

The R&D Program for Targetry and Capture at a

Neutrino Factory and Muon Collider Source

(BNL E951)

K.T. McDonald *Princeton U.*

June 15, 2000

MUTAC Review, BNL

http://puhep1.princeton.edu/mumu/target/

Requirements for Targetry and Capture at a Neutrino Factory/Muon Collider

- $1.2 \times 10^{14} \ \mu^{\pm}/\text{s}$ via π -decay from a 4-MW proton beam.
- Proton pulse ≈ 1 ns rms.
- Disposable target \Rightarrow mercury jet.
- 20-T capture solenoid followed by a 1.25-T π -decay channel with phase-rotation via rf (to compress the bunch energy).

A Carbon Target is Feasible at 1-MW Beam Power

But a 1-nsec beam pulse causes severe pressure waves.

A carbon target sublimates away in 1 day at 4 MW.

Two Classes of Issues

- 1. Viability of targetry and capture for a single pulse.
- 2. Long-term viability of the system in a high radiation area.

E951 Studies the Single Pulse Issues

Overall Goal: Test key components of the front-end of a neutrino factory in realistic single-pulse beam conditions.

Near Term (1-2 years): Explore viability of a liquid metal jet target in intense, short proton pulses and (separately) in strong magnetic fields.

Mid Term (3-4 years): Add 20-T magnet to beam tests; Test 70-MHz rf cavity (+ 1.25-T magnet) 3 m from target; Characterize pion yield.

The 8 Steps in the R&D Program

- 1. Simple tests of liquid (Ga-Sn, Hg) and solid (C, Ni) targets with AGS Fast Extracted Beam (FEB)of $1.5 \times 10^{13}~ppp$.
- 2. Test of liquid jet entering a 20-T, 20-MW, cw Bitter magnet at the National High Magnetic Field Laboratory).
- 3. Test of liquid jet and other targets with $10^{14} ppp$ via fast extraction of 6 AGS bunches.
- 4. Add 20-T pulsed magnet (5-MW peak) to target tests with AGS FEB.
- 5. Add 70-MHz rf cavity downstream of target in FEB.
- 6. Surround rf cavity with 1.25-T magnet. At this step we have all essential features of the source.
- 7. Characterize pion yield from target + magnet system with slow extracted beam (SEB).
- 8. Ongoing simulation of the thermal hydraulics of the liquid-metal target systems.

Construction in the A3 Beamline

Simple Target Tests

Simple targets: Pipe, trough, waterfall:

CAMERA VIEW

Plus: carbon and nickel targets.

Target Diagnostics

High-speed digital camera (10^6 FPS for 16 frames):

Fiberoptic strain sensors (Need to improve the frequency response):

PRODUCT DATASHEET

VELOCE SIGNAL CONDITIONER

KEY FEATURES

- U 1 to 8 simultaneous channels
- U V oltage output
- U 200 000 Hz sampling rate
- U 19-inch rack chassis
- U Upgradable on number of channels
- U Compatible with all of FISO's fiber optic transducers

THE VELOCE SYSTEM IS AN UPGRADABLE, MULTI-CHANNEL, SIMULTANEOUS-READING FIBER-OPTIC SIGNAL CONDITIONER WITH A HIGH-SPEED SAMPLING RATE AND COMPATIBILITY WITH THE ENTIRE LINE OF FISO'S FIBER-OPTIC TRANSDUCERS.

Prototype Mercury Jets

CERN:

Princeton:

AGS Full Turn Fast Extraction

- A single AGS proton bunch can have 1.6×10^{13} protons.
- Can have 6 bunches in the AGS $\Rightarrow 10^{14}$ protons.
- Must upgrade pulse forming network of the G10 fast kicker to permit single-turn extraction of all 6 bunches.
- Arlene Zhang of the AGS is beginning a design study.

AGS FULL TURN EXTRACTION KICKER SYSTEM

• The LANL Proton Radiography Project also desires the AGS kicker upgrade – and may have a budget for this. However, they want somewhat greater capability than we need, and foresee a longer schedule – completion in FY03.

20-T Pulsed Solenoid and 70-MHz RF Cavity

- We now propose to build a new 5-MW pulsed power supply.
 (J. Sandberg)
- We now propose that the 70 MHz rf cavity have resistive coils within its nosepieces to provide 1.25-T field on axis. (B. Weggel)
- The rf frequency will actually be 71.2 MHz
 = 16 × AGS frequency for six 24-GeV bunches.
- The rf cavity will provide 6 MeV/m accelerating gradient at 4.5 MW power. (J. Rose)
- The rf power is from four 1.5-MW 8973 tetrodes. (J. Corlett)

R&D on High Power, Low Frequency RF Sources

Inductive Output Tubes (Marconi, Thomson):

Figure 3.2 Schematic of how a standard television IOT interfaces with the input cavity.

IOT Option - 50 MW RF Output Power at 70 MHz									
	011 - 30 IVI W				26	10			
Number of beams	1	6	12	24	36	48			
Peak Single beam perveance (× 10 ⁻⁶)	1.3 AV ^{-3/2}	1.3 AV ^{-3/2}	1.0 AV ^{-3/2}	1.0 AV ^{-3/2}	1.0 AV ^{-3/2}	1.0 AV ^{-3/2}			
IOT perveance (× 10 ⁻⁶)	1.3 AV ^{-3/2}	7.8 AV ^{-3/2}	12. AV ^{-3/2}	24 AV ^{-3/2}	36 AV ^{-3/2}	48 AV ^{-3/2}			
Efficiency	73 %	73 %	73 %	73 %	73 %	73 %			
Peak DC power	68.5 MW								
Pulsed Cathode voltage	500 kV	243 kV	203 kV	154 kV	130 kV	116 kV			
Peak tube current	460 A	934A	1098 A	1450 A	1687 A	1896 A			
Peak cathode current / beam	460 A	156 A	91 A	60 A	47 A	40 A			
Total current with no RF	25 A	54 A	84 A	96 A	126 A	144 A			
Idle current per beam with no RF	25 A	9 A	7 A	4 A	3.5 A	3 A			
Mean current density of M-type cathode	2.5 Acm ⁻²								
Area of emitter	184 cm ²	62 cm ²	37 cm ²	24 cm ²	19 cm ²	15.8 cm ²			
Cathode diameter	15 cm	9 cm	6.8 cm	5.5 cm	4.9 cm	4.5 cm			
Gain	25 dB								
Drive power	158 kW								
Height	2.5 m								
Diameter	2 m	2.0 m	3 m	3 m	3.5 m	3.5 m			

Table 1.3 Approximate parameters for single and multiple beam IOTs to deliver 50 MW output power at 70 MHz. (Figures are only indicative).

Hobetron (Litton):

PROPOSAL FOR LOW-FREQUENCY, HIGH-POWER PULSE COMPRESSION BY A THYRATRON SWITCH

Y. Zhao, BNL (April, 2000)

PRINCIPLE:

A superconducting storage cavity is charged by a tetrode. Its output line is a $\lambda/2$ line ended with a thyratron, which is open during charging, so that only a little energy leaks out.

KEY ISSUE:

Thyratrons usually work at video frequency, but brief operation at RF frequency is possible before breakdown occurs.

POWER COMPRESSION RATIO:

Reduced by leakage in the switch and by transmission loss.

Theoretical analysis indicates a gain of more than 1000 is possible.

Initial R&D goal: **power gain of 20** or more.

SWITCH CLOSED --- TOTAL ENERGY TO LOAD

THYRATRON FIRING CIRCUIT

Simulations

[Talk by S. Kahn]

- 1. Pion production: MARS, FLuka. (H. Kirk, N. Mokhov)
- Pion decay, phase rotation: MARS, GEANT, ICOOL.
 (Y. Fukui, H. Kirk, N. Mokhov, S. Kahn)
- 3. Neutron doses: MARS, LAHET/MCNP. (N. Mokhov, ...)
- 4. Radionucleide inventory: LAHET/MNCP
- Beam-induced pressure waves in targets.
 (A. Hassanein, P. Drumm, R. Samulyak, N. Simos)
- 6. Magnetohydrodynamics of liquid metal jets. (C. Lu)

Beyond E951

[Talk by P. Spampinato]

- Target station infrastructure (ORNL).
- Radionucleide issues (BNL, ORNL).
- Neutron damage to materials (BNL, MSU, ORNL).
- Large exposure tests of targets at neutron spallation facilities (BNL, LANL, ORNL).

E951 Schedule

• FY99:

Prepare A3 area at the AGS (Step 1); Begin work on liquid jets, magnet and rf systems (Steps 2, 4-6).

• FY00:

Complete A3 line (Step 1); Continue work on jet, magnet and rf systems (Steps 2, 4-6); Begin work on AGS extraction upgrade (Step 3).

• FY01:

First test of targets in A3 (Step 1); Liquid jet test in 20-T magnet at NHMFL (Step 2); Continue work on extraction, magnet, and rf systems (Steps 3-6).

• FY02:

Complete extraction upgrade, magnet, and rf systems (Steps 3-6); Test targets with $10^{14} ppp$ (Step 3); Begin work on pion yield diagnostics (Step 7); Option to study mercury dump in vertically pitched beam (Step 3.5).

• FY03:

Beams tests of target + 20-T pulsed magnet + rf cavity (Steps 4.6); Complete pion detectors; test yield with low intensity SEB (Step 7).

Targetry and Capture Budgets, I

Yearly Projections (made in 1998)

Category	FY99	FY00	FY01	FY02	FY03	Total
Base Program	\$0.5M	\$1.5M	\$2M	\$2M	\$1M	\$7M
AGS Operations		\$0.2M	\$0.2M	\$0.4M	\$0.4M	\$1M
RF Power Source	\$0.05M	\$0.5M	\$1M	\$1M	\$1M	\$3.5M

Targetry FY99, Allocated

Task	ANL	BNL	LBL	Princeton	Industry	Total
Initial Target Studies		20		85		105
AGS Beamline Upgrades		100				100
Pulsed Solenoid Design		50				50
RF Systems		65	75		50	190
Simulation Studies	75			5		80
Total	75	285	75	90	50	\$525k

Total Targetry FY00, Allocated

Task	ANL	BNL	LBL	ORNL	NHMFL	Prin.	MSU	Total
Initial Target Studies		25				50		75
AGS Beamline Upgrades		1338						1338
Magnet Systems		240			25	40		305
RF Systems		295	75					370
Simulation Studies	80					10		90
Target Station				50				50
Radiation Damage							20	20
Carryover		-100						-100
Total	80	1798	75	50	25	100	20	\$2148k

FY00 Targetry Allocation: Details

1. Initial Target Studies	\$75k
• Remote positioner for target box (BNL)	\$25k
• Target box, targets, cameras (Princeton)	\$50k
2. AGS Beamline Upgrades	\$1338k
• Labor (11,000 hours, BNL)	\$1100k
• Beamline Instrumentation (BNL)	\$120k
• Radiation Safety (BNL)	\$38k
• 6-Bunch kicker design (BNL)	\$80k
3. Magnet Systems	\$305k
• Mech. engineer (BNL)	\$170k
• 1/4 Mech. engineer (Princeton)	\$40k
• 1/6 Mech. engineer (NHMFL)	\$25k
• Design of 5 MW magnet power supply (BNL) .	\$70k

KIRK T. McDonald June 15, 2000 21

4. RF Systems\$370)k
\bullet Recommissioning of the 8973 power supplies (LBL) $$. \$75	5k
• 1 1/2 RF engineer (BNL)\$25	5k
• Materials (BNL)\$40	0k
5. Simulation Studies\$90)k
• (ANL)\$80	0k
• (Princeton)\$10	0k
6. Target Station Studies (ORNL)\$50)k
7. Radiation Damage Studies (MSU)\$20)k
8. Total\$2248	3 k

FY01 Targetry Request: Details

1. Initial Target Studies\$200k
• Engineering support for A3 target station (BNL)\$50k
• Mercury jet for BNL/NHMFL tests (Princeton)\$50k
• [Carbon target studies (BNL, ORNL, LANL) \$100k]
2. AGS Operations: 3 weeks, A3 + linac costs \$200k
3. AGS Beamline Upgrades\$900k
• Labor (1,000 hours, BNL)\$100k
• 6-Bunch kicker fabrication (BNL)\$800k
4. Magnet Systems\$1200k
• Mech. engineer + designer (BNL)\$280k
• 1/2 Mech. engineer (NHMFL)\$80k
• 1/4 Mech. engineer (Princeton)\$40k
• Fabrication of 5 MW magnet power supply (BNL +) \$400k
• Fabrication of pulsed & DC magnet coils (BNL +) .\$400k

RF Systems \$1335k	5.
• Shipping of 8973 rf gear from LBL to BNL\$20k	
• Materials for 8973 power source (BNL)\$100k	
• 1 1/2 RF engineer (BNL)\$255k	
• Mech. engineer (BNL)\$160k	
• $2 \times 1/2$ Technician (BNL)\$100k	
• Fabrication of the 70 MHz rf cavity\$400k	
• [RF switch R&D (BNL)\$50k]	
• [Industrial development of 10-50 MW power sources \$250k]	
imulation Studies\$360k	6.
• 1/2 FTE (ANL)\$80k	
• 1/2 FTE (BNL)\$80k	
• [1/2 FTE (BNL)\$80k]	
• [1/2 FTE (ORNL)\$80k]	
• 1/4 FTE (Princeton)\$40k	
Farget Station Studies (ORNL)	

8. [N	Veutronics \$150k
•	[Radiation Damage Studies (MSU)\$50k]
•	[Neutron dosimetry studies in A3 (BNL+) \$100k]
9. T o	otal\$4445k
[It	ems in brackets are beyond the E951 base program]
[T]	otal for items beyond the base program\$810k

Summary of FY01 Targetry Budget, Requested

Task	ANL	BNL	ORNL	NHMFL	Prin.	MSU	Ind.	Total
Initial Target Studies		50	100		50			200
AGS Operations		200						200
AGS Beamline Upgrades		900						900
Magnet Systems		1080		80	40			1200
RF Systems		1085					250	1335
Simulation Studies	80	160	80		40			360
Target Station			100					100
Neutronics		100				50		150
Total	80	3575	280	80	130	50	250	\$4445k

Comments on the FY01 Targetry Budget Request

- 1. Of the \$4435k requested, \$810k are for intiatives beyond the E951 base program.
- 2. Support for Neutronics may be available from the NSF.
- 3. Support for AGS Operations may be available from DOE Facilities Operations.
- 4. Support for the AGS kicker upgrade may be available from the LANL Proton Radiography project.
- 5. Support for industrial development of rf power sources might be available from DOE BES or elsewhere.
- 6. Candidates for support by other than DOE Advanced Accelerator Projects total \$1400k.