Targets for Neutrino Factories and Muon Colliders

Sketches of a 4-MW Target Station
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High Performance Muon and Neutrino Beams Require a High

Performance Source

e bixisting target technologies can perhaps be extrapolated for use in 2 MW proton

beams.

e High-power targetry important for muon colliders, neutrino factories, “conventional”
secondary beams, accelerator production of tritium, accelerator transmutation of

waste, fusion materials test facilities, ....

e Common targetry challenges explored in the Ronkonkoma Workshop (Sept. 2003,
Harold Kirk).

e For modest extrapolation, key issues are materials properties after irradiation.
= Continuation of solid target studies at the BNL BLIP (Nick Simos).

e For use in & 2 MW beams, need new options such as liquid metal jet targets.

e BNL/CERN tests of mercury + beam and mercury + 20-T magnet are encouraging,
= Make system test of mercury + magnet + beam (Peter Titus, Helmut Haseroth).

e Beam tests are supplemented by magnetohydrodynamic numerical simulations

(Roman Samulyak).
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Thermal Shock

When beam pulse length ¢ is less than target radius r divided by speed of sound vsgund,

beam-induced pressure waves (thermal shock) are a major issue.

Simple model: if U = beam energy deposition in, say, Joules/g, then the instantaneous

temperature rise AT is given by

U
AT =
C )

where C' = heat capacity in Joules/g/K.

The temperature rise leads to a strain Ar/r given by

where o = thermal expansion coeflicient.

The strain leads to a stress P (= force/area) given by

Ar  EaU
P=F =
r C

where F is the modulus of elasticity:.
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In many metals, the tensile strength obeys P ~ 0.002F,
a~ 107" and C' ~ 0.3 J/g/K, in which case

_PC_0.002-0.3

Upax = ~ ~ 60 J / g.
Ea 10-5 /&

How Much Beam Power Can a Solid Target Stand?

How many protons are required to deposit 60 J/g in a material? What is the maximum
beam power this material can withstand without cracking, for a 10-GeV beam at 10 Hz

with area 0.1 cm?.

Ans. If we ignore “showers” in the material, we still have dFE /dx ionization loss,
of about 1.5 MeV/g/cm?.

Now, 1 MeV = 1.6 x 1071 J, s0 60 J/ g requires a proton beam intensity

of 60/(1.6 x 1071) = 10" /em?.

Then, Puax ~ 10 Hz- 101 eV - 1.6 x 10717 J/eV - 101 /em? - 0.1 cm?

~ 1.6 x 10° J/s = 1.6 MW.

Solid targets are viable up to about 1.5 MW beam power!
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Window Tests (5e12 ppp, 24 GeV, 100 ns)

Aluminum, Ti90AI6V4, Inconel 708, Havar, instrumented with fiberoptic strain sensors.
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A Carbon Target is Feasible at 1-MW Beam Power

BHL E951 T arget Experiment
24 GeV 3.0 e12 proton pulse on Carbon-Carbon and ATJ graphite targets
Recorded strain induced by proton pulse

A carbon-carbon compos-
ite with near-zero ther-
mal expansion is largely
immune to beam-induced
pressure waves.
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Sublimation of carbon is negligible in a helium atmosphere.
Tests underway at ORNL to confirm this.

Radiation damage is limiting factor: ~ 12 weeks at 1 MW.
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Effects of Radiation on SuperInvar

SuperInvar has a very low
coefficient of thermal
expansion (CTE),

= Resistant to

“thermal

shock” of a proton beam.

However,

BNL BLIP facility show that

the

CTE

irradiation at the

increases rapidly

with radiation dose.
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(like many materials).
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New Round of Irradiation Studies

Are “high performance” alloys still high performance after irradiation?

Materials to be studied:
1. Vascomax 350 (high strength steel for bandsaw target).

2. Ti90AI6V4 (titanium alloy for linear collider positron target).
3. Toyota “gum” metal (low-thermal expansion titanium alloy).
4. AlBeMet (aluminum /beryllium alloy).

5. Graphite (baseline for J-PARC neutrino production target).

6. Carbon-carbon composite (3-d weave with low-thermal expansion).
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Opportunity for a European Targetry R&D Project

A proposal to the European Union Sixth Framework Programme (FP6) for a “Design
Study for Neutrino Factory Target R&D” will be submitted in March 2004.
Lead: R. Edgecock (RAL).

Topics:
1. The Mercury Jet Target.
2. The Granular Target.
3. The Contained Metal Jet Target.
4. Target Station Design Studies.

5. Simulations of Beam /Target Interactions.

The Muon Collaboration Targetry Group will have an adjunct status on this proposal.

Our most immediate interest is topic 1, in the form of a beam test at CERN.
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Target of  pellets,
cooled by flowing He
oas.

A Granular Target

CLoL L

BEAM

Beam entrance window an issue.

P. Sievers, http://molat.home.cern.ch /molat /neutrino /nf127.pdf

Inside a
neutrino horn:
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A Liquid Metal Jet May Be the Best Target
for Beam Power above 1.5 MW

Mercury jet target inside a magnetic bottle:
20-T around target, dropping to 1.25 T in
the pion decay channel.

Mercury jet tilted by 100 mrad, proton
beam by 67 mrad, to increase yield of soft
plons.
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Beam-Induced Cavitation in Liquids Can Break Pipes

Snapping shrimp stun prey via
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The Shape of a Liquid Metal Jet under a Non-uniform Magnetic Field

S. Oshima et al., JSME Int. J. 30, 437

(1987).
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Passive Mercury Target Tests (BNL and CERN)

Exposures of 25 us at
t=20,0.5, 1.6, 3.4 msec,
= Ugplash ~ 20 — 40 m/s:

50
40
Two pulses of ~ 250 ns give larger  Z 3o -
dispersal velocity only if separated & 2o
by less than 3 us. el
. O 20100 4DTOD 60}30 800(?

Pulse length n<l
Kirk T. McDONALD MuoN COLLABORATION MEETING, JAN. 29, 2004 14



Studies of Proton Beam + Mercury Jet (BNL)

Mercury
Jet

l-cm-diameter Hg jet in 2el12 protons at ¢ = 0, 0.75, 2, 7, 18 ms.

A AT U
Model (Sievers): Udispersal = Az — T;C;S()und I o Vsound = D0 m /s

for U ~ 100 J/g.

Data: vgispersal = 10 m/s for U = 25 J/g.
Vdispersal appears to scale with proton intensity.
The dispersal is not destructive.
Filaments appear only ~ 40 us after beam,

= after several bounces of waves, or vsoung very low.
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Tests of a Mercury Jet in a 20-T Magnetic Field
(CERN/Grenoble, A. Fabich, Ph.D. Thesis)

Eddy currents may distort
the jet as it traverses the

magnet. noz,;, Jet traverses B, .

Analytic model suggests

little effect if jet nozzle
inside field.

0 Tesla

This qualitative

4 mm diam. jet, behaviour can be

v~ 12 m/s, i observed in all
B = 0, 10, 20 T. events.
= Damping of =
. =
burfacg—tegblon waves X —
(Rayleigh instability). v

nozzle

Slide 5

Will the beam-induced
dispersal be damped also?
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Computational Magnetohydrodynamics (R. Samulyak, Y. Pyrkarpatsky)

fusion curve domain of interest

critical point

. Solid Liquid
Use equation of state that supports ° o
negative pressures, but gives way to tiple point ——
cavitation. Vapor

sublimation curve

1
Critical point: T, =1750K, P, =172 MPa, V, =43cm’mol*’
Boiling point: 7, =629.84K, P, =0.1MPa, p=13.546g-cm”

Thimble splash at 0.24, 0.48, 0.61, 1.01 us

Magnetic
damping of
beam-induced
filamentation:
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Issues for Further Targetry R&D

e Continue numerical simulations of MHD + beam-induced effects.
e Continue tests of mercury jet entering magnet.

e For solid targets, study radiation damage — and issues of heat removal from solid

metal targets (carbon/carbon, Toyota Ti alloy, bands, chains, etc.).

e Confirm manageable mercury-jet dispersal in beams up to 10! protons/pulse

— for which single-pulse vaporization may also occur. Test Pb-Bi alloy jet.

e Study issues when combine intense proton beam with mercury jet inside a high-field

magnet.

1. MHD effects in a prototype target configuration.
2. Magnetic damping of mercury-jet dispersal.

3. Beam-induced damage to jet nozzle — in the magnetic field.

e = We are constructing a 15-T pulsed magnet,
that can be staged as a 5-T and 10-T magnet.
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A 2-5 m/s Continuous Flow Mercury Jet

A 2.5-m/s, continuous-flow version of the free mercury jet target was constructed for
use in the BNL A3 line.

Sigws

Completed Oct 2003. Now in storage.

Most components fabricated for a 2nd version using Wood’s metal.

(However, the Wood’s metal wets the quartz windows.)
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A 15-T LN,-Cooled Pulsed Solenoid

e Simple solenoid geometry with rectangular coil cross section and smooth bore

(of 20 cm diameter)
e Cryogenic system reduces coil resistance to give high field at relatively low current.
— Circulating coolant is gaseous He to minimize activation, and to avoid need to
purge coolant before pulsing magnet.
— Cooling via Ny boiloff.

e Most cost effective to build the 4.5-MW supply out of “car”
batteries! (We need at most 1,000 pulses of the magnet.)
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Magnet Can Be Cooled by Forced Flow of LN,

<]
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Force the LNy via pumping, = Can reduce temperature to 70K in 20 min.

= Can achieve 15 T with a 5-MW (battery) power supply.

Pump LNy completely out of magnet before pulsing, to minimize activation.
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R&D for a 5-MW Battery Power Supply

Battery/Charger
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Optical Diagnostics

Nufact Hg-jet target experiment
in the N-ToF tunnel
classical, no sliding mirrors

Beam profile M irrars

and postion P-bearn _|.2fixed + 2 madiles

m anitaring Ll lalts e ’//’

24 GeV S e =
proton beam —gl—-—--B= P P B £
20-50 pulses S N
Double enclosed
Mobile coil magnet SS- Hgloop

with viewing space
K-y-Z-cealignment
(15 Cm) system ?

Remote controlled
Laser optics and
high speed video —_ . .---- -

recording Ty

Need 20 m/s horizontal mercury jet.
Continuous or Pulsed?

with windows

o

FPulsed Hg pump
~ 19 kQ/s

20 m /s vertical continuous flow mercury jet

under development:
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Possible Sites of the Beam/Jet /Magnet Test

/
E-951 has existing setup / N oo
in the BNL A3 line — but /= T N ||| o
beam may be no longer | F

Eleclricity room

available there.

Power supply

Cooling facility1

J-PARC 50-GeV
fast-extracted beam:
(LOI 30, Jan 21, 2003)

Location of
proposed
target
studies

CERN PS transfer line:
CERN-INT(C-2003-033
(Oct 23, 2003)
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