

The Target System and Support Facility at a Muon-Based Neutrino Source

K.T. McDonald Princeton U.

Neutrino Factory Feasbility Study-II Closeout

BNL, May 4, 2001

http://puhep1.princeton.edu/mumu/target/

Challenges

- Maximal production of soft pions \rightarrow muons in a megawatt proton beam.
- Capture pions in a 20-T solenoid, followed by a 1.25-T decay

- A carbon target is feasible for 1.5-MW proton beam power.
- For $E_p \gtrsim 16$ GeV, factor of 2 advantage with high-Z target.
- Static high-Z target would melt, \Rightarrow Moving target.
- A free mercury jet target is feasible for beam power of 4 MW (and more). KIRK T. MCDONALD MAY 4, 2001 \blacksquare

Feasibility Issues

- Pion/muon yield.
- Lifetime of components in high radiation environment.
- Mercury jet interaction with beam and magnet.
- Design of the 20-T capture magnet.
- Beam entrance and exit windows.
- Proton beam absorber.
- Mercury flow loop.
- Target system support facility.

Pion/Muon Yield

For $E_p \gtrsim 10$ GeV, more yield with high-Z target.

Mercury target radius should be \approx 5 mm,

with target axis tilted by ≈ 100 mrad to the magnetic axis.

Can capture ≈ 0.3 pion per proton with $50 < P_{\pi} < 400$ MeV/c. KIRK T. MCDONALD MAY 4, 2001 4

The Neutrino Factory and Muon Collider Collaboration

Target System Layout

Mercury jet target inside a magnetic bottle: 20-T around target, dropping to 1.25 T in the pion decay channel.

Mercury jet tilted by 100 mrad, proton beam by 67 mrad.

Lifetime of Components in the High Radiation

Environment

Some components must be replacable.

KIRK T. MCDONALD MAY 4, 2001 6

Proton Beam Will Disperse the Mercury Jet

FronTier simulation, $0 - 30 \mu s$:

1-cm-diameter Hg jet in 2e12 protons at $t = 0, 0.75, 2, 7, 18$ ms.

Model:
$$
v_{\text{dispersal}} = \frac{\Delta r}{\Delta t} = \frac{r\alpha\Delta T}{r/v_{\text{sound}}} = \frac{\alpha U}{C} v_{\text{sound}} \approx 50 \text{ m/s}
$$

for $U \approx 100 \text{ J/g.}$

Data: $v_{\text{dispersal}} \approx 10 \text{ m/s}$ for $U \approx 25 \text{ J/g}.$

The dispersal is not destructive.

KIRK T. MCDONALD MAY 4, 2001 7

Magnetohydrodynamics

Eddy currents may distort the jet as it traverses the magnet.

Analytic model suggests little effect if jet nozzle inside field.

1 cm diam. jet, $v = 4.6$ m/s, $B = 0$ T; $v = 4.0$ m/s, $B = 13$ T:

 \Rightarrow Damping of surface tension waves (Rayleigh instability). KIRK T. MCDONALD MAY 4, 2001 8

20-T Capture Magnet System

Inner, hollow-conductor copper coils generate 6 T \odot 12 MW:

Bitter-coil option less costly, but marginally feasible.

Outer, superconducting coils generate 14 T @ 600 MJ:

Cable-in-conduit construction similar to ITER central solenoid.

Both coils shielded by tungsten-carbide/water.

KIRK T. MCDONALD MAY 4, 2001 9

Double Beryllium Foil Beam Windows

Upstream window stressed by beam heating; must be replaceable.

60-cm-diam. downstream window stressed by pressure; must be removable. Double-curved profile favored.

Mercury Pool Proton Beam Absorber

The unscattered proton beam is absorbed in a "windowless" pool of mercury.

Baffles mitigate splashing of mercury due to entry of both the proton beam and the mercury jet.

The proton absorber is replacable.

Mercury Flow Loop

110 l of mercury flow in a closed loop at 2 cyles/min.

Activation products can be distilled off in a hot cell.

Target System Support Facility

Extensive shielding; remote handling capability.

Summary

- A target sytem based on a mercury jet in a 20-T capture solenoid is feasible at 1-4 MW beam power.
- Solid target alternatives include graphite rods or a rotating nickel band.
- An early upgrade to 4-MW may be the quickest path to higher neutrino fluxes.
- Continued R&D is needed. The next step is a combined test of a mercury jet in a proton beam and in a 20-T pulsed magnet (BNL E951 phase 2).