The High-Power Targetry R&D Program K.T. McDonald Princeton U. MUTAC Review Brookhaven National Laboratory April 28, 2004 http://puhep1.princeton.edu/mumu/target/ ### High Performance Muon and Neutrino Beams Require a High Performance Source - Existing target technologies can perhaps be extrapolated for use in 2 MW proton beams. - High-power targetry is important for muon colliders, neutrino factories, "conventional" secondary beams, accelerator production of tritium, accelerator transmutation of waste, fusion materials test facilities, - Common targetry challenges explored in the Ronkonkoma Workshop (Sept. 2003). - For modest extrapolations of solid targets, key issues are materials properties after irradiation. - \Rightarrow Continuation of solid target studies at the BNL BLIP. - For use in $\gtrsim 2$ MW beams, need new options such as liquid metal jet targets. - BNL/CERN tests of mercury + beam and mercury + 20-T magnet are encouraging. - Beam tests are supplemented by magnetohydrodynamic numerical simulations (Roman Samulyak). - The R&D program should be brought a significant conclusion by a proof-of-principle test of mercury + magnet + beam (CERN 2006, Harold Kirk). #### R&D During 2001-2003 #### • Solid Target Studies - Qualification of windows in intense proton beams. - Demonstration that a carbon-carbon composite with low coefficient of thermal expansion shows much less beam-induced strain than does graphite. - Demonstration that the low coefficient of thermal expansion of SuperInvar becomes large with only ≈ 0.01 dpa radiation dose. ### • Liquid Target Studies - Demonstration that dispersion by a proton beam of mercury in a "thimble" is benign. - Demonstration that dispersion by a proton beam of mercury in a free jet, in zero magnetic field, is also benign. - Demonstration that a mercury jet is stabilized by a 20-T magnetic field. ### Window Tests (5e12 ppp, 24 GeV, 100 ns) Aluminum, Ti90Al6V4, Inconel 708, Havar, instrumented with fiberoptic strain sensors. #### A Carbon Target is Feasible at 1-MW Beam Power A carbon-carbon composite with near-zero thermal expansion is largely immune to beam-induced pressure waves. A carbon target in vacuum sublimates away in 1 day at 4 MW. Sublimation of carbon believed to be negligible in a helium atmosphere. Tests underway at ORNL to confirm this. Radiation damage is limiting factor: ≈ 12 weeks at 1 MW. ### Effects of Radiation on SuperInvar SuperInvar has a very low coefficient of thermal expansion (CTE), ⇒ Resistant to "thermal shock" of a proton beam. However, irradiation at the BNL BLIP facility show that the CTE increases rapidly with radiation dose. CTE vs. dose \Rightarrow SuperInvar is made stronger by moderate radiation doses (like many materials). 680 640 620 600 580 560 540 520 0 0.05 0.1 0.15 0.2 0.25 dpa Yield strength $vs. \mathbf{dose} \Rightarrow$ ### A Liquid Metal Jet May Be the Best Target for Beam Power above 1.5 MW Mercury jet target inside a magnetic bottle: 20-T around target, dropping to 1.25 T in the pion decay channel. Mercury jet tilted by 100 mrad, proton beam tilted by 67 mrad, to increase yield of soft pions. ### Beam-Induced Cavitation in Liquids Can Break Pipes Snapping shrimp stun prey via cavitation bubbles. #### SNS: **BINP**: **ISOLDE:** #### The Shape of a Liquid Metal Jet under a Non-uniform Magnetic Field S. Oshima *et al.*, JSME Int. J. 30, 437 (1987). #### Passive Mercury Target Tests (BNL and CERN) Exposures of 25 μ s at t = 0, 0.5, 1.6, 3.4 msec, $\Rightarrow v_{\rm splash} \approx 20 - 40$ m/s: Two pulses of ≈ 250 ns give larger dispersal velocity only if separated by less than 3 μ s. MUTAC REVIEW, APR. 28, 2004 #### Studies of Proton Beam + Mercury Jet (BNL) 1-cm-diameter Hg jet in 2e12 protons at t = 0, 0.75, 2, 7, 18 ms. Model (Sievers): $$v_{\text{dispersal}} = \frac{\Delta r}{\Delta t} = \frac{r\alpha\Delta T}{r/v_{\text{sound}}} = \frac{\alpha U}{C}v_{\text{sound}} \approx 50 \text{ m/s}$$ for $U \approx 100 \text{ J/g}$. Data: $v_{\text{dispersal}} \approx 10 \text{ m/s for } U \approx 25 \text{ J/g.}$ $v_{\rm dispersal}$ appears to scale with proton intensity. The dispersal is not destructive. Filaments appear only $\approx 40 \ \mu s$ after beam, \Rightarrow after several bounces of waves, or v_{sound} very low. # Tests of a Mercury Jet in a 20-T Magnetic Field (CERN/Grenoble, A. Fabich, Ph.D. Thesis) Eddy currents may distort the jet as it traverses the magnet. Analytic model suggests little effect if jet nozzle inside field. 4 mm diam. jet, $v \approx 12 \text{ m/s},$ B = 0, 10, 20 T. ⇒ Damping of surface-tension waves (Rayleigh instability). Will the beam-induced dispersal be damped also? ### A 2-5 m/s Continuous Flow Mercury Jet A 2.5-m/s, continuous-flow version of the free mercury jet target was constructed for use in the BNL A3 line. Completed Oct 2003. Now in storage. Most components fabricated for a 2nd version using Wood's metal. (However, the Wood's metal wets the quartz windows.) #### Computational Magnetohydrodynamics (R. Samulyak, Y. Pyrkarpatsky) Use equation of state that supports negative pressures, but gives way to cavitation. Critical point: $T_c = 1750 \text{K}$, $P_c = 172 \text{ MPa}$, $V_c = 43 \text{ cm}^3 \text{ mol}^{-1}$ Boiling point: $T_b = 629.84 \text{K}$, $P_b = 0.1 \text{MPa}$, $\rho = 13.546 \text{ g} \cdot \text{cm}^{-3}$ Thimble splash at 0.24, 0.48, 0.61, 1.01 μ s Magnetic damping of beam-induced filamenta-tion: #### What Have We Learned? - Solid targets are viable in pulsed proton beams of up to 1-2 MW. - Engineered materials with low coefficients of thermal expansion are desirable, but require further qualification for use at high radiation dose. - A mercury jet appears to behave well in a proton beam at zero magnetic field, and in a high magnetic field without proton beam. - Acceptance by the accelerator physics community of the concept of a mercury jet target in a high magnetic field requires further R&D efforts such as a proof-of-principle demonstration. ## The 2003 Targetry Workshop High-power Targetry for Future Accelerators Ronkonkoma, NY September 8-12, 2003 Harold G. Kirk Brookhaven National Laboratory ### **Workshop Participation** Over 40 attendees from: AGS **ESS** **EURISOL** **IFMIF** **ISIS** **JPARC** **LANCE** Neutrino Factory Facilities Represented **NUMI** **NLC** RIA **SINQ** SNS Argonne Brookhaven **CERN** Fermilab FZ-Julich **KEK** Los Alamos Michigan State Oak Ridge Princeton **PSI-Zurich** Rutherford Lab **SLAC** ### **Workshop Organization** **Facilities Overview** Summary by John Haines, ORNL **Solid Targets** Summary by Roger Bennett, RAL **Liquid Targets** Summary by Helge Ravn, CERN Theory/Simulations Summary by Nikolai Mokhov, FNAL http://www.cap.bnl.gov/mumu/conf/target-030908/agenda.xhtml Google: high power targetry ### **Target Parameters from John Haines Summary** | | | | Ream | Pulse | | | Peak Time | | |-----------------------------------|----------------|------------------------|----------|----------|------------------------|-----------|----------------------|---------------| | | | | Deam | i uise | | Time Ave | Ave Power | Peak Energy | | | | | Duration | Rep Rate | Energy | Power in | Density | Density | | Facility | Status | Target Material | (ms) | (Hz) | (GeV) | Beam (MW) | (MW/m ³) | (MJ/m³/pulse) | | BNL Neutrino
Superbeam | Under Study | C-C Composite | 2.6 | 2.5 | 28 | 1 | 4,060 | 1,630 | | ESS - short pulse | Under Study | Hg | 1.2 | 50 | 1.334 | 5 | 2,500 | 50 | | ESS - long pulse | Under Study | Hg | 2,000 | 16.7 | 1.334 | 5 | 2,500 | 150 | | EURISOL | Under Study | Hg | 3 | 50 | 2.2 | 4 | 100,000 | 2,000 | | IFMIF | Under Study | Li | CW | | 0.04 (D ₂) | 10 | 100,000 | NA | | JPARC - Hadron
beam line | Under Construc | Ni | 7.E+05 | 0.3 | 50 | 0.75 | 7,600 | 5,300 | | JPARC - Neutrino beam line | Under Study | С | 5 | 0.3 | 50 | 0.75 | 83 | 300 | | LANSCE - APT irradiation tests | Dismantled | W | 1,000 | 20 | 0.8 | 0.8 | 800 | 40 | | LANSCE - Lujan | Existing | W | 0.25 | 20 | 0.8 | 0.1 | 350 | 18 | | LANSCE - Mats Test
Station | Under Study | Pb-Bi | 1,000 | 120 | 0.8 | 0.8 | 2,400 | 20 | | LEDA as fusion mats test facility | Under Study | Li | cw | | 0.04 (D ₂) | 2 | 100,000 | NA | | MiniBoone | Existing | Be | 150 | 5 | 8 | 0.032 | 120 | 24 | | NLC - conventional | Under Study | W Re | 0.26 | 120 | 6.2 | 0.086 | 334,800 | 2,790 | | NLC - undulator | Under Study | Ti alloy | 0.26 | 120 | 0.011 | 0.126 | 1,110,000 | 9,200 | | NuMI | Existing | С | 8.6 | 0.53 | 120 | 0.4 | 318 | 600 | | Pbar | Existing | Inconel 600 + | 1.6 | 0.5 | 120 | 0.052 | 7,650 | 15,300 | | RIA | Under Study | Li, Be, Hg, W, | CW | | 1-96 (p to U) | 0.4 | < 4,000,000 | NA | | SINQ/Solid Target | Existing | Pb, SS-clad | CW | | 0.575 | 0.72 | 720 | NA | | SINQ/MEGAPIE | Under Construc | Pb-Bi | CW | | 0.575 | 1 | 1,000 | NA | | SNS | Under Construc | Hg | 0.7 | 60 | 1 | 2 | 800 | 13 | | US Neutrino Factory | Under Study | Hg | 0.003 | 15 | 24 | 1 | 3,800 | 1,080 | ### The Pbar Target System W Target W-Re Target # The assembled Mini-boone Target ### **NuMI Low Energy Target for Minos** Graphite Fin Core 2 int. len. Water cooling tube also provides mechanical support Aluminum vacuum tube Harold G. Kirk ## **SLC Target Damage** SLC target damage studies were done at LANL. Results show evidence of cracks, spalling of target material and aging effects. # The T1 Kaon Target Prototype # **Super-invar Irradiation at BNL** The target basket after irradiation Dilatometer in Hot cell Results of coefficient of thermal expansion measurements ### **CERN Experience with Tantalum** ### Los Alamos Solid Target R&D Neutron source production Lance p beam 0.8 GeV 0.8 MW Stainless Steel Claded Tungsten Water Cooled 100 W/g Results: 2 Months successful running Post-irradiation studies confirm that the target integrity is uncompromised. ### **Liquid Metal Targets—PbBi Eutectic** MEGAPIE Project at PSI 0.59 GeV proton beam 1 MW beam power Goals: - Demonstrate feasablility - One year service life - Irradiation in 2005 Target Shielding Main EMP Flowmeter Bypass EMP Flowmeter Upper Target Enclosure Main Guide Tube Bypass Flow Guide Tube > LBE Leak Detector > > **Proton Beam** Target Head Feedthroughs Expansion Tank 12 Pin Heat Exchanger Central Rod Heaters and Neutron Detectors T91 Lower Liquid Metal Container Lower Target Enclosure ### **Liquid Metal Targets--Hg** **SNS Target Configuration** Target Container Cooling Channels Neutron Sources – SNS and ESS Proton beam 1 GeV and 1 MW 60 Hz operation with large beam spot Peak energy deposition ~ 1 J/g Pitting of stainless steel containment vessel significant issue. Pitting results from collapsing cavitation induced bubbles. ### **RIA Windowless Liquid Li Target** ### Rare Isotope Accelerator Production of rare isotopes by ISOL method and target fragmentation method. A windowless liquid Li sheet is proposed as a target for producing heavy ion projectiles. This method also show promise as a thin film stripper. NATIONAL LABORATORY NATIONAL LABORATORY ### The IFMIF Liquid Li Target Fast Neutron Source -- Operations in 2017 ### **Simulation and Theory Summary** - 1. Particle Yields, Energy Deposition and Radiation (N. Mokhov, L. Waters) - Needs and Specs - Codes - Uncertainties - Benchmarking - Future Work - 2. Structural Analyses of Solid Targets and Li-lenses (N. Simos, P. Hurh, B. Riemer) - 3. Magnetohydrodynamics in Liquid Targets (R. Samulyak, Y. Prykarpatskyy) - 4. Misc (L. Waters) - Materials Handbook - Hydraulics ### **Conclusions** - New physics opportunities are demanding more intense proton drivers. - 1 MW machines are almost here! 4 MW machines are planned. - Targets for 1 MW machines exist but are unproven. - But no convincing solution exists yet for the 4 MW class machines. - Worldwide R&D efforts underway to develop targets for these new machines. - A key workshop concern was the lack of worldwide support facilities where promising new ideas can be tested. #### Issues for Further Targetry R&D - Continue numerical simulations of MHD + beam-induced effects. - For solid targets, study radiation damage and issues of heat removal from solid metal targets (carbon/carbon, Toyota Ti alloy, bands, chains, etc.). - Proof-of-Principle test of an intense proton beam with a mercury jet inside a high-field magnet. - 1. MHD effects in a prototype target configuration. - 2. Magnetic damping of mercury-jet dispersal. - 3. Beam-induced damage to jet nozzle in the magnetic field. #### New Round of Solid Target Irradiation Studies Are "high performance" alloys still high-performance after irradiation? Materials irradiated at the BNL BLIP, March 2004: - 1. Vascomax 350 (high strength steel for bandsaw target). - 2. Ti90-Al6-V4 (titanium alloy for linear collider positron target). - 3. Toyota "gum" metal (low-thermal expansion titanium alloy). - 4. AlBeMet (aluminum/beryllium alloy). - 5. IG-43 Graphite (baseline for J-PARC neutrino production target). - 6. Carbon-carbon composite (3-d weave with low-thermal expansion). ### Opportunities for European Targetry R&D Projects Now: Studies of self annealing of tantalum targets at 2000C (RAL). Future: a proposal to the European Union Sixth Framework Programme (FP6) for a "Design Study for Neutrino Factory Target R&D" will be submitted in early 2005. Lead: R. Edgecock (RAL). #### **Topics:** - 1. The Mercury Jet Target. - 2. The Granular Target. - 3. The Contained Metal Jet Target. - 4. Target Station Design Studies. - 5. Simulations of Beam/Target Interactions. The Muon Collaboration Targetry Group will have an adjunct status on this proposal. #### Proof-of-Principle of Liquid Jet + Magnet + Proton Beam - Foreseen since inception of the targetry R&D program in 1997. - Active planning since 2002, after success of separate beam + jet, and magnet + jet studies. - Diminished option to perform the test at BNL. - Long-term option to perform the test at JPARC (LOI submitted Jan 2003). - Good opportunity at CERN in 2006 (LOI submitted Nov 2003). - Contract awarded in late 2003 for fabrication of the 15-T pulsed solenoid coil + cryostat. - Proposal submitted to CERN in Apr 2004 by a collaboration from BNL, CERN, KEK, ORNL, Princeton and RAL. # A Proposal to the ISOLDE and Neutron Time-of-Flight Experiments Committee # Studies of a Target System for a 4-MW, 24-GeV Proton Beam J. Roger J. Bennett¹, Luca Bruno², Chris J. Densham¹, Paul V. Drumm¹, T. Robert Edgecock¹, Adrian Fabich², Tony A. Gabriel³, John R. Haines³, Helmut Haseroth², Yoshinari Hayato⁴, Steven J. Kahn⁵, Jacques Lettry², Changguo Lu⁶, Hans Ludewig⁵, Harold G. Kirk⁵, Kirk T. McDonald⁶, Robert B. Palmer⁵, Yarema Prykarpatskyy⁵, Nicholas Simos⁵, Roman V. Samulyak⁵, Peter H. Thieberger⁵, Koji Yoshimura⁴ Spokespersons: H.G. Kirk, K.T. McDonald Local Contact: H. Haseroth #### **Optical Diagnostics** Based on designs successfully used in BNL and CERN tests. 20 m/s continuous-flow mercury jet under development: #### **Summary** - Improved performance of High Power Targets is a cost-effective path to improved performance of future muon and neutrino beams but significant R&D is required to realize these improvements. - Relevant R&D on high-performance solid targets is being carried out by members of the Muon Collaboration, + international partners, at little direct cost to the Collaboration. - The largest impact of our efforts on the accelerator community would be the acceptance of the concept of a free liquid jet target in a high-field solenoid for use in $\gtrsim 2$ MW proton beams. - Step-by-step R&D on liquid jet targets has been very successful, but is not sufficient. - We are poised to perform the needed proof-of-principle test of a liquid jet + magnet + beam, with an outstanding near-term opportunity for this at CERN.