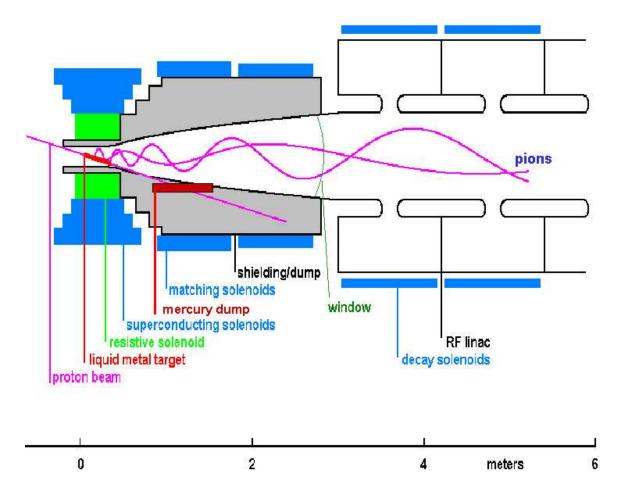


The R&D Program for Targetry and Capture at a

Neutrino Factory and Muon Collider Source

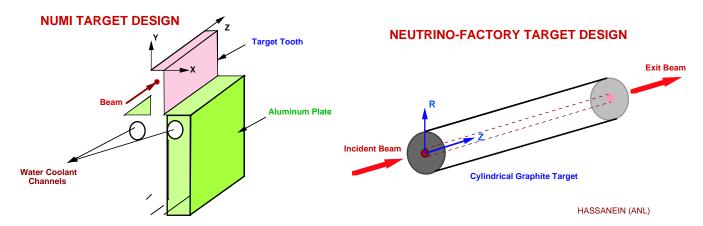
(BNL E951)

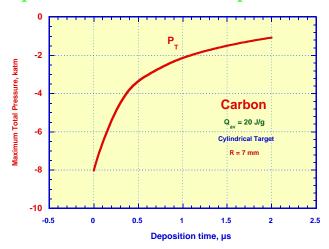
K.T. McDonald *Princeton U.*

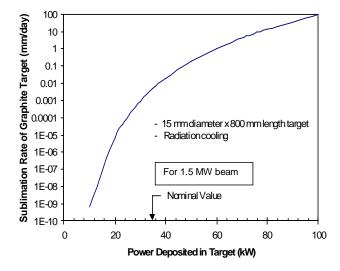

October 3, 2000

NF&MCC Technical Board Meeting, LBL

http://puhep1.princeton.edu/mumu/target/


Requirements for Targetry and Capture at a Neutrino Factory/Muon Collider

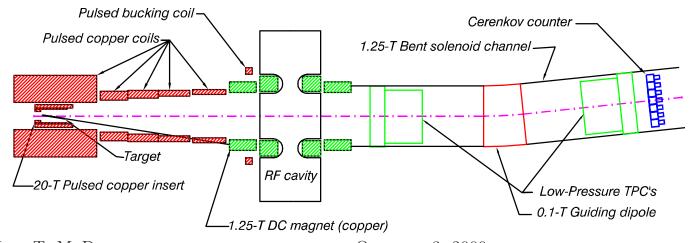

- $1.2 \times 10^{14} \ \mu^{\pm}/\text{s}$ via π -decay from a 4-MW proton beam.
- Proton pulse ≈ 1 ns rms.
- Disposable target \Rightarrow mercury jet.
- 20-T capture solenoid followed by a 1.25-T π -decay channel with phase-rotation via rf (to compress the bunch energy).


A Carbon Target is Feasible at 1-MW Beam Power

But a 1-nsec beam pulse causes severe pressure waves.

A carbon target sublimates away in 1 day at 4 MW.

Two Classes of Issues


- 1. Viability of targetry and capture for a single pulse.
- 2. Long-term viability of the system in a high radiation area.

E951 Studies the Single Pulse Issues

Overall Goal: Test key components of the front-end of a neutrino factory in realistic single-pulse beam conditions.

Near Term (1-2 years): Explore viability of a liquid metal jet target in intense, short proton pulses and (separately) in strong magnetic fields.

Mid Term (3-4 years): Add 20-T magnet to beam tests; Test 70-MHz rf cavity (+ 1.25-T magnet) 3 m from target; Characterize pion yield.

The 8 Steps in the R&D Program

- 1. Simple tests of liquid (Ga-Sn, Hg) and solid (C, Ni) targets with AGS Fast Extracted Beam (FEB)of $1.5 \times 10^{13}~ppp$.
- 2. Test of liquid jet entering a 20-T, 20-MW, cw Bitter magnet at the National High Magnetic Field Laboratory).
- 3. Test of liquid jet and other targets with $10^{14} ppp$ via fast extraction of 6 AGS bunches.
- 4. Add 20-T pulsed magnet (5-MW peak) to target tests with AGS FEB.
- 5. Add 70-MHz rf cavity downstream of target in FEB.
- 6. Surround rf cavity with 1.25-T magnet. At this step we have all essential features of the source.
- 7. Characterize pion yield from target + magnet system with slow extracted beam (SEB).
- 8. Ongoing simulation of the thermal hydraulics of the liquid-metal target systems.

Activities During FY01

- E951 given DOE approval by J. O'Fallon on Sept. 12.
- Preparation of the A3 beamline at BNL:
 - Work only 80% complete as of Oct. 1; nearly on budget.
 - Slowdown during Sept.-Dec. 2000 due to RHIC shutdown.
 - A3 complete \approx March 2001.
- Preparation for initial target tests:
 - Target types: Hg in trough, Hg in pipe, Hg vertical jet,
 Hg horizontal jet, Wood's metal in trough, C rod, graphite
 composite rod, BN rod...
 - Finfrock, Greene, Thieberger join BNL targetry effort.
 - Target containment vessels must be redesigned for greater safety.
 - Nominal beam energy deposition stress ordinary materials
 (Be, Al, Ti, stainless steel) too close to yield.
- Use invar (Fe 64% / Ni 36%) where beam impacts.

 Kirk T. McDonald October 3, 2000

- Use "bulletproof" glass laminate for viewports on primary containment vessel for mercury.
- Stainless steel outer containment vessels with ports using conflat flanges.
- High-speed digital camera system being assembled.

• Construction of Hg jets:

- CERN: using fast electropneumatic valve. "Copy" to be built at BNL.
- Princeton: using "chopper".
- One or both to be tested in 20-T at the NHMFL in FY01.

• 20-T pulsed magnet system:

- "Factorize" design into main pulsed coils, pulsed bucking coils, and DC coils.
- Seeking vendor involvement in design/fabrication of main pulsed coils.
- Dyna Power performed a preliminary design study for a
 5-MW power supply.

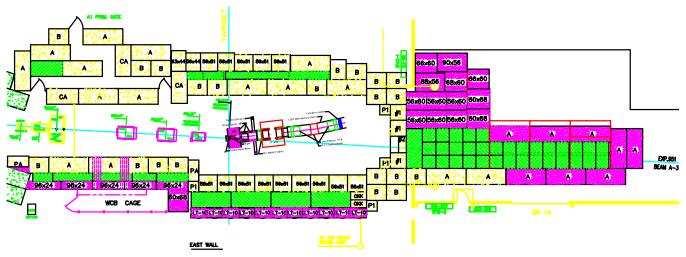
7

• Low frequency rf systems:

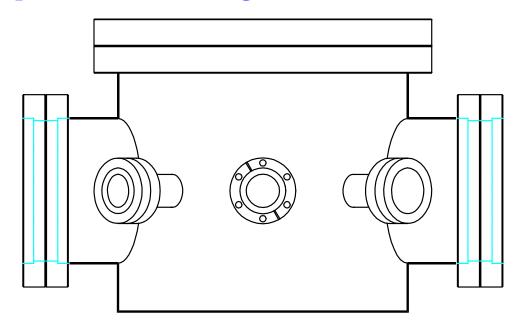
- CERN: Small 200 MHz rf cavity operated without sparking at peak fields of 50 MV/m a few m downstream of the ACOL target with 50-ns pulses of 10¹³ protons.
- Preliminary 70-MHz RF cavity design by AES.
- Recomissioning of the 8973 tubes almost complete at LBL.

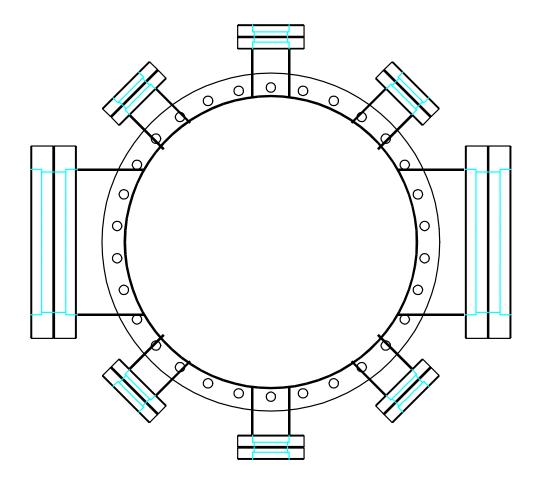
• Simulations:

- Pion production, neutron dose via MARS, GEANT.
- Effect of beam energy deposition in target via ANSYS,
 FRONTIER, HEIGHTS.
- But little work yet on magnetohydrodynamics, or on materials activation.


• Carbon targets:

- Considered in Feasibility Study 1.
- Recent test of a carbon rod at LANL: 10^{13} protons, 800 MeV, $\lesssim 1 \,\mu\text{s}$ pulse.


Construction in the A3 Beamline



Proposed Outer Target Containment Vessel

Target Diagnostics

High-speed digital camera (10^6 FPS for 16 frames):

Fiberoptic strain sensors (Need to improve the frequency response):

PRODUCT DATASHEET

Constants.

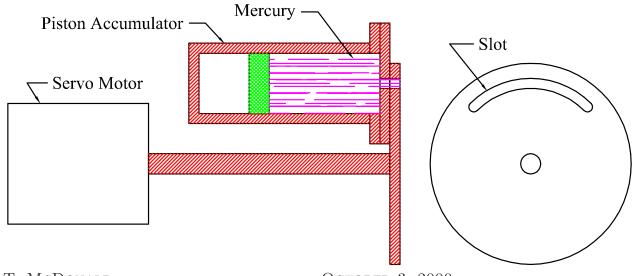
KEY FEATURES

- U 1 to 8 simultaneous channels
- U V oltage output
- U 200 000 Hz sampling rate
- U 19-inch rack chassis
- U Upgradable on number of channels
- U Compatible with all of FISO's fiber optic transducers

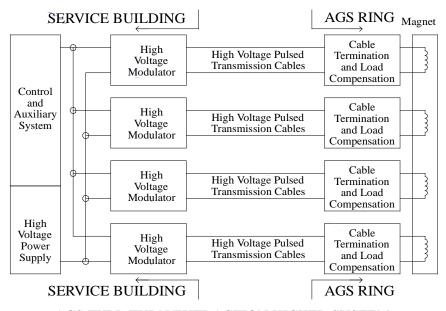
VELOCE SIGNAL CONDITIONER

THE VELOCE SYSTEM IS AN UPGRADABLE, MULTI-CHANNEL, SIMULTANEOUS-READING FIBER-OPTIC SIGNAL CONDITIONER WITH A HIGH-SPEED SAMPLING RATE AND COMPATIBILITY WITH THE ENTIRE LINE OF FISO'S FIBER-OPTIC TRANSDUCERS.

Prototype Mercury Jets

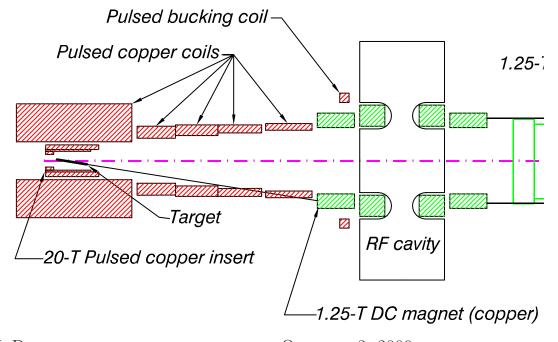


CERN:

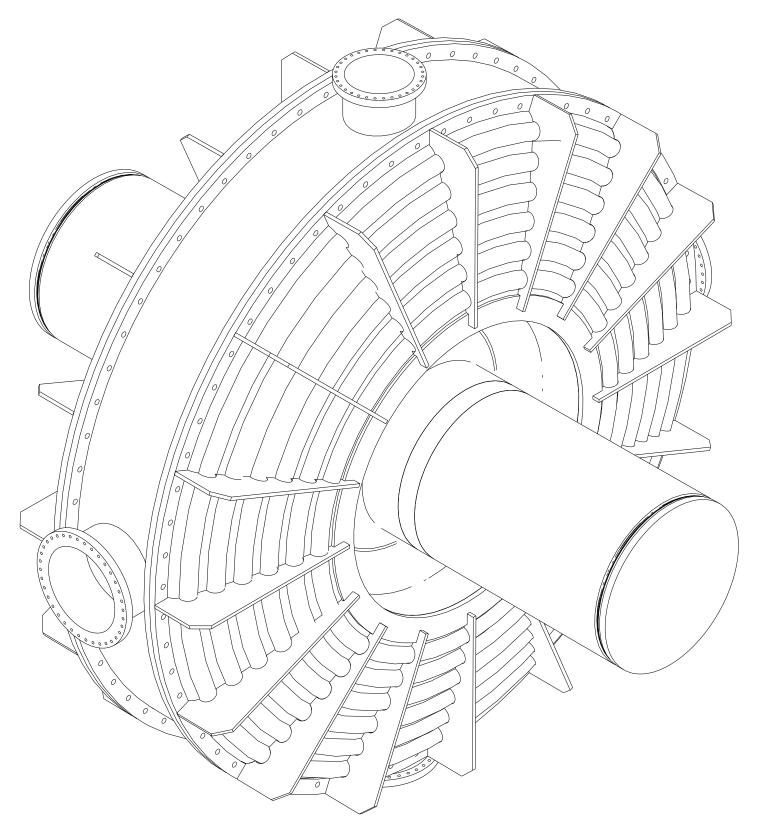

Princeton:

AGS Full Turn Fast Extraction

- A single AGS proton bunch can have 1.6×10^{13} protons.
- Can have 6 bunches in the AGS $\Rightarrow 10^{14}$ protons.
- Must upgrade pulse forming network of the G10 fast kicker to permit single-turn extraction of all 6 bunches.
- Arlene Zhang/Jim Fockler beginning a design study.


AGS FULL TURN EXTRACTION KICKER SYSTEM

• The LANL Proton Radiography Project also desires the AGS kicker upgrade – and may have a budget for this. However, they want somewhat greater capability than we need, and foresee a longer schedule – completion in FY03.


20-T Pulsed Solenoid and 70-MHz RF Cavity

- We now propose to build a new 5-MW pulsed power supply.
 (J. Sandberg)
- We now propose that the 70 MHz rf cavity have resistive coils within its nosepieces to provide 1.25-T field on axis. (B. Weggel)
- The rf frequency will actually be 71.2 MHz
 = 16 × AGS frequency for six 24-GeV bunches.
- The rf cavity will provide 6 MeV/m accelerating gradient at 4.5 MW power. (J. Rose)
- The rf power is from four 1.5-MW 8973 tetrodes. (J. Corlett)

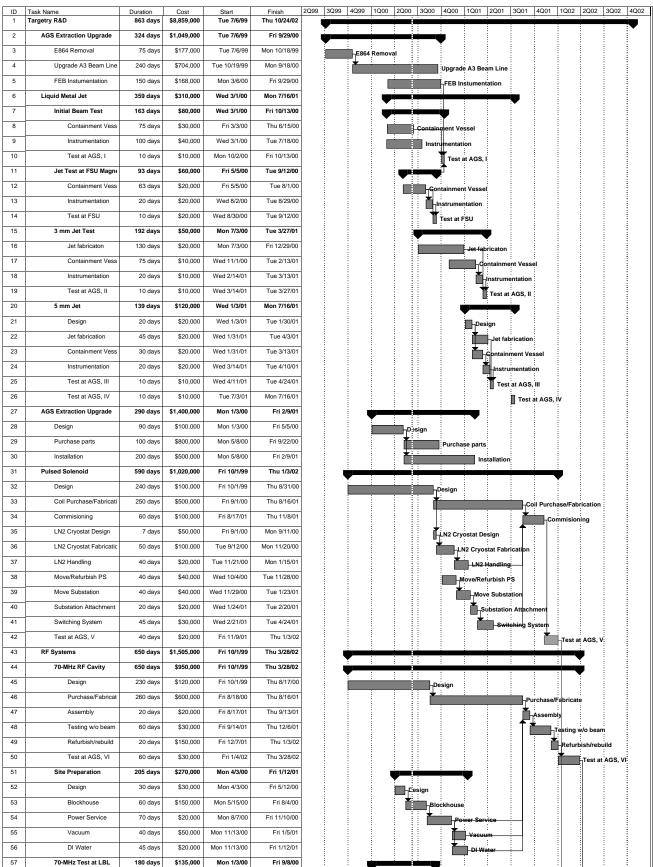
70 MHz Cavity Design by AES

E951 Schedule

• FY99:

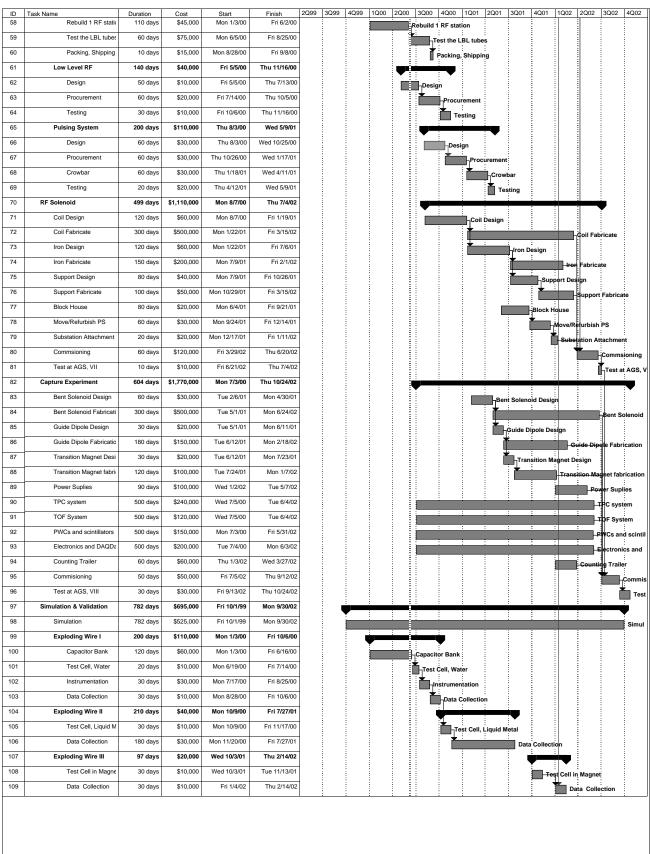
Prepare A3 area at the AGS (Step 1); Begin work on liquid jets, magnet and rf systems (Steps 2, 4-6).

• FY00:


Continue preparation of the A3 line (Step 1); Continue work on jet, magnet and rf systems (Steps 2, 4-6); Begin work on AGS extraction upgrade (Step 3).

• FY01:

Complete preparation of the A3 line (Step 1); First test of targets in A3 (Step 1); Liquid jet test in 20-T magnet at NHMFL (Step 2); Continue work on extraction, magnet, and rf systems (Steps 3-6).



THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION

THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION

Targetry and Capture Budgets, I

Yearly Projections (made in 1998)

Category	FY99	FY00	FY01	FY02	FY03	Total
Base Program	\$0.5M	\$1.5M	\$2M	\$2M	\$1M	\$7M
AGS Operations		\$0.2M	\$0.2M	\$0.4M	\$0.4M	\$1M
RF Power Source	\$0.05M	\$0.5M	\$1M	\$1M	\$1M	\$3.5M

Targetry FY99, Allocated

Task	ANL	BNL	LBL	Princeton	Industry	Total
Initial Target Studies		20		85		105
AGS Beamline Upgrades		100				100
Pulsed Solenoid Design		50				50
RF Systems		65	75		50	190
Simulation Studies	75			5		80
Total	75	285	75	90	50	\$525k

THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION

Total Targetry FY00, Allocated

Task	ANL	BNL	LBL	ORNL	NHMFL	Prin.	MSU	Total
Initial Target Studies		25				50		75
AGS Beamline Upgrades		1338						1338
Magnet Systems		240			25	40		305
RF Systems		295	75					370
Simulation Studies	80					10		90
Target Station				50				50
Radiation Damage							20	20
Carryover		-100						-100
Total	80	1798	75	50	25	100	20	\$2148k

FY00 Targetry Allocation: Details

1. Initial Target Studies	\$75k
• Remote positioner for target box (BNL)	\$25k
• Target box, targets, cameras (Princeton)	\$50k
2. AGS Beamline Upgrades	. \$1338k
• Labor (11,000 hours, BNL)	\$1100k
• Beamline Instrumentation (BNL)	\$120k
• Radiation Safety (BNL)	\$38k
• 6-Bunch kicker design (BNL)	\$80k
3. Magnet Systems	\$305k
• Mech. engineer (BNL)	\$170k
• 1/4 Mech. engineer (Princeton)	\$40k
• 1/6 Mech. engineer (NHMFL)	\$25k
• Design of 5 MW magnet power supply (BNL) .	\$70k

THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION

4. RF Systems\$370)k
• Recmmissioning of the 8973 power supplies (LBL) \$75	5k
• 1 1/2 RF engineer (BNL)\$255	5k
• Materials (BNL)\$40)k
5. Simulation Studies\$90)k
• (ANL)\$80)k
• (Princeton)\$10)k
6. Target Station Studies (ORNL)\$50	lk
7. Radiation Damage Studies (MSU)\$20)k
8. Total\$2248	3k

R&D Priorities in FY01

- 1. Completion of the A3 line and running of initial beam tests.
- 2. Liquid jets tests in a 20-T magnet at the NHMFL.
- 3. Letting a contract for the 20-T pulsed magnet coils.
- 4. Simulations.
- 5. Other work the pulsed magnet system.
- 6. Completion of the commissioning of the 8973 power tubes.
- 7. Other work on the rf system.
- 8. Work on the AGS fast extraction kicker.

FY01 Targetry Request: Details

Updated 9/28/00. The requests of 6/1/00 are given in parentheses before the lines of dots.

[Items in brackets are beyond the E951 base program]

1. Initial Target Studies (\$200k) \$355k
• 1/2 FTE Engineer (BNL)\$80k
• 1/2 Technician (BNL)\$75k
• Target test instrumentation (BNL) (\$50k) \$100k
• Target test instrumentation (Princeton) (\$50k)\$50k
• [Carbon target studies (ORNL) (\$100k)\$50k]
2. AGS Operations:
$3 \text{ weeks}, A3 + \text{linac costs ($200k)} \dots $200k$

3. AGS Beamline Upgrades (\$900k)\$110k
• Labor (1,000 hours, BNL) (\$100k)\$100k
• 6-Bunch kicker design study (Fockler) (\$800k) \$10k
4. Magnet Systems (\$1200k)\$710k
• Mech. engineer (BNL)\$170k
• [1/2 Mech. engineer (NHMFL) (\$80k)\$0k]
• 1/4 Mech. engineer (Princeton)\$40k
• Design/fabrication of 5 MW magnet power supply
$(BNL +) (\$400k) \dots \$0k$
• Design/fabrication of pulsed & DC magnet coils
(BNL +) (\$400k)\$500k

RF Systems (\$1335k)\$185	5k
• Complete recomissioning of 8973 rf gear (LBL)\$4	0k
• Shipping of 8973 rf gear to BNL (LBL) (\$20k)\$1	5k
• Materials for 8973 power source (BNL) (\$100k)\$	0k
• 1/2 RF engineer (BNL) (\$255k)\$	0k
• 1/2 Mech. engineer (BNL, Wang) (\$160k)\$8	0k
• $2 \times 1/2$ Technician (BNL) (\$100k)\$	0k
• Continue design study for 70 MHz rf cavity\$5	0k
• Fabrication of the 70 MHz rf cavity (\$400k)\$	0k
• [RF switch R&D (BNL) (\$50k)\$0)k]
• [Industrial development of 10-50 MW power sources	
(\$250k) \$0)k]

6. Simulation Studies (\$360k)\$140k
• 1/4 FTE (Hassanein, ANL) (\$80k)\$20k
• 1/2 FTE (Samulyak, BNL) (\$80k)\$60k
• [1/4 FTE (Todosow, BNL) (\$80k)\$20k]
• [1/2 FTE (ORNL) (\$80k)\$20k]
• 1/4 FTE (Lu, Princeton) (\$40k)\$20k
7. [Target Station Studies (ORNL) (\$100k)\$0k]
8. [Neutronics (\$150k)\$0k]
• [Radiation Damage Studies (MSU) (\$50k)\$0k]
• [Neutron dosimetry studies in A3 (BNL+) (\$100k) \$0k]
9. Total (\$4445k)\$1700k
[Total for items beyond the base program (\$810k) \$90k]

Summary of FY01 Targetry Budget, Requested

Task	ANL	BNL	LBL	ORNL	Prin.	Indust.†	Total
Initial Target Studies		255		50	50		355
AGS Operations		200					200
AGS Beamline Upgrades		100				10	110
Magnet Systems		170			40	500	710
RF Systems		80	55			50	185
Simulation Studies	20	80		20	20		140
Total	20	885	55	70	110	560	\$1700k

 $^{^{\}dagger}$ Industry contracts to be let by BNL.