

R&D Issues for Targetry and Capture at a

Neutrino Factory and Muon Collider Source

K.T. McDonald Princeton U.

December 15, 2000

Targetry Workshop, BNL

http://puhep1.princeton.edu/mumu/target/

This is the 26th edition of targetry reviews that began at the Orange Beach meeting, March 1998.] KIRK T. MCDONALD DECEMBER 15, 2000

Requirements for Targetry and Capture

- Get muons from pion decay: $\pi^{\pm} \to \mu^{\pm} \nu$.
- Pions from proton-nucleus interactions in a **target**.
- Goal: $1.2 \times 10^{14} \ \mu^{\pm}$ /s with a 4-MW p beam (1 MW at t_0).

Baseline Scenario

- High-energy proton beam: 16 or 24 GeV.
- High magnetic field (20 T) around target to **capture** pions with $P_{\perp} < 220 \text{ MeV}/c, 50 < P_{\parallel} < 400 \text{ MeV}/c.$
- Adiabatic reduction of B to ≈ 1 T in decay channel.
- High-Z target.

Colin Johnson:

KIRK T. MCDONALD

- Tilt target by ≈ 0.1 rad to maximize pion yield.
- No cooling apparatus near target.
- High power of beam could crack stationary target
- \Rightarrow Free liquid metal jet as target: Hg, Pb/Bi, ...

High-speed photographs of mercury jet target for CERN-PS-AA (laboratory tests) 4,000 frames per second, Jet speed: 20 ms-1, diameter: 3 mm, Reynold's Number:>100,000 A Poncet

December 15, 2000

Baseline Scenario

A Carbon Target is Feasible at 1-MW Beam Power

But a few-nsec beam pulse causes severe pressure waves.

A rotating band target is another option:

Two Classes of Issues

- 1. Viability of targetry and capture for a single pulse (E951).
 - Beam energy deposition may disperse the jet.
 - Eddy currents may distort the jet as it enters the magnet.
- Long-term viability of the system in a high radiation area (Feasibility Study 2).

The First Three Stages of E951

- 1. Tests of targets in an intense beam (without magnetic field).
 - In the BNL A3 beamline: 24 GeV p's, up to 1.5e13 p/bunch, up to 6 bunches spaced by 20 ms.
 - Targets: carbon, mercury, Wood's metal, inconel,
- 2. Tests of liquid metal entering a magnet (without beam).
 - At the 20-T hybrid magnet facility of the NHMFL (Florida).
- 3. Tests of liquid target + beam + 20-T pulsed magnet. Pulsed bucking coil \neg

Agenda, E951 Workshop, Dec. 15

Overview

08:30-09:00 K. McDonald (Princeton)

A3 beamline

09:00-09:20	K. Brown (BNL)	Beam Optics		
09:20-09:40	K. Brown (BNL)	Beam Instrumentation		
09:40-10:00	R. Prigl (BNL)	Beam Shielding Design		
10:00-10:20	Coffee Break			
10:20-10:40	N. Simos (BNL)	Beam Windows		
10:40-11:00	J. Scaduto (BNL)	Status of Construction		
A3 Target Tests				
11:00-11:20	K. McDonald (Princeton)	Target Test Program		
11:20-11:40	C. Finfrock (BNL)	Mercury Jets, Horizontal & Vertical		
11:40-12:00	H. Wang (BNL)	High-Speed Camera System		

12:00-13:00 Lunch

factor Muon Collaboration

The Neutrino Factory and Muon Collider Collaboration

Agenda, E951 Workshop, Dec. 15, Continued

A3 Target Tests, cont'd.

13:00-13:20	J. Haines (ORNL)	Carbon, Room Temp, Strain Sensors		
13:20-13:40	G. Greene (BNL)	Carbon, High Temperature		
13:40-14:00	J. Norem (ANL)	Schlieren Photography		
14:00-14:20	A. Zeller (MSU)	Neutron Studies		
A3 Safety Committee Issues				
14:20-14:50	H. Kirk (BNL)	Safety Committee Issues		
14:50-15:10	Coffee Break			
NHMFL Mercury Test				
15:10-15:30	K. McDonald (Princeton)	Goals		
15:30-15:50	J. Miller (NHMFL)	20-cm Bore, 20-T Hybrid Magnet		
20-T Pulsed Magnet Design				
15:50-16:10	B. Weggel (BNL)	System Requirements		
16:10-16:30	P. Hwang (Everson Electric)	System Design		
16:30-16:50	Steve Van Sciver (NHMFL)	System Design		
Summary				
16:50-17:10	H. Kirk (BNL)	Action Items		

Feasibility Study 2, Target-related Parameters

Proton Driver:

Energy	$24 \mathrm{GeV}$
p per bunch	$\approx 1.7 \times 10^{13}$
Bunches per cycle	6
Time between extracted bunches	$20 \mathrm{ms}$
Average repetition rate	$2.5~\mathrm{Hz}$
Peak repetition rate	$50~\mathrm{Hz}$
Beam power	$\geq 1 \mathrm{MW}$
rms bunch length	$\leq 3 \text{ ns}$

Feasibility Study 2, Target-related Parameters

Target:

Material	mercury
Velocity	$\approx 30 \text{ m/sec}$
Diameter	1 cm
Angle: target axis to magnet axis	100 mrad
Angle: beam axis to target axis	33 mrad
Interaction region	$60 \mathrm{~cm}$
Displacement of front from axis	$\approx 1 \text{ cm}$

Issues:

- How to get the jet into the magnet?
- Will the first of 6 beam pulses disrupt the whole jet?

Feasibility Study 2, Issues

Capture and Matching Solenoids

The 20 T capture solenoid would be a hybrid, with copper (insert) and superconducting (outsert), magnet similar to that discussed in Feasibility Study 1. However, it is proposed here to use hollow copper conductor for the insert, rather than a Bitter style magnet in Study 1. The choice is aimed at achieving longer magnet life and avoiding any problems with highly irradiated water insulation. It is understood that the initial cost will be higher.

After the 20 T magnet, coils are designed to taper the axial field down slowly to 1.25 T over a distance of approximately 18 m. The form of the tapered field is approximately $B(z) \approx 20/(1 + k z)$. The final design will have to include space for the beam dump and shielding.

KIRK T. MCDONALD

December 15, 2000

Feasibility Study 2, Issues

Beam Dump

The proton beam is dumped, and the mercury jet collected, several meters downstream of the interaction region:

Agenda, Feasibility Study 2 Workshop, Dec. 16

Phase Rotation

- 08:30-08:55 L. Reginato (LBNL) Induction Linac: Baseline Design
- 08:55-09:20 Y. Fukui (UCLA) Option C Modifications

Target Station and Decay Channel

- 09:20-09:45 P. Spampinato (ORNL) Decay Channel Systems Issues
- 09:45-10:10 N. Mokhov (FNAL)
- 10:10-10:30 Coffee Break
- 10:30-10:55 H. Ravn (CERN)
- 10:55-11:20 J. Haines (ORNL)
- 11:20-11:45 J. Cline (ANL)
- 11:45-13:00 Lunch

- Prompt & Residual Radiation Environment
- Targetry R&D at CERN
- Mercury Target Issues
- Radiation Chemistry of Cooling Water

Agenda, Feasibility Study 2 Workshop, Dec. 16, Cont'd.

Liquid Metal Jet – Magnet Interaction

- 13:00-13:25 K. McDonald (Princeton) Review of Analytic Studies
- 13:25-13:50 S. Kahn (BNL) Analytic Studies
- 13:50-14:15 R. Samulyak (BNL) Numerical Studies with the Frontier Code

20-T Solenoid – Hollow Conductor Option

- 14:15-14:45 J. Miller (FSU)
- 14:45-15:10 B. Weggel (BNL)
- 15:10-15:30 Coffee Break

- Issues and Criteria
- Design Concept

Beam Simulation Issues

15:30-15:55 I. Stumer (BNL)

GEANT Studies

15:55-16:20 Y. Torun (BNL)

Comparison with E910

Discussion

16:20-17:00 All

Discussion