

June 4, 1999

Muon Collider main page:

http://www.cap.bnl.gov/mumu/mu_home_page.html

Muon Collider R&D Status Report:

http://www.cap.bnl.gov/mumu/status_report.html

Muon Collider Targetry page:

http://puhep1.princeton.edu/mumu/target/

AIP Conference Proceedings, Vols. 352, 372, 435 & 441

Muon Requirements

- $1.2 \times 10^{14} \ \mu^{\pm}/\text{s}.$
- 15 pulses/s.
- Invariant 6-D emittance of $2 \times 10^{-10} \ (\pi \text{mm})^3$.
- Initial pulse length only 1-2 ns.

The Source

- The muons come from the decay of soft pions produced in *p*-nucleus collisions.
- Need at least $1.5 \times 10^{15} p/s$ at 16-24 GeV $\Leftrightarrow 4 \text{ MW}$ beam power.
- Initial muon emittance is about 10^6 larger than desired \Rightarrow Need fast cooling.
- [Our muon beam is 10^6 times hotter than existing beams.]

Overview of Targetry for a Muon Collider

- $1.2 \times 10^{14} \ \mu^{\pm}$ /s via π -decay from a 4-MW proton beam.
- Liquid-metal jet target: Hg, (or Ga/Sn, Pb/Sn, ...).
- 20-T solenoid captures pions with $P_{\perp} < 220 \text{ MeV}/c$.
- π-decay channel in 1.25-T field, with phase-rotation via rf (to compress energy of the muon bunch).

Targetry Issues

- Is a liquid jet target viable?
 - -1-ns beam pulse \Rightarrow shock heating of target.
 - Resulting pressure wave may disperse liquid (or crack solid).
 - Damage to target chamber walls?
 - Magnetic field will damp effects of pressure wave.
 - Eddy currents arise as metal jet enters the capture magnet.
 - Jet is retarded and distorted, possibly dispersed.
 - Hg jet studied at CERN, but not in beam or magnetic field:

High-speed photographs of mercury jet target for CERN-PS-AA (laboratory tests) 4,000 frames per second, Jet speed: 20 ms-1, diameter: 3 mm, Reynold's Number:>100,000 A. Poncet

- Is the first rf cavity viable?
 - First cavity should be as close as possible to target to minimize longitudinal dispersion of the soft pions.
 - \rightarrow Must operate during pulse of $\approx 10^{14}$ pions.
 - Little known about particle-induced breakdown of rf cavities.
- Is the 20-T Solenoid viable?
 - Even with water-cooled tungsten inserts, this hybrid (copper/superconductor) magnet will experience a very high radiation dose.
 - LANL has experience with superconducting magnets in high radiation areas.
- Other Radiological Issues
 - A 4-MW beam leads to activiation issues characteristic of a small nuclear reactor.
 - Remote handling of activated liquid target material is under study at CERN ISOLDE, the ORNL NSNS, ...

R&D Goals of BNL P951

Long Term: Provide a facility to test key components of the front-end of a muon collider in realistic beam conditions.

Near Term (1-2 years): Explore viability of a liquid metal jet target in intense, short proton pulses and (separately) in strong magnetic fields.

(Change target technology if encounter severe difficulties.)

Mid Term (3-4 years): Add 20-T magnet to AGS beam tests; Test 70-MHz rf cavity (+ 1.25-T magnet) downstream of target; Characterize pion yield.

Not included in P951: studies of long-term radiological issues.

Why BNL?

The BNL AGS has proton beam parameters conditions closest to those desirable for a muon collider source.

Parameter	Muon	BNL	FNAL	CERN	LANSCE
	Collider	AGS	Booster	PS	PSR
Proton Energy (GeV)	16-24	24	8.9	24	0.8
p/bunch	5×10^{13}	1.6×10^{13}	6×10^{10}	4×10^{12}	3×10^{13}
No. of bunches	2	6	84	8	1
p/cycle	1×10^{14}	1×10^{14}	5×10^{12}	3×10^{13}	3×10^{13}
Bunch spacing (ns)	≈ 1000	440	18.9	250	—
Bunch train length (μs)	≈ 1	2.2	1.6	2.0	0.25
RMS Bunch length (ns)	≈ 1	≈ 10	≈ 1	≈ 10	≈ 60

The advanced capability of the AGS is still very relevant to the national high energy physics program.

Possible Site for P951: A3 Line in AGS Hall

• Must add quad triplet to bring a 100-mm-mrad, 24-GeV beam to a spot with $\sigma_r = 1$ mm? (Kevin Brown)

- Need beamline instrumentation upgrades: spot size, beam current, FEB radiation monitoring.
- Data taking via pulse-on-demand once every few minutes; but desire 1-Hz running for beam tuning.
- Shielding needed for 1-Hz running with 10¹⁴ ppp = 100 TP (Ripp Bowman, Ralf Prigl).
- Could run first tests parasitic to g 2 in Mar/Apr 2000.
- Must begin work now (6/1/99) to use beam at that time!

AGS Operations Issues

- In FY00/01 HEP operation of AGS is for g 2 running, with fast extraction. P951 is very compatible with parasitic running in this condition.
- After FY01, no DOE approved HEP operation of the AGS.
- The AGS2000 program proposes running slow extracted proton beam 30-35 weeks/yr, for 16-20 hours/day during RHIC operation.
- P951 requires fast extracted beam, so cannot parasite off the AGS2000 program; we must interleave running with AGS2000, but seek ≤ 6 weeks/yr.
- If there is no other HEP operation of the AGS after FY01, P951 would then bear the full incremental cost of proton beam running.

Schedule

• FY99:

Prepare A3 area; begin work on liquid jets, extraction upgrade, magnet systems, and rf systems.

• FY00:

Initial tests in A3 line. (600 hours).

• FY01:

Complete extraction upgrade; test of liquid jet + beam. (600 hours).

• FY02:

Complete magnet and rf systems; test with 2 ns beam. (600 hours).

• FY03:

Complete pion detectors; test with low intensity SEB. (600 hours).