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The Neutrino Factory and Muon Collider Collaboration

Challenges

• Maximal production of soft pions → muons in a megawatt

proton beam.

• Capture pions in a 20-T solenoid, followed by a 1.25-T decay

channel.
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• A carbon target is feasible for 1.5-MW proton beam power.

• For Ep
>∼ 16 GeV, factor of 2 advantage with high-Z target.

• Static high-Z target would melt, ⇒ Moving target.

• A free mercury jet target is feasible for beam power of 4 MW

(and more).
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The Neutrino Horn Issue

• A precursor to a Neutrino Factory is a Neutrino Superbeam

based on decay of pions from a multimegawatt proton target

station.

• 4 MW proton beams are achieved in both the BNL and FNAL

(and CERN) scenarios via high rep rates: ≈ 106/day.

• Classic neutrino horns based on high currents in conductors

that intercept much of the secondary pions will have lifetimes

of only a few days in this environment.

• Consider instead a solenoid horn with conductors at larger radii

than the pions of interest – similar to the Neutrino Factory

capture solenoid.

• Adiabatic reduction of the solenoid field along the axis,

⇒ Adiabatic reduction of pion transverse momentum,

⇒ Focusing.

See, http://pubweb.bnl.gov/users/kahn/www/talks/Homestake.pdf
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A Carbon Target is Feasible at 1-MW Beam Power
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A carbon-carbon composite with near-zero thermal expansion is

largely immune to beam-induced pressure waves.

Sublimation of carbon is negligible in a helium atmosphere.

Radiation damage is limiting factor: ≈ 12 weeks at 1 MW.

A rotating band target is another option:
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Pion/Muon Yield

For Ep
>∼ 10 GeV, more yield with high-Z target.

0 5 10 15 20 25 30
Solenoid field B (T)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
M

es
on

 y
ie

ld
 (

0.
05

<
p<

0.
8 

G
eV

/c
) 

pe
r 

pr
ot

on

 Y(π+
 + K

+
)

 Y(π−
 + K

−
)

YC(π+
 + K

+
)

YC(π−
 + K

−
)

B∋Ra

2
 = 1125 T∋cm

2

(b)

Mercury target radius should be ≈ 5 mm,

with target axis tilted by ≈ 100 mrad to the magnetic axis.
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Can capture ≈ 0.3 pion per proton with 50 < Pπ < 400 MeV/c.
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Target System Layout

Mercury jet target inside a magnetic bottle: 20-T around target,

dropping to 1.25 T in the pion decay channel.
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Mercury jet tilted by 100 mrad, proton beam by 67 mrad.

Kirk T. McDonald April 9, 2002 6



The Neutrino Factory and Muon Collider Collaboration

Lifetime of Components in the High Radiation

Environment
FS−2 24 GeV Target Station: MARS14 02/19/01R,

Z,
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Azimuthally averaged absorbed dose (MGy/yr)

Component Radius Dose/yr Max allowed Dose 1 MW Life 4 MW life

(cm) (Grays/2× 107 s) (Grays) (years) (years)

Inner shielding 7.5 5× 1010 1012 20 5

Hg containment 18 109 1011 100 25

Hollow conductor 18 109 1011 100 25

coil

Superconducting 65 5× 106 108 20 5

coil

Some components must be replaceable.
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Viability of Targetry and Capture For a Single Pulse

• Beam energy deposition may disperse the jet.

• Eddy currents may distort the jet as it traverses the magnet.
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E951 Studies the Single Pulse Issues

Overall Goal: Test key components of the front-end of a

neutrino factory in realistic single-pulse beam conditions.

Near Term (1-2 years): Explore viability of a liquid metal jet

target in intense, short proton pulses and (separately) in strong

magnetic fields.

Mid Term (3-4 years): Add 20-T magnet to beam tests;

Test 70-MHz rf cavity (+ 1.25-T magnet) 3 m from target;

Characterize pion yield.
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Solid Target Tests (5e12 ppp, 24 GeV, 100 ns)

Carbon, aluminum, Ti90Al6V4, Inconel 708, Havar, instrumented

with fiberoptic strain sensors.
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Predicted Strain in the 10-mil Aluminum Window  
Beam Intensity = 2.5 TP with 1mm RMS sigma
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Passive Mercury Target Tests

Exposures of 25 µs at
t = 0, 0.5, 1.6, 3.4 msec,
⇒ vsplash ≈ 20− 40 m/s:

    

Two pulses of ≈ 250 ns give larger dispersal velocity only if

separated by less than 3 µs.
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Studies of Proton Beam + Mercury Jet

m

Mercury

Jet

1-cm-diameter Hg jet in 2e12 protons at t = 0, 0.75, 2, 7, 18 ms.

     

Model: vdispersal =
∆r

∆t
=

rα∆T

r/vsound
=

αU

C
vsound ≈ 50 m/s

for U ≈ 100 J/g.

Data: vdispersal ≈ 10 m/s for U ≈ 25 J/g.

vdispersal appears to scale with proton intensity.

The dispersal is not destructive.
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Tests of a Mercury Jet in a 13 T Magnetic Field

(CERN/Grenoble High Magnetic Field Laboratory)

Eddy currents may distort the jet as it traverses the magnet.

Analytic model suggests little effect if jet nozzle inside field.

4 mm diam. jet, v = 4.6 m/s, B = 0 T; v = 4.0 m/s, B = 13 T:

  
⇒ Damping of surface tension waves (Rayleigh instability).
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20-T Capture Magnet System

Inner, hollow-conductor copper coils generate 6 T @ 12 MW:

Bitter-coil option less costly, but marginally feasible.

Outer, superconducting coils generate 14 T @ 600 MJ:
 

Incoloy Alloy 908 Conduit >1000 superconducting wires 
Supercritical helium flows in interstices 

 and central channel  

Cable-in-conduit construction similar to ITER central solenoid.

Both coils shielded by tungsten-carbide/water.
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Target System Support Facility

Extensive shielding; remote handling capability.
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Summary of Targetry Activities Through FY01

• A target system based on a mercury jet in a 20-T capture

solenoid is feasible at 1-4 MW beam power.

• Solid target alternatives include graphite rods or a rotating

nickel band.

• An early upgrade to 4-MW may be the quickest path to higher

neutrino fluxes.

• Continued R&D is needed. The next step is a combined test of

a mercury jet in a proton beam and in a 20-T pulsed magnet

(BNL E951 phase 2).
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A 15-T Liquid-Nitrogen-Precooled Pulsed Magnet

+ 2.2 MW Power Supply

• Reduce field by 2 ⇒ forces, costs drops by ≈ 4.

• Preliminary Design by MIT Plasma Science Div. (Titus).

 

• Can build PS from existing BNL supplies for≈ $250k (Marneris).

• Cool to 30 K via He gas flow + LH2 head exchanger (Iarocci).
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