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THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION

Challenges

e Maximal production of soft pions — muons in a megawatt

proton beam.

e Capture pions in a 20-T solenoid, followed by a 1.25-T decay
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e A carbon target is feasible for 1.5-MW proton beam power.

e Static high-Z target would melt, = Moving target.

e A free mercury jet target is feasible for beam power of 4 MW

(and more).
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The Neutrino Horn Issue

e A precursor to a Neutrino Factory is a Neutrino Superbeam
based on decay of pions from a multimegawatt proton target

station.

e 4 MW proton beams are achieved in both the BNL and FNAL
(and CERN) scenarios via high rep rates: ~ 10°/day.

e Classic neutrino horns based on high currents in conductors
that intercept much of the secondary pions will have lifetimes

of only a few days in this environment.

e Consider instead a solenoid horn with conductors at larger radii
than the pions of interest — similar to the Neutrino Factory

capture solenoid.

e Adiabatic reduction of the solenoid field along the axis,
= Adiabatic reduction of pion transverse momentum,
= Focusing.

See, http://pubweb.bnl.gov /users/kahn /www /talks/Homestake.pdf
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Pion/Muon Yield

For B/, £ 10 GeV, more yield with high-Z target.
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Mercury target radius should be ~ 5 mm,

with target axis tilted by =~ 100 mrad to the magnetic axis.
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Can capture ~ 0.3 pion per proton with 50 < P, < 400 MeV/c.
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Target System Layout
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Lifetime of Components in the High Radiation

Environment

R, cm FS-2 24 GeV Target Station: MARS14 02/19/01
140

105

3. Ge+06 S N ). 0+00
0* 2 100 100 10! 102 1078

Component Radius Dose/yr Max allowed Dose 1 MW Life 4 MW life
(em)  (Grays/2 x 107 s) (Grays) (years) (years)
Inner shielding 7.5 5 x 101 10*2 20 5
Hg containment 18 107 101 100 25
Hollow conductor 18 107 101 100 25
coil
Superconducting 65 5 x 10° 108 20 5t
coil

Some components must be replaceable.
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Viability of Targetry and Capture For a Single Pulse

e Beam energy deposition may disperse the jet.

the first proton pulse
onds)
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Brookhaven Science Associates .mm“ Brookhaven Science Associates mm
US.DepatmentofEnesgy @ NATIONAL (aBORATORY USDeputmentofEnesgy ™ NATIONAL LABORATORY

Kirk T. McDONALD SEPT. 6, 2002 7



fac :
THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION

Muon Collaboration

E951 Studies the Single Pulse Issues

Overall Goal: Test key components of the front-end of a
neutrino factory in realistic single-pulse beam conditions.

Near Term (1-2 years): Explore viability of a liquid metal jet
target in intense, short proton pulses and (separately) in strong
magnetic fields.

Mid Term (3-4 years): Add 20-T magnet to beam tests;

Test 70-MHz rf cavity (+ 1.25-T magnet) 3 m from target;

Characterize pion yield.

Pulsed bucking coil Cerenkov counter
Pulsed copper coils 1.25-T Bent solenoid channel

Gazzzzzz?
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20-T Pulsed copper insert

I 22\ IR N
RF cavity

Low-Pressure TPC's
0.7-T Guiding dipole

1.25-T DC magnet (copper)

We are now beginning the “Mid Term” phase, but with a more
affordable 15-T magnet.
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Solid Target Tests (5el12 ppp, 24 GeV, 100 ns)

Carbon, aluminum, Ti90A16V4, Inconel 708, Havar, instrumented

with fiberoptic strain sensors.
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Passive Mercury Target Tests
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Studies of Proton Beam + Mercury Jet

Proton |

Beam - N
Mercury
Jet

Ar raAT alU

Model: Vdispersal = = = ——Vsound =~ 50 m/s
dispersal At T/Usound O sound /

for U ~ 100 J/g.
Data: vgispersal = 10 m/s for U ~ 25 J/g.
Vdispersal appears to scale with proton intensity.

The dispersal is not destructive.
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Tests of a Mercury Jet in a 20-T Magnetic Field
(CERN/Grenoble High Magnetic Field Laboratory)

Analytic model suggests little effect if jet nozzle inside field.

4 mm diam. jet, v &~ 12 m/s, B =0, 10, 20 T.

Jet traverses B, .

This qualitative
behaviour can be
observed in all
events.

10Tesla

nozzle

Shde 5

Will the beam-induced dispersal be damped also?
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20-T Capture Magnet System

Inner, hollow-conductor copper coils generate 6 T' @ 12 MW:

101 mm

FETTET R R T TTET

i

Bitter-coil option less costly, but marginally feasible.

Outer, superconducting coils generate 14 T @ 600 M.J:

Central Solenoid (CS) Model Coil

u'llll Inner Module (USA)
‘ l‘ ||| (1st~10th Layer)

i'i " s Outer Module (Japan)

>1000 superconducting wires

Supercritical helium flows in interstices

and central channel

Cable-in-conduit construction similar to I'TER central solenoid.

Both coils shielded by tungsten-carbide/water.
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Target System Support Facility

Fixtensive shielding: remote handling capability.
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THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION
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Summary of Targetry Activities Through FYO01

e Liquid metal targets in vessels show beam-induced cavitation
damage to entrance window (ISOLDE, 1995, LANL, 2001).

e Beam tests of large passive mercury target for SNS (BNL 1998,
LANL 2000) suggest velocity of sound may be reduced

temporarily by beam-induced microcavitation).

e MARS simulations of beam-target interactions = advantage
of high-Z target, of high-field capture solenoid, of tilted beam
and target, and disadvantages of high radiation dose (Mokhov).

e Analytic simulations of beam-induced pressure waves in target
(Sievers), and of MHD effects of mercury jet entering magnet
(KTM, Palmer, Weggel) indicate “feasibility”, but need for
R&D.

e Numerical simulations (Hassanein, Samulyak) tend to confirm

these analytic estimates.

Kirk T. McDONALD SEPT. 6, 2002 16
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e Beam tests of high-strength solid targets show good agreement
between strain-sensor data and ANSYS simulation, and

suggest that they can survive single-pulse stresses up to Study-
2 design intensity, = 16 TP / 8 mm?* (BNL, March '01).

e Calculation and experiment indicate that a carbon target could

survive against sublimation in a He atmosphere in a 4 MW
beam (Thieberger, ORNL).

e Beam tests of active and passive mercury targets indicate

dispersal velocities of manageable size, proportional to proton
pulse energy (BNL, April '01; ISOLDE, Aug. '01).

e Tests of mercury jets entering a high-field solenoid suggest little
problem if nozzle within field (CERN, Grenoble, 2002).

e Superinvar samples irradiated in BLIP facility to study effect

of radiation damage on the very low thermal expansion coef.

Kirk T. McDONALD SEPT. 6, 2002 17
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Issues for Further Targetry R&D

e Continue numerical simulations of MHD 4+ beam-induced

effects [Samulyak].

e Continue tests of mercury jet entering magnet
|[CERN, Grenoble].

e For solid targets, study radiation damage — and issues of heat

removal from solid metal targets (bands, chains, etc.).

e Confirm manageable mercury-jet dispersal in beams up to full
Study-2 intensity — for which single-pulse vaporization may

also occur. Test Pb-Bi alloy jet.

e Study issues when combine intense proton beam with mercury

jet inside a high-field magnet.

1. MHD effects in prototype target configuration.
2. Magnetic damping of mercury-jet dispersal.

3. Beam-induced damage to jet nozzle — in the magnetic field.

Kirk T. McDONALD SEPT. 6, 2002 18
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Further Beam Studies without High-Field Magnet

e Studies of production of mercury jets up to 20 m/s. Jet quality

1s the issue.

e Construction of new liquid metal jet targets with continuous

flow: mercury and Wood’s metal.
e Upgrade AGS to 8/16 TP single pulses [Roser].
1. Improve control of fast extraction with bipolar power supply

for a key vertical sextupole.

2. Improve control of chromaticity of bunches during
transition with heftier power supply for main ring horizontal

sextupoles.

3. Explore schemes for 2:1 bunch merging at 24 GeV via rf
manipulation (Begun June 2002).

e Test the continuous-flow targets in beam once at least 8 TP

per pulse are available.

e [Radiation damage studies of solid targets at BNL booster ]

Kirk T. McDONALD SEPT. 6, 2002 19
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What Magnetic Field Strength is Appropriate?

e Our muon collider and neutrino factory designs have long called

for a 20-T capture solenoid.
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A 20-T magnet must be a hybrid: 6-T copper “insert” + 14-T

superconducting “outsert”.

The small gain in performance from 14 to 20 T' may not warrant

the cost and complexity of the hybrid magnet.

A capture solenoid for a superbeam needs a larger bore to trap

higher P, pions, for which 14 T is then sufficient.

= Our physics goals are well satisfied by a 14-T capture solenoid.
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Should the Pulsed R&D Magnet have Lower Field?

e Most magnetic-field effects on the mercury jet scale as the

magnetic pressure B*/8x (for a fixed geometry).

e Thus, a study using a 5-T magnet would require a factor of 8

extrapolation to the desired performance at 14 T'.

e Present cost estimates indicate that we can build a 15-T pulsed

magnet for about twice the cost of a 5-T pulsed magnet.

e = We propose to construct a 15-T pulsed magnet, that can
be staged as a 5-T and 10-T magnet.
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A 15-T Pulsed Magnet with 5- and 10-T Phased

Options

Phase No. of PS Coolant Temp. Field

1 1 No saK 5T
2 4 No MK 10T
3 4 Ho 0K 15T

Kirk T. McDONALD SEPT. 6, 2002 22
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Keeping Costs Low

e Simple solenoid geometry with rectangular coil cross section

and smooth bore (of 20 cm diameter) [Weggel, Titus].

e Power supply built out of 4 existing 540 kVA supplies that can

be fed by a single, existing substation [Marneris|.

e Cryogenic system reduces coil resistance to give high field at

relatively low current |larocci, Mulholland].

— Circulating coolant is gaseous He to minimize activation,
and to avoid need to purge coolant before pulsing magnet.

— Heat exchanger recycled from the SSC.
— Phase 1 & 2 cooling via Ny boiloff; Phase 3 via Hs.

Kirk T. McDONALD SEPT. 6, 2002 23
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Pulsed Magnet System Layout at the AGS
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e Locate the 4 x 540 kVA power supplies on the east side of the

A3 cave, feed power in via the trench.

e [f satisfactory to Safety Committee, locate the heat exchanger
and LHy dewar in a concrete enclosure that extends the present

A3 beam stop.
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Presentations

e P. Titus (MIT): Pulsed Solenoid Magnet Engineering.
e G. Mulholland (ACT): Cryogenic Systems.

e [. Marneris (BNL): Electrical Systems.

e J. Scaduto (BNL): ODH Considerations.
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