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Neutrino Factory and Muon Collider
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A Short Course on Targetry
presented at the NuFact03 Summer Institute
June 4, 2003

E. Fermi: “I can calculate anything to 20% in 20 minutes.”

An everyday targetry physics question: What is the threshold

intensity of sunlight to damage human skin?

[Ans: Bright sunlight, ~ 1 kW /m?*.]

A metaphysics question: Why do people enjoy getting sunburned?

Kirk T. McDONALD NuFacT03, JUNE 9, 2003 2



fac i )
THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION

Muon Collaboration

A Solenoidal Targetry System for a Superbeam

e A precursor to a Neutrino Factory is a Neutrino Superbeam
based on decay of pions from a multimegawatt proton target

station.

e 4 MW proton beams are achieved in both the BNL and FNAL
(and CERN) scenarios via high rep rates: ~ 10°/day.

e Classic neutrino horns based on high currents in conductors
that intercept much of the secondary pions will have lifetimes

of only a few days in this environment.

e Consider instead a solenoid “horn” with conductors at larger
radii than the pions of interest — similar to the Neutrino Factory

capture solenoid.

e Pions produced on axis inside the solenoid have zero
(canonical) angular mometum, L, = r(Py 4+ eAy/c) = 0,

= Py = 0 on exiting the solenoid.

e [f the pion has made exactly 1/2 turn on its helix when it
reaches the end of the solenoid, then its initial P. has been
rotated into a pure P, = P = 0 on exiting the solenoid,
= Point-to-parallel focusing.
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Narrowband Beam via Solenoid Focusing

/P¢_P\ P,=eBd/3rnc P,=eBd/nc

/7 \

magnetic j

\ L,=0 / | axisd |

e The point-to-parallel focusing occurs for Py = eBd/(2n+1)mc

e = Narrowbeam neutrino beam with peaks at

7o~ eBd
" 2n 4 1)27c

e = (Can study several neutrino oscillation peaks at once, at

1.27M3,[eV?] Lkm]  (2n+ )7
E,|GeV] B 2

e Get both v and 7 at the same time,
= Must use detector that can identify sign of 1 and e,
= Magnetized liquid argon TPC.
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Why Targetry?

e Targetry = the task of producing and capturing 7’s and u’s

from proton interactions with a nuclear target.

e At a muon collider the key parameter is luminosity:
NNy f
A

= Gain as square of source strength (targetry),

S_lcm_Q,

L =

but small beam area (cooling) is also critical.

e At a neutrino factory the key parameter is neutrino flux,
= Source strength (targetry) is of pre-eminent concern.
[Beam cooling important mainly to be sure the beam fits in

the pipe.]

e Since its inception the Neutrino Factory/Muon Collider
Collaboration has recognized the importance of high
performance targetry, and has dedicated considerable resources

towards R&D on advanced targetry concepts.

e The exciting results from atmospheric and reactor neutrino
programs (Super-K, SNO, KamLAND) reinforce the
opportunity for neutrino physics with intense accelerator
neutrino beams, where targetry is the major challenge.
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Targetry Challenges

e Use of a multimegawatt proton beam for maximal production

of soft pions — muons.

e Capture pions in a 20-T solenoid, followed by a 1.25-T

decay channel (with beam and target tilted by 100 mrad w.r.t.

magnetic axis).
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e A carbon target is feasible for 1.5-MW proton beam power.

e Static high-Z target would melt, = Moving target.

e A free mercury jet target is feasible for b

(and more).
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Thermal Shock

When beam pulse length ¢ is less than target radius r divided
by speed of sound vsoung, beam-induced pressure waves (thermal

shock) are a major issue.

Simple model: if U = beam energy deposition in, say, Joules/g,

then the instantaneous temperature rise AT' is given by

U
AT = —
C )
where C' = heat capacity in Joules/g/K.

The temperature rise leads to a strain Ar/r given by

Ar alU
= AT =
y C’

where o = thermal expansion coeflicient.

The strain leads to a stress P (= force/area) given by

Ar  EaU
P=F =
r C

where FE' is the modulus of elasticity:.

In many metals, the tensile strength obeys P ~ 0.002E,

a~ 107" and C' ~ 0.3 J/g/K, in which case

U~ PC - 0.002 - 0.3
" Fa 1075

~060J /g
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How Much Beam Power Can a Solid Target Stand?

How many protons are required to deposit 60 J/g in a material?
What is the maximum beam power this material can withstand

without cracking, for a 10-GeV beam at 10 Hz with area 0.1 cm?.

Ans. If we ignore “showers” in the material, we still have dF /dx
ionization loss, of about 1.5 MeV /g/cm?.

Now, 1 MeV = 1.6 x 107 J, so 60 J/ g requires a proton beam
intensity of 60/(1.6 x 1071) = 10 /em?.

Then, Pyax ~ 10 Hz-10Y eV 1.6 x 1071 J /eV-10'° /em?- 0.1 cm?
~ 1.6 x 10° J/s = 1.6 MW.

Solid targets are viable up to about 1.5 MW beam

power!
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A Carbon Target is Feasible at 1-MW Beam Power
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A carbon-carbon composite with near-zero thermal expansion is

largely immune to beam-induced pressure waves.

A carbon target in vacuum sublimates away in 1 day at 4 MW,

~ 100
)
ks 10 A
€
E 13
:19{, 0.1
& 001 1
2
= 0.001 1
g 0.0001
10} - 15 mmdiameter x800 mmlength target
‘5 1E-05 A - Radiationcooling
£ 15061
@
s 1E-07 1 For 1.5 MW beam
T 1E-08 1 -
E Namirel Value
= 1E09 f
>
9 1E-10
0 20 40 60 80 100

Power Deposited in Target (kW)

Sublimation of carbon is negligible in a helium atmosphere.
(P. Thieberger) Tests underway at ORNL to confirm this.

Radiation damage is limiting factor: ~ 12 weeks at 1 MW.
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Lower Thermal Shock If Lower Thermal Expansion
Coefficient

Proton beams studies of AT'J graphite and a 3-d weave of carbon-

carbon fibers, instrumented with fiberoptic strain sensors:
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Maybe Can Use a Moving Solid Target
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Compatibility of the rotating band with a capture solenoid

magnet?

Ex. Rotating band that increases radiation damage life by 1000:

Single-pulse thermal shock still an issue, so maybe use SuperInvar,

a materi
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Effects of Radiation on SuperInvar

Superlnvar has a very low

coefficient of thermal
expansion (CTA),

= Resistant to “thermal

shock” of a proton beam.

However, irradiation at the
BNL BLIP facility show that
the CTA increases rapidly

with radiation dose.

CTA vs. dose =

Superlnvar is made stronger
by moderate radiation doses

(like many materials).

Yield strength vs. dose =

Kirg T. McDONALD
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A Liquid Metal Jet May Be the Best Moving Target

Mercury jet target inside a magnetic bottle: 20-T around target,

dropping to 1.25 T in the pion decay channel.
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Pion/Muon Yield

For B/, £ 10 GeV, more yield with high-Z target.
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Can capture ~ 0.3 pion per proton with 50 < P, < 400 MeV/c.
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20-T Capture Magnet System

Inner, hollow-conductor copper coils generate 6 T' @ 12 MW:

101

e e s

T

mm

Bitter-coil option less costly, but marginally feasible.

Outer, superconducting coils generate 14 T @ 600 M.J:

Inner Module (USA)
(1st~10th Layer)}

>1000 superconducting wires

Supercritical helium flows in interstices

and central channel

Cable-in-conduit construction similar to I'TER central solenoid.

Both coils shielded by tungsten-carbide/water.
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Target System Support Facility

remote handling capability.
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Lifetime of Components in the High Radiation

Environment

R cm FS-2 24 GeV Target Station: MARS14 02/19/01
140

3. 6e+06 [ I T RO 0c+00
4108 102 10t

Component Radius Dose/yr Max allowed Dose 1 MW Life 4 MW life
(em)  (Grays/2 x 107 s) (Grays) (years) (years)
Inner shielding 7.5 5 x 101 10*2 20 5
Hg containment 18 10° 101 100 25
Hollow conductor 18 10° 101 100 25
coil
Superconducting 65 5 x 106 108 20 5t
coil

Some components must be replaceable.
Kirk T. McDONALD NuFacT03, JUNE 9, 2003 17
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Viability of Targetry and Capture For a Single Pulse

e Beam energy deposition may disperse the jet.

rst proton pulse fter th hird proton pulse
s)

Brookhaven Science Associates BllllllﬁimllEH Brookhaven Science Associates
U.S. Department of Energy NATIGNAL [ABORATORY

-
U.S. Department of Energy MEI‘IR()E 'SHHEHV

e [iddy currents may distort the jet as it traverses the magnet.

-~ oA e i 7
wknmjer acience A BROOKHRVEN paknaer aclanie A ss BROOKHAVEN
U.S. Department of Energy NATIONAL LABORATORY U_S. Department of Energy NATIONAL TABORATORY

e Computational challenge: to include negative pressure and

cavitation in a magnetohydrodynamic (MHD) simulation of
a liquid metal with a free surface.

Kirg T. McDONALD
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Beam-Induced Cavitation in Liquids Can Break Pipes
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BINP:
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B 120 i
21481

TL - High Power Target
Specimen # 29754
Equivalent SNS Power Level = 2.5
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How Snapping Shrimp Snap: Through Cavitating Bubbles
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The Shape of a Liquid Metal Jet under a Non-uniform Magnetic Field
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Fig. 9 Photographs of the jet for various applied mag- netic field strengths
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Fig. 10 Cross-sectional shape of the jet obtained by spot & electrode probe
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Computational Magnetohydrodynamics (R. Samulyak)

fusion curve domain of interest

critical point

Solid Liquid

triple point
VAPOr pressure curve

Vapor

sublimation curve

T

Critical point: 7. =1750K, P, =172 MPa, V. =43c¢m’mol™

&

Boiling point: 7, =629.84K, P, =0.1MPa, p=13.546g-cm”

Need an equation of state that supports negative pressures, but

gives way to cavitation.

Kirk T. McDONALD NuFacT03, JUNE 9, 2003 22
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Passive Mercury Target Tests

Exposures of 25 us at
4t =0,0.5, 1.6, 3.4 msec,
| = Usplash ~ 20 — 40 m/s:

Two pulses of = 250 ns give larger dispersal velocity only if

separated by less than 3 us.

50

40 +

30

o
E,
S 20 |
S 20

10

0 T T T
a 2000 4000 6000 8000

Pulse length fn<l
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Studies of Proton Beam + Mercury Jet

Proton |

Beam = S
Mercury
Jet

Ar raAT alU

Udispersal = 1 = Tt =~ Usound ~ 50 m/s
for U ~ 100 J/g.

Data: vgispersal = 10 m/s for U ~ 25 J/g.

Udispersal appears to scale with proton intensity.

The dispersal is not destructive.

Filaments appear only ~ 40 us after beam, = after several bounces

of waves, or vsoung very low.
Kirk T. McDONALD NuFacT03, JUNE 9, 2003 24
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Tests of a Mercury Jet in a 20-T Magnetic Field
(CERN/Grenoble, A. Fabich, Ph.D. Thesis)

Analytic model suggests little effect if jet nozzle inside field.

4 mm diam. jet, v &~ 12 m/s, B =0, 10, 20 T.

D].Slﬂa
- 11ce £.
b Lom 10z, Jet traverses B, ..

This qualitative
behaviour can be
observed in all
events.

10Tesla

nozzle

Shde 5

Will the beam-induced dispersal be damped also?
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MECO Target R&D, J. Popp
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PRISM Target R&D
H. Ohnishi, Y, Yamanoi, K. Yoshimura

ProbucTioN TARGET
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Target co-rTcept similar to Neutrino Factory Study 2.
10.9-T Prototype magnet, 6-cm warm bore;
hybrid coil (NbTi, Nb3Sn, HiTc)
Graphite target.
Beam test of coil mockup at KEK with 12-GeV protons, 1017/s.
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Neutrino Horn + Target R&D at CERN
_S. Gilardoni et al.

4

Current of 300 kA /4 &

Protons

Hg target

NEUTRINO FACTORY - Horn 1 prototype ey
First “inner” horn 1:1 prototype

Power supply for Test One:
30 kA and 1 Hz, pulse 100 us long
v' First mechanical measurements

» Test of numerical results for vibration 60(\6
v' Test of cooling system
N
* Test Two: 100 kA and 0.5 Hz ol
— Testing during this week \(S\o\“o
« Last test: 300 kA and 50 Hz W

Goal: Hom Life-Time 6 weeks (2*1082 pulses) _ _ . ,
- o €igenfrequencies from horn “sound

First Harmonic

—Hornce
D0 |—30 kA

/ Second Harmonic
/\A / —Water
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Funneling 7’s and u’s
B. Autin, P. Sievers, A. Verdier, F. Méot

If one neutrino horn is good, 4 horns are better!

Use rotating dipoles to direct beam pulses into four
beamlines, each with its own horn.




Undulator Based Production of Polarized Positrons

Would need multiple “conventional” positron production targets
at a linear collider.

et targets
RF Separater RF Separater
6.2 GeV e 250 MeV et
-2001
IgBOQASJr 3 out of 4 target system scheme

Mikhailichenko: Electron beam + helical undulator
=> Circularly polarized photons of ~ 10 MeV.
=> Longitudinally polarized positrons out of thin target.

Electron Main Linac Electron Main Linac

Undulator Bypass Line
[—

16

15y
Gey,, | 8 GeV L-Band Linac

Helical Undulator
Photon Drift

Redundant Targets and
Polarized Electron Gun

To Positron Pre Damping Ring

Demonstration proposed

at SLAC (E-166) using the
50-GeV Final Focus Test Beam
+ 1-m-long, 1-mm-diameter
pulsed helical undulator.
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Issues for Further Targetry R&D

e Continue numerical simulations of MHD 4+ beam-induced

effects.
e Continue tests of mercury jet entering magnet.

e For solid targets, study radiation damage — and issues of heat

removal from solid metal targets (bands, chains, etc.).

e Confirm manageable mercury-jet dispersal in beams up to full
Study-2 intensity — for which single-pulse vaporization may

also occur. Test Pb-Bi alloy jet.

e Study issues when combine intense proton beam with mercury

jet inside a high-field magnet.

1. MHD effects in a prototype target configuration.
2. Magnetic damping of mercury-jet dispersal.

3. Beam-induced damage to jet nozzle — in the magnetic field.

e = We propose to construct a 15-T pulsed magnet, that can
be staged as a 5-T and 10-T magnet.

Kirk T. McDONALD NuFacT03, JUNE 9, 2003 26
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A 15-T LN»-Cooled Pulsed Solenoid

e Simple solenoid geometry with rectangular coil cross section

and smooth bore (of 20 cm diameter)

e Cryogenic system reduces coil resistance to give high field at

relatively low current.

— Circulating coolant is gaseous He to minimize activation,

and to avoid need to purge coolant before pulsing magnet.

— Cooling via Ny boiloff.

e Most cost effective to build the 4.5-MW supply out of “car”
batteries! (We need at most 1,000 pulses of the magnet.)
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