2nd Oxford-Princeton Workshop on High-PowerTargets

Held at Princeton U.
Nov 6-7, 2008
O-P Workshop Web Page:

http://www.hep.princeton.edu/~mcdonald/mumu/target/index.html#2nd_OP_workshop

K.T. McDonald

Princeton U.

Eurov-IDS-NF Target Meeting

CERN, Dec 15-17, 2008

2nd Oxford-Princeton Workshop Agenda

Thursday AM

- 1. McDonald: Introduction
- 2. Graves: Hg Containment Concepts[†]
- 3. Ding: Hg Jet Optimization
- 4. Park. MERIT Results
- 5. Kadi: Eurisol Liquid Target Studies (Dracos)

Thursday PM

- 6. Rennich: SNS 3-MW Rotating Target
- 7. Fitton: T2K Target^{†(Densham)}
- 8. Rooney: T2K Beam Window †(Densham)
- 9. Davenne: Pelletized Target for ISIS
- 10. Hylen: DUSEL Target Options (Simos)
- 11. Bennett: Solid Target Studies[†]
- 12. Bennett: Absorption in Solid Targets[†]
- 13. Skoro: Visar Studies for Solid Targets (Bennett)
- 14. Loveridge: Helmholz Coils for Wheel Target †(Bennett)
- 15. Caretta: Tungsten Powder Jet Target[†]
- 16. Brooks: Model for Production by Low-Density Targets †(Bennett)
- 17. Brooks: Pion Production Update^{†(Kirk)}

Friday AM 18. Bricaul

- 18. Bricault: e- Targets
- 19. Samulyak: Hg Jet Simulations
- 20. Davenne: Hg Jet/Pool Simulations[†]
- 21. Skoro: Simulations of Thermal Shock in Solids
- 22. Simos: Material Irradiation Studies
- 23. Efthymiopoulos: CERN Target Test Facilities[†]
- 24. Hurh: Fermilab AP-0 Target Test Facility

Friday PM

25. Long: Discussion (IDS)

† Related presentation at this meeting

Targets for 2-4 MW Proton Beams

- 10-50 GeV beam energy appropriate for Superbeams, Neutrino Factories and Muon Colliders. $\Box 0.8-2.5 \times 10^{15} \ pps$; $0.8-2.5 \times 10^{22} \ protons per year of <math>10^7 \ s.$
- Rep rate 15-50 Hz at Neutrino Factory/Muon Collider, as low as \approx 2 Hz for Superbeam.
 - \Rightarrow Protons per pulse from 1.6 \times 10¹³ to 1.25 \times 10¹⁵.
 - \Rightarrow Energy per pulse from 80 kJ to 2 MJ.
- Small beam size preferred:
 - $\approx 0.1 \, \mathrm{cm^2}$ for Neutrino Factory/Muon Collider, $\approx 0.2 \, \mathrm{cm^2}$ for Superbeam.
- Pulse width \approx 1 µs OK for Superbeam, but \approx 1 ns desired for Neutrino Factory/Muon Collider.
- ⇒ Severe materials issues for target AND beam dump.
 - Radiation Damage.
 - Melting.
 - Cracking (due to single-pulse "thermal shock").
- MW energy dissipation requires liquid coolant somewhere in system!
 - ⇒ No such thing as "solid target only option" at this power level.

Radiation Damage

The lifetime dose against radiation damage (embrittlement, cracking,) by protons for most solids is about 10^{22} /cm².

- ⇒ Target lifetime of about 5-14 days at a 4-MW Neutrino Factory (and 9-28 days at a 2-MW Superbeam).
- ⇒ Mitigate by frequent target changes, moving target, liquid target, ...
 [Mitigated in some materials by annealing/operation at elevated temperature.]

Remember the Beam Dump

Target of 2 interaction lengths \Rightarrow 1/7 of beam is passed on to the beam dump.

⇒ Energy deposited in dump by primary protons is same as in target.

Long distance from target to dump at a Superbeam,

- \Rightarrow Beam is much less focused at the dump than at the target,
- \Rightarrow Radiation damage to the dump not a critical issue (Superbeam).

Short distance from target to dump at a Neutrino Factory/Muon Collider,

- \Rightarrow Beam still tightly focused at the dump,
- ⇒ Frequent changes of the beam dump, or a moving dump, or a liquid dump.

A liquid beam dump is the most plausible option for a Neutrino Factory, independent of the choice of target. (This is so even for a 1-MW Neutrino Factory.)

The proton beam should be tilted with respect to the axis of the capture system at a Neutrino Factory, so that the beam dump does not absorb the captured π 's and μ 's.

Target Options

- Static Solid Targets
 - Graphite (or carbon composite) cooled by water/gas/radiation [CNGS, NuMI, T2K]
 - Tungsten or Tantalum (discs/rods/beads) cooled by water/gas [PSI, LANL]
- Moving Solid Targets
 - Rotating wheels/cylinders cooled (or heated!) off to side [SLD, FNAL \overline{p} , Bennett]
 - Continuous or discrete belts/chains [King]
 - Flowing powder [Densham]
- Flowing liquid in a vessel with beam windows [SNS, ESS]
- Free liquid jet [Neutrino Factory Study 2]

K. McDonald

Static Solid Targets

Pros:

- Tried and true for low power beams.
- Will likely survive "thermal shock" of long beam pulses at 2 MW (Superbeam).

Cons:

- Radiation damage will lead to reduced particle production/mechanical failure on the scale of a few weeks at 2 MW.
- If liquid cooled, leakage of radioactive coolant anywhere in the system is potentially more troublesome than breakup of a radioactive solid.
- ⇒ Must consider a "moving target" later if not sooner.

R&D: Test targets to failure in high-power beams to determine actual operational limits.

K. McDonald

Moving Solid Targets

Pros:

- Can avoid radiation damage limit of static solid targets.
- Will likely survive "thermal shock" of long beam pulses at 2 MW (Superbeam).

Cons:

- Target geometry not very compatible with neutrino "horns" except when target is upstream of horn (high energy v's: CNGS, NuMI).
- If liquid cooled, leakage of radioactive coolant anywhere in the system is potentially more troublesome than breakup of a radioactive solid.

R&D:

- Engineering to clarify compatibility with a target station for Superbeams.
- Lab studies of erosion of nozzle by powders.

Personal view: this option is incompatible with Neutrino Factories.

Flowing Liquids in Vessels

Pros:

- The liquid flows through well-defined pipes.
- Radiation damage to the liquid is not an issue.

Cons:

- The vessel must include static solid beam windows, whose lifetime will be very short in the small proton spot sizes needed at Superbeams and Neutrino Factories.
- Cavitation in the liquid next to the beam windows is extremely destructive.
- Leakage of radioactive liquid anywhere in the system is potentially more troublesome than breakup of a radioactive solid.

R&D: This option is not very plausible for Superbeams and Neutrino Factories, and no R&D is advocated.

Free Liquid Jet Targets

Pros:

- No static solid window in the intense proton beam.
- Radiation damage to the liquid is not an issue.

Cons:

- Never used before as a production target.
- Leakage of radioactive liquid anywhere in the system is potentially more troublesome than breakup of a radioactive solid.

R&D: Proof of principle of a free liquid jet target has been established by the CERN MERIT Experiment. R&D would be useful to improve the jet quality, and to advance our understanding of systems design issues.

Personal view: This option deserves its status as the baseline for Neutrino Factories and Muon Colliders. For Superbeams that will be limited to less than 2 MW, static solid targets continue to be appealing.

K. McDonald

Target and Capture Topologies: Solenoid

Desire $\approx 10^{14} \, \mu/s$ from $\approx 10^{15} \, p/s$ (≈ 4 MW proton beam).

Highest rate μ^+ beam to date: PSI μ E4 with $\approx 10^9$ μ/s from $\approx 10^{16}$ p/s at 600 MeV.

50

0

-50

-100

 \Rightarrow Some R&D needed!

Palmer (1994) proposed a solenoidal capture system.

Low-energy π 's collected from side of long, thin cylindrical target.

Collects both signs of π 's and μ 's,

 \Rightarrow Shorter data runs (with magnetic detector). $\frac{1}{2}$

Solenoid coils can be some distance from proton beam.

 \Rightarrow 24-year life against radiation damage at 4 MW.

Liquid mercury jet target replaced every pulse.

Proton beam readily tilted with respect to magnetic axis.

 \Rightarrow Beam dump (mercury pool) out of the way of secondary π 's and μ 's.

Solenoid Capture System for a Superbeam

Pions produced on axis inside the (uniform) solenoid have zero canonical angular momentum, = $r(P_{\varphi} + eA_{\varphi} / c) = 0$, $\Rightarrow P_{\varphi} = 0$ on exiting the solenoid.

· If the pion has made exactly 1/2 turn on its helix when it reaches the end of the solenoid, then its initial P_r has been rotated into a pure $P_{\varphi}, \Rightarrow P_{\rm r} = 0$ on exiting the solenoid.

 \Rightarrow Point-to-parallel focusing for $P_{\pi} = eBd \, / \, (2n \, + 1) \, \pi c.$

⇒Narrowband (less background) neutrino beams of energies

$$E_{\nu} \approx \frac{P_{\pi}}{2} = \frac{eBd}{(2n+1)2\pi c}.$$

 \Rightarrow Can study several neutrino oscillation peaks at once,

$$\frac{1.27M_{23}^{2}[\text{eV}^{2}] L[\text{km}]}{E_{\nu}[\text{GeV}]} = \frac{(2n+1)\pi}{2}.$$

(Marciano, hep-ph/0108181)

(KTM, physics/0312022)

Study both ν and $\overline{\nu}$ at the same time.

- \Rightarrow Detector must tell ν from $\overline{\nu}$.
- ⇒ Liquid argon TPC that can identify slow protons:

$$v n \rightarrow p e^{-}X$$
 vs. $\overline{v} p \rightarrow n e^{+}X$

Simulation of Solenoid Horn

(H. Kirk and R. Palmer, NuFACT06)

B vs. z for 3 + 30 m solenoid:

3-m solenoid gives 2 narrow peaks in v spectrum:

 $\label{eq:problem} \mathbb{I}\,P_{\mathbb{Z}} \text{minimized at selected}\,P_{\text{tot:}}$

3+30-m solenoid broadens the higher energy peak:

Results very encouraging, but comparison with toroid horn needs confirmation.

CERN MERIT Experiment (Park, BNL)

0.4 B=0TB=10T0.3 Disruption length 0.2 20 25 15 30 Number of protons (Tp)

Proof-of-principle demonstration of a mercury jet target in a strong magnetic field, with proton bunches of intensity equivalent to a 4 MW beam.

Jet disruption suppressed (but not eliminated by high magnetic field.

Particle production remains nominal for several hundred µs after first proton bunch of a train.

SNS 3-MW Target Option (Rennich, ORNL)

30 rpm with 20-Hz pulse frequency and 1-ms pulse length, 7-cm diameter. Water cooled by 10-gpm total flow.

Design life: 3 years.

Pelletized Target Option for ISIS (Davenne, RAL)

U Target for 0.5-MW e Beam (Bricault, TRIUMF)

Hg Cavitation Simulations (Samulyak, BNL)

"Transparent mercury": Exterior view: **15** μ**s 45** μ**s** 30 μs

Damage by Mercury Droplets (Davenne, RAL)

A 3-mm-diameter mercury droplet impacting a stainless steel plate at 75 m/s is predicted to cause significant damage.

Ti-6Al-4V is predicted to be more resistant to damage due to higher ultimate strength and shear strength.

Model: A drop of radius r and density ρ vith velocity ν causes pressure $P = F / A \sim (\Delta p / \Delta t) / \pi r^2 \sim [2 m \nu / (r/\nu)] / \pi r^2 \sim 8 \pi r^3 \rho \nu^2 / 3 \pi r^3$, $\Rightarrow P \sim 8 \rho \nu^2 / 3$ independent of the radius!

Example: $\rho_{\text{mercury}} = 13.6e3$, $v = 100 \, \text{m/s} \Rightarrow P \sim 325 \, \text{MPa} \sim \text{tensile strength of steel}$.

The velocity of an atom of mercury vapor at room temperature is 200 m/s.

Material Irradiation Studies (Simos, BNL)

BNL BLP Studies: Tantalum (0.25 dpa):

Water-cooled/Edge-cooled TRIUMF target (10²² p/cm²):

BNL BLP Studies: Carbon (0.25 dpa):

AP-O Target Test Facility (Hurh, FNAL)

- A future, limited, Target Test Facility is still possible at FNAL using the AP-0 (p-bar source) Target Hall after Collider Run II (2010).
- Possible beam parameter ranges: 8-120 GeV, 0-4e13 ppp (1.7e14, Project X), up to 700 kW (ANU) or 2.3 MW (Project X), sigma down to 0.12 mm.
- Parasitic running with Minerva, Minos, & NOvA required. This may practically limit testing to pulse testing rather than irradiation studies.
- Need proposals for specific experiments (talk to P. Hurh or A. Leveling).
- Act soon; Current plan is to De-commission!

Next Oxford-Princeton Target Workshop

April 2009 in Oxford

