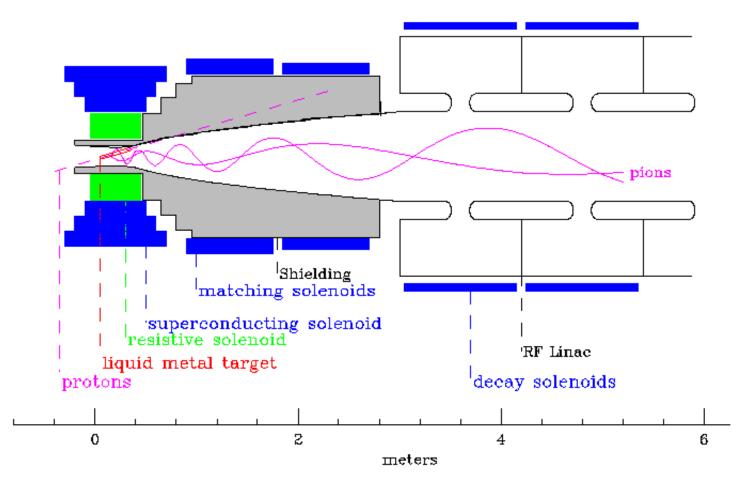
An R&D Program for Targetry at a Muon Collider

K.T. McDonald

Princeton U.

17 September 1998


CERN Muon Collider Workkshop

http://puhep1.princeton.edu/mumu/target/

Targetry Challenges

To achieve useful physics luminosity, a muon collider must produce a few $\times 10^{14} \ \mu/\mathrm{sec}$.

- > 10^{15} proton/sec onto a high-Z target.
- Capture pions of $P_{\perp} \lesssim 200 \text{ MeV}/c$ in a 20-T solenoid magnet.
- Transfer the pions into a 1.25-T-solenoid decay channel.
- Compress π/μ bunch energy with rf cavities and deliver to muon cooling channel.

Targetry Challenges, Cont'd

- Proton beam power ≈ 4 MW; 400 kW deposited in target.
- To minimize pion absorption, cannot cool target by thermal bath.
- Radiative cooling is inadequate.
- $\bullet \Rightarrow$ Move target material away from beam and cool remotely.
- Even so, target must survive radiation damage (10-100 dpa/year), and the thermal shock of 30 kJ/pulse (≈ 30 J/gm) at 15 Hz.

A moving solid target is awkward (backup solution).

Pipes with liquid metal (as in future neutron spallation sources) won't survive the pressure wave of thermal shock.

A free liquid metal jet is presently the preferred option.

Will it work?

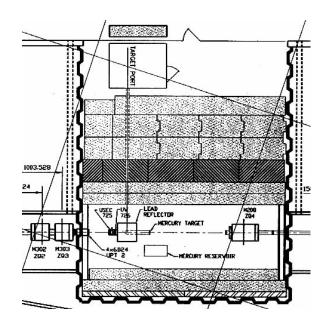
Need a Targetry R&D Program.

An R&D Program for Targetry

at a Muon Collider

A Proposal to the BNL AGS Division

David Brashears, ^h Kevin Brown, ^b Michael Cates, ^h John Corlett, ^f Adrian Fabich, ^d Richard C. Fernow, ^b Charles Finfrock, ^b Yasuo Fukui, ^c Tony A. Gabriel, ^f Juan C. Gallardo, ^b Michael A. Green, ^f George A. Greene, ^b John R. Haines, ^h Jerry Hastings, ^b Ahmed Hassanein, ^a Colin Johnson, ^d Stephen A. Kahn, ^b Bruce J. King, ^b Harold G. Kirk, ^{b,1} Jacques Lettry, ^d Vincent LoDestro, ^b Changguo Lu, ⁱ Kirk T. McDonald, ^{i,2} Nikolai V. Mokhov, ^e Alfred Moretti, ^e James H. Norem, ^a Robert B. Palmer, ^b Ralf Prigl, ^b Helge Ravn, ^d Bernard Riemer, ^h James Rose, ^b Thomas Roser, ^b Joseph Scaduto, ^b Peter Sievers, ^d Nicholas Simos, ^b Philip Spampinato, ^h Iuliu Stumer, ^b Peter Thieberger, ^b James Tsai, ^h Thomas Tsang, ^b Haipeng Wang, ^b Robert Weggel, ^b Albert F. Zeller, ^g Yongxiang Zhao

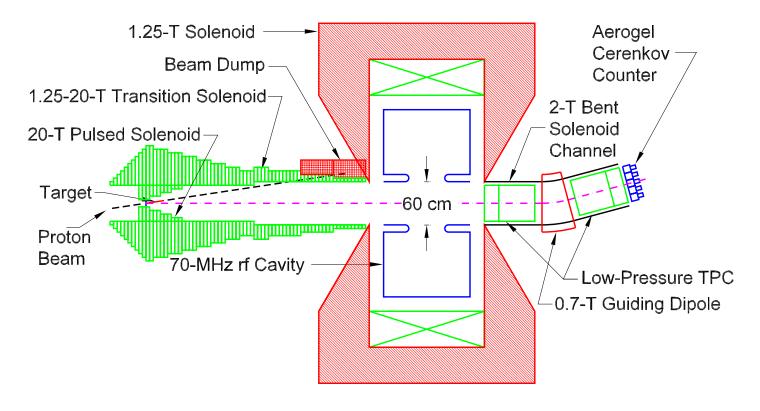

^aArgonne National Laboratory, Argonne, IL 60439
^bBrookhaven National Laboratory, Upton, NY 11973
^cUniversity of California, Los Angeles, CA 90095
^dCERN, 1211 Geneva, Switzerland
^eFermi National Laboratory, Batavia, IL 60510
^fLawrence Berkeley National Laboratory, Berkeley, CA 94720
^gMichigan State University, East Lansing, MI 48824
^hOak Ridge National Laboratory, Oak Ridge, TN 37831
ⁱPrinceton University, Princeton, NJ 08544

¹Project Manager. Email: kirk@electron.cap.bnl.gov

 $^{^2\}mathrm{Spokesperson}.$ Email: mcdonald@puphep.princeton.edu

To be submitted Sept. 1998.

Studies to be performed in the BNL AGS F.E.B. U-line, and at the National High Magnetic Field Laboratory (Florida).


Critical Targetry Issues

- What is the effect of the pressure wave induced in the target by the proton pulse?
 - If the liquid target is dispersed by the beam, do the droplets damage the containment vessel?
- What is the effect of the magnetic field of the capture solenoid on the motion of the liquid-jet target?
 - Is the jet badly distorted by Lorentz forces on the eddy currents induced as the jet enters the field?
 - Does the magnetic field damp the effects of the beam-induced pressure wave?
- Can the first rf cavity of the phase-rotation channel operate viably in close proximity to the target?
- What is the yield of low-energy pions from 16-24-GeV protons incident on the target of the muon-collider source?
- Can numerical simulations be developed that permit reliable extrapolation of the empirical answers we obtain?

The 8 Steps in the R&D Program

- 1. Initial studies of liquid (and solid) target materials with a proton beam at the AGS.
- 2. Studies of a liquid-metal jet entering a 20-T magnet at the National High Magnetic Field Laboratory.
- 3. Studies of a full-scale liquid-metal jet in a beam of 10¹⁴ protons per pulse, but without magnetic field.
- 4. Studies of a liquid-metal jet + proton beam + 20-T pulsed solenoid magnet.
- 5. Studies of a 70-MHz rf cavity downstream of target in proton beam, but without a magnet around the cavity.
- 6. Continuation of topic 5 with the addition of a 1.25-T, 1.25-m-radius solenoid surrounding the rf cavity.
- 7. Characterization of the pion yield downstream of the target + rf cavity.
- 8. Simulation of the performance of liquid-metal targets. Validation of the simulation by exploding-wire studies.

Overall Configuration of the Experiment

What Next?...

Heavier, higher-Z liquid metals: mercury, lead/bismuth...

Systems issues for long life, high rep. rate.

Hybrid DC 20-T magnet: superconducting outer, resistive inner.

Superconducting magnets around rf cavities.