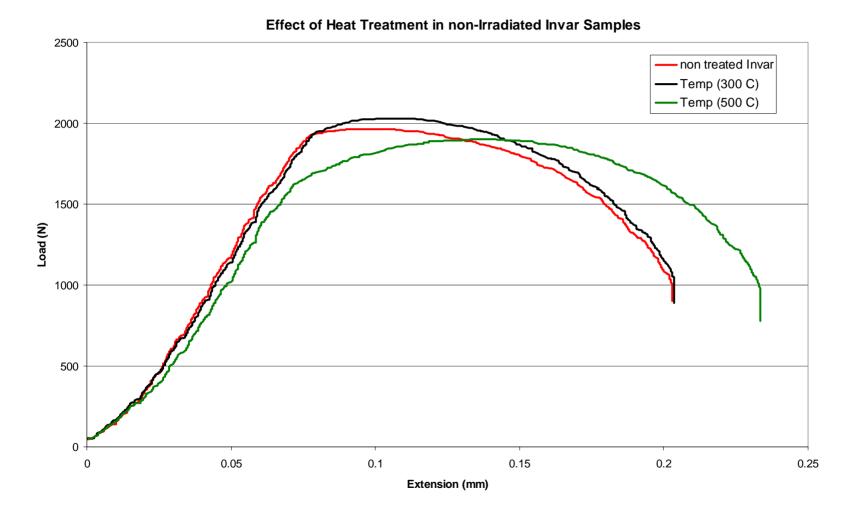

Inconel-718 CTE assessment

Super-Invar Irradiation Study -Effects of Irradiation on stress-strain behavior

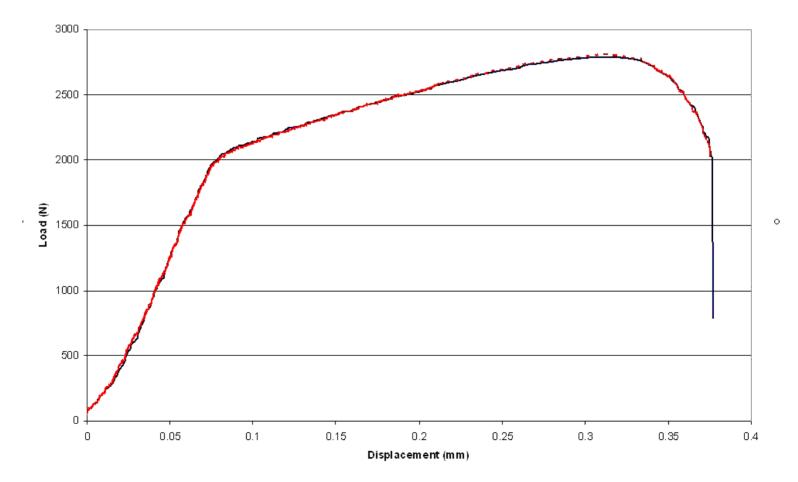
While the dpa received where as high as .25, they were enough to capture the tendency of the material to change. Similar effects at such low dpa can be seen in Incinel (Figure below)



WHY STUDY super Invar ?
•High-Z with low CTE (0-150 °C)
•How is CTE affected by radiation?


•What happens to other important properties?

Super-Invar Irradiation Study - Irradiation vs. Yield Strength



Super-Invar Irradiation Study – Temperature Effects

Super-Invar Irradiation Study Stress-strain (load-displacement) in stainless steel samples to test system stability

Verification of System Stability on Stainless Steel Samples

PHASE-II TARGET MATERIAL STUDY

WHAT'S NEXT ? Repeat irradiation/mechanical property changes experiment for baseline materials

Carbon-Carbon composite

This low-Z composite gives the indication that it can minimize the thermal shock and survive high intensity pulses. Because of its premise it is the baseline target material for the BNL neutrino superbeam initiative. The way its key properties (such as CTE or strength) degrade with radiation is unknown.

Titanium Ti-6Al-4V alloy

The evaluation of the fracture toughness changes due to irradiation is of interest regarding this alloy that combines good tensile strength and relatively low CTE

Toyota "Gum Metal"

This alloy with the ultra-low elastic modulus, high strength , super-elastic like nature and near-zero linear expansion coefficient for the temperature range -200 °C to +250 °C to be assessed for irradiation effects on these properties.

VASCOMAX

This very high strength alloy that can serve as high-Z target to be evaluated for effects of irradiation on CTE, fracture toughness and ductility loss

<u>AlBeMet</u>

A low-Z composite that combines good properties of Be and Al. Effects of irradiation on CTE and mechanical properties need to be assessed

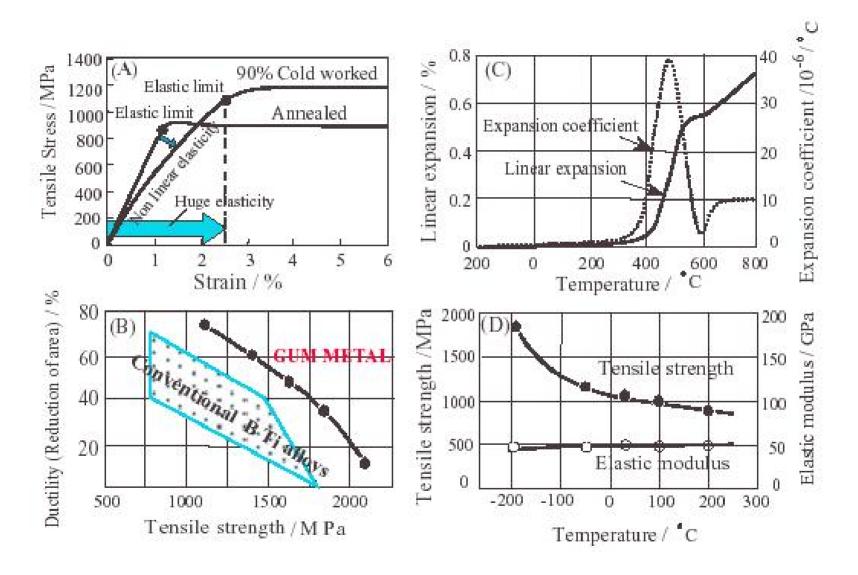
TG-43 Graphite

PHASE-II TARGET MATERIAL STUDY

WHAT'S DIFFERENT FROM PHASE-I?

~ 100 MeV of Proton Beam (200 to 100 MeV)

Challenge of inducing UNIFORM Beam degradation


MORE Material to go in (optimization of dE/dx for range 200 MeV-100 MeV)

OPEN Issue: Study of Fracture Toughness for some materials ?

Carbon-Carbon Composite Target

Temp.	% elongation
23 ° C	0%
200 ° C	-0.023%
400° C	-0.028%
600° C	-0.020%
800° C	0%
1000° C	0.040%
1200° C	0.084%
1600° C	0.190%
2000° C	0.310%
2300° C	0.405%

Gum Metal (Toyota Ti alloy)

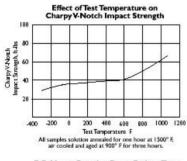
AlBeMet[®]

AM162

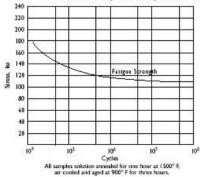
- By weight, contains 62% commercially pure beryllium and 38% commercially pure aluminum
- By Metallurgical definition, AlBeMet[®] is an alloy but can be considered a composite
- AIBeMet[®] sheet, plate and bar are powder metallurgy products
 - The powder is produced by a gas atomization process which yields spherical powder with a fine beryllium structure
 - The powder is densified by three consolidation processes, each resulting in different mechanical properties, while maintaining AIBeMet's unique physical properties.

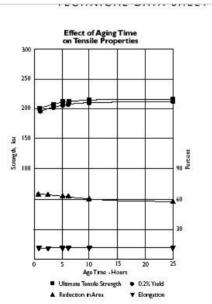
AlBeMet[®] Property Comparison

Property	Beryllium S200F/AMS7906	AlBeMet AM16H/AMS7911	E-Material E-60	Magnesium AZ80A T6	Aluminum 6061 T6	Stainless Steel 304	Copper H04	Titanium Grade 4
Density Ibs/cuin (g/cc)	0.067 (1.86)	0.076 (2.10)	0.091 (2.61)	0.065 (1.80)	0.098 (2.70)	0.29 (8.0)	0.32 (8.9)	0.163 (4.6)
Modulus MSI (Gpa)	44 (303)	28 (193)	48 (331)	6.5 (46)	10 (69)	30 (205)	16.7 (115)	15.2 (105)
UTS KSI (Gpa)	47 (324)	38 (262)	39.3 (273)	49 (340)	46 (310)	76 (516)	46 (310)	95.7 (660)
YS KSI (Gpa)	35 (241)	28 (193)	N/A	36 (260)	40 (276)	30 (205)	40 (275)	85.6 (590)
Elongation %	2	2	< .05	6	12	40	20	20
Fatigue Strength KSI (Gpa)	37.9 (261)	14 (97)	N/A	14.5 (100)	14 (96)	N/A	N/A	N/A
Thermal Conductivity btu/hr/ft/F (W/m-K)	125 (216)	121 (210)	121 (210)	44 (76)	104 (180)	9.4 (16)	226 (391)	9.75 (16.9)
Heat Capacity btu/lb-F (J/g-C)	.46 (1.96)	.373 (1.56)	.310 (1.26)	.261 (1.06)	.214 (.896)	.12 (.5)	.092 (.385)	.129 (.54)
CTE ppm/F (ppm/C)	6.3 (11.3)	7.7 (13.9)	3.4 (6.1)	14.4 (26)	13 (24)	9.6 (17.3)	9.4 (17)	4.8 (8.6)
Electrical Resistivity ohm-cm	4.2 E-06	3.5 E-06	N/A	14.6 E-06	4 E-06	72 E-06	1.71 E-06	60 E-06


TECHNICAL DATA SHEET

VASCOMAX[®] C-200/C-250/C-300/C-350


Nominal Mechanical Properties of Small Diameter Bars Following Aging Heat Treatment


	VascoMax C-200	VascoMax C-250	VascoMax C-300	VascoMax C-350
Ultimate Tensile Strength, psi	210,000	260,000	294,000	350,000
0.2% Yield, psi	206,000	255,000	290,000	340,000
Elongation, %	12	Ш	11	7
Reduction of Area, %	62	58	57	35
Notch Tensile (K _s = 9.0), psi	325,000	380,000	420,000	330,000
Charpy V-Notch, ft-lb	36	20	17	10
Fatigue Endurance Limit (10º Cycles), psi	110,000	110,000	125,000	110,000
Rockwell "C" Hardness	43/48	48/52	50/55	55/60
Compressive Yield Strength, psi	213,000	280,000	317,000	388,000

VASCOMAX® C-200

All specimens solution annealed for one hour at 1500° F, air cooled and aged at 900° F for the times indicated.

VASCOMAX[®] C-200

Physical Properties

Average Coefficient of Thermal Expansion (70-900° F)	5.6 × 10 ⁻⁶ in/in/°F
Modulus of Elasticity	26.2 × 10 ⁶ psi
Density	.289 lbs/cu. in. (8.0 g/cc)
Thermal Conductivity at 68° F	11.3 BTU/(ft)(hr)(°F)
at 122° F	11.6 BTU/(ft)(hr)(°F)
at 212° F	12.1 BTU/(ft)(hr)(°F)

Nominal	Annealed	Properties

Hardness	30 Rc
Yield Strength	100 ksi
Ultimate Strength	140 ksi
Elongation	18%
Reduction of Area	72%

Nominal Room Temperature Properties after Aging

Size	Direction	Hardness Rockwell "C"	Tensile Strength ksi	0.2% Yield Strength ksi	Elongation In 45 A %	Reduction o Area %
5/8" Round	Longitudinal	43.4	212.0	207.7	12.5	61.7
P/4" Round	Longitudinal	43.0	214.3	208.5	12.0	60.6
3" Round	Longitudinal	42.8	210.0	204.2	11.9	60.4
	Longitudinal	43.5	208.4	202.6	11.6	58.8
6" Square Transverse	43.9	206.9	200.1	8.9	41.7	
.250" Sheet	Transverse	42.9	218.1	213.0	11.0	45.0

TECHNICAL DATA SHEE

Mechanical Properties	Titanium Ti-6	AI-4V (Grade 5), Annealed			
Hardness, Brinell	334	334		Estimated from Rock	well C.	
Hardness, Knoop	363	363		Estimated from Rock	well C.	
Hardness, Rockwell C	36	36				
Hardness, Vickers	349	349		Estimated from Rock	well C:	
Tensile Strength, Ultimate	<u>950 MPa</u>	138000 psi				
Tensile Strength, Yield	<u>880 MPa</u>	128000 psi				
Elongation at Break	14 %	14 %				
Reduction of Area	36 %	36 %				
Modulus of Elasticity	<u>113.8 GPa</u>	16500 ksi				
Compressive Yield Strength	<u>970 MPa</u>	141000 psi				
Notched Tensile Strength	<u>1450 MPa</u>	210000 psi	K _t (str	ess concentration facto	r) = 6.7	
Ultimate Bearing Strength	<u>1860 MPa</u>	270000 psi			e/D = 2	
Bearing Yield Strength	<u>1480 MPa</u>	215000 psi			e/D = 2	
Poisson's Ratio	0.342	0.342				
Charpy Impact	<u>17 J</u>	12.5 ft-lb		(A)	/-notch	
Fatigue Strength	<u>240 MPa</u>	34800 psi	at 1E+7 cycles. K _t (str	ess concentration facto	r) = 3.3	
Fatigue Strength	<u>510 MPa</u>	74000 psi		Unnotched 10,000,000	Cycles	
Fracture Toughness	<u>75 MPa-m¼</u>	68.3 ksi-in¼				
Shear Modulus	<u>44 GPa</u>	6380 ksi				
Shear Strength	<u>550 MPa</u>	79800 psi	Electrical Properties	litanium	Ti-6Al-4V (Grade	e 5), Annealeo
			Electrical Resistivity	0.000178 ohm-cm	0.000178 ohm-cm	
			Magnetic Permeability	1.00005	1.00005	
			Magnetic Susceptibility	3.3e-006	3.3e-006	
			Thermal Properties			
			CTE, linear 20°C	<u>8.6 µm/m-°C</u>	4.78 µin/in-°F	
			CTE, linear 250°C	<u>9.2 µm/m-°C</u>	5.11 µin/in-°F	
			CTE, linear 500°C	<u>9.7 µm/m-°C</u>	5.39 µin/in-°F	
			Heat Capacity	0.5263 J/q-*C	0.126 BTU/lb-*F	
			Thermal Conductivity	<u>6.7 W/m-K</u>	46.5 BTU-in/hr-ft²-°F	
			Melting Point	1604 - 1660 °C	2920 - 3020 °F	

Solidus

Liquidus

Beta Transus

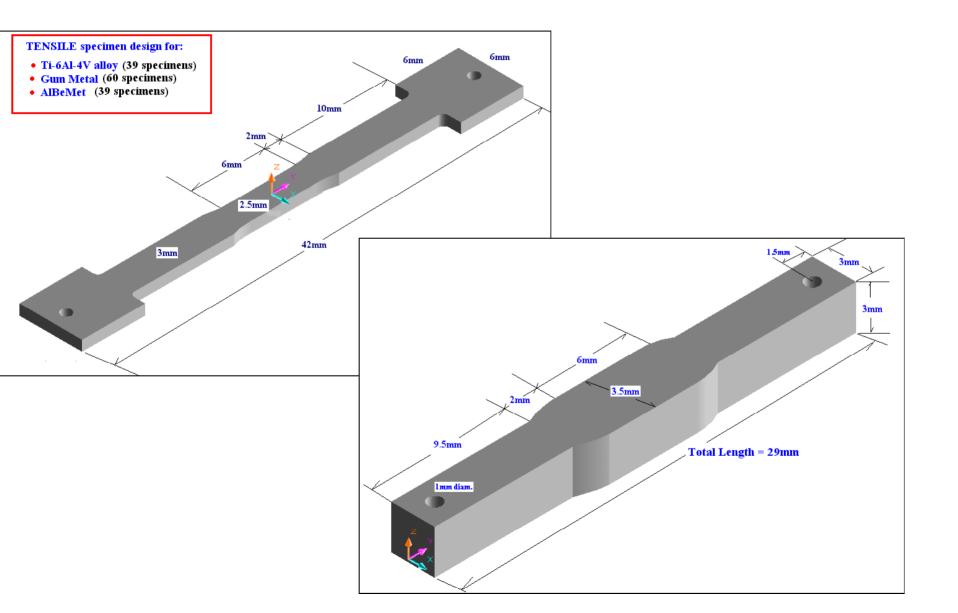
<u>1604 °C</u>

<u>1660 °C</u>

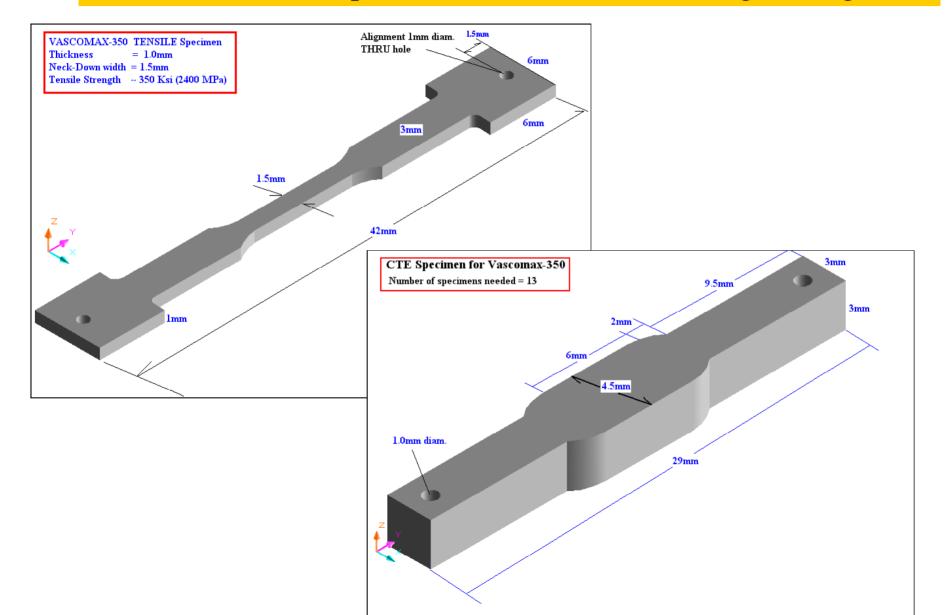
<u>980 °C</u>

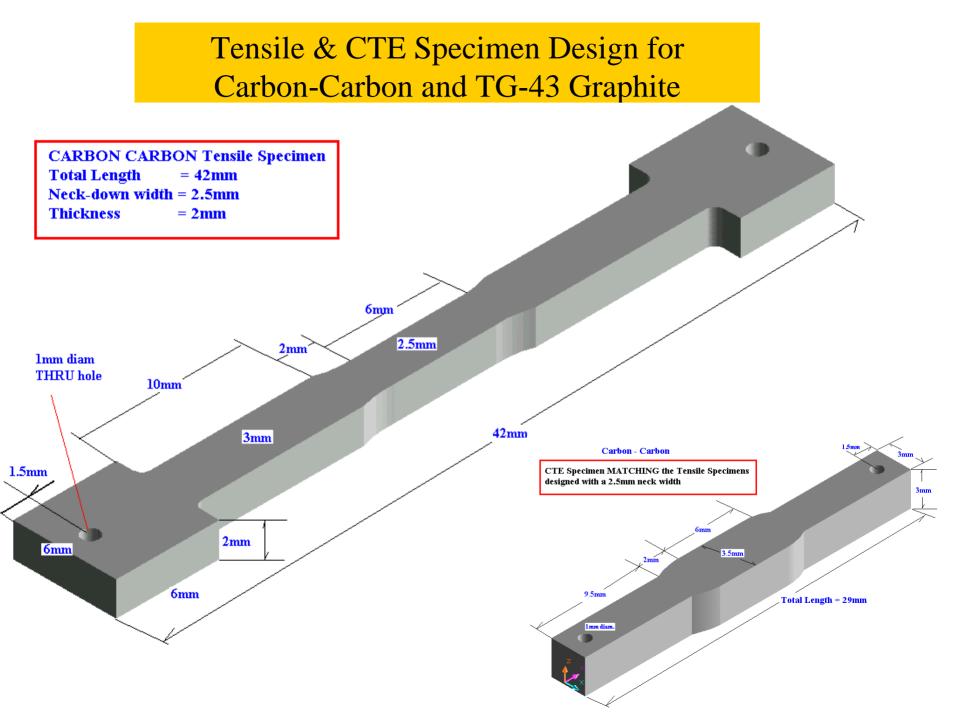
2920 °F

3020 °F

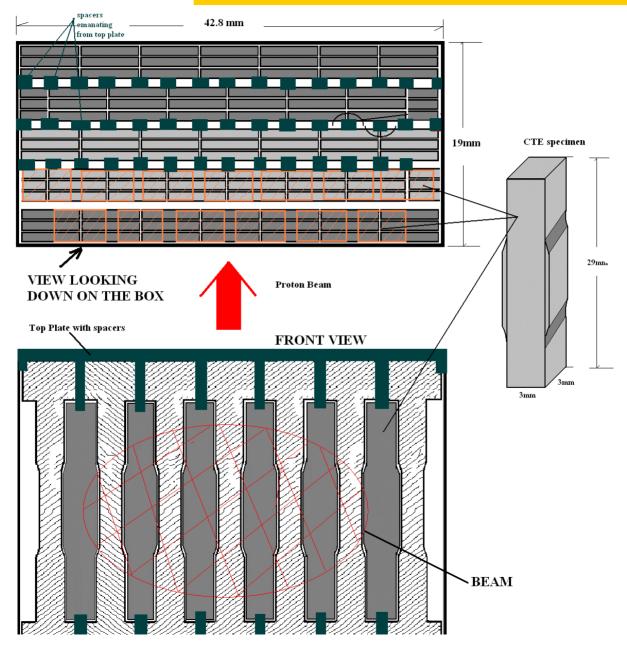

1800 °F

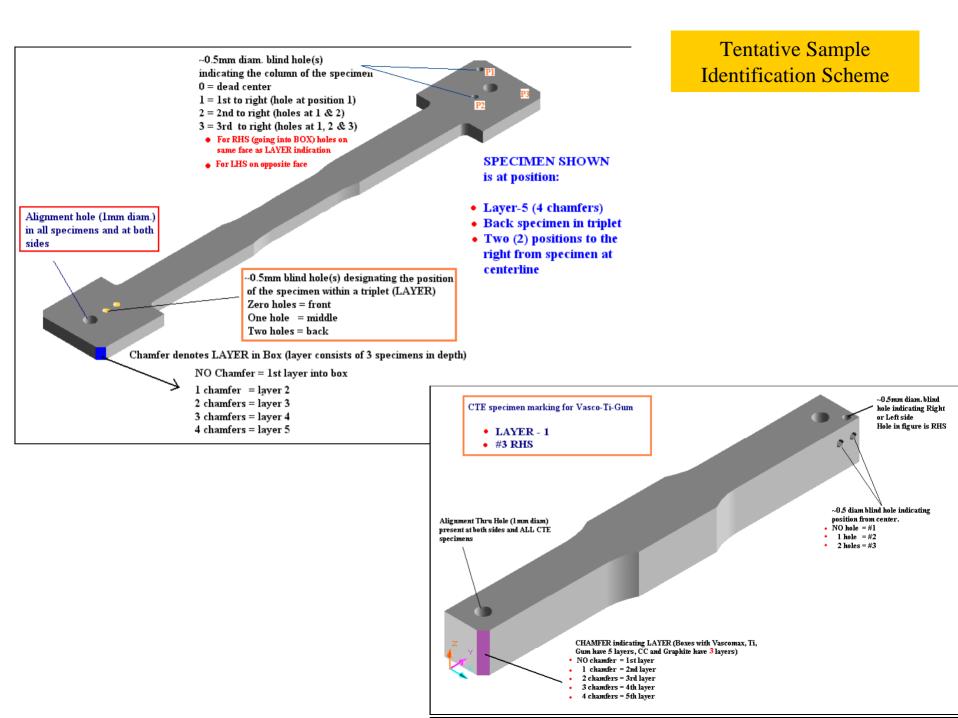
at 1.6kA/m cgs/g


20-1001C


Average over the range 20-3151C Average over the range 20-6501C

Tensile & CTE Specimen Design for Upcoming Irradiation Study




Tensile & CTE Specimen Design for Upcoming Irradiation Study Vascomax-350 specimen variation due to its high strength

LAYOUT OF Specimen Assembly

