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A Mission 7@(

TcEe’r:

e Maximum production of u* of energies ~ 100-400 MeV from a 4-MW proton beam
(E ~ 8 GeV).

« Both signs needed simultaneously at a Muon Collider.

Absorbers:
« Absorb the 4-MW beam power inside the target system.
« Absorb muon energy as a step in the process of ionization cooling.

Overview
Target:
* Free liquid-metal-jet target inside a high-field superconducting solenoid magnet
« Backup (not actively considered): solid target in toroidal horn; 2 needed for Muon Collider.

Absorbers:

e Absorb primary proton beam in liquid-metal pool.

« Absorb secondary particles in He-gas-cooled tungsten beads - inside solenoid magnets.

« Low-Z solid/liquid muon absorbers under study in MICE (D. Kaplan)

* High-pressure H,-gas absorbers under study by Muons Inc (H. Kirk, K. Yonehara poster).
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In the IDS-NF costing scenario, the Target Syls‘rem includes the production target and the magnetized pion-decay channel.

This system is about 50 m long.

A very preliminary cost estimate now exists (slide 5).
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Target and Capture Topology: Solenoid ¥
Desire ~ 10'* x/s from ~ 10 p/s (~ 4 MW proton beam)

upercond

Progra®

ucting magnets

R.B. Palmer (BNL, 1994) proposed a

20-T solenoidal capture system.  Present Target Concept
Tungsten beads, __

He-gas cooled . =7

Low-energy n's collected from side of
long, thin cylindrical target.

Solenoid coils can be some distance
from proton beam.

= > 10-year life against radiation
damage at 4 MW.

Liquid mercury jet target replaced
every pulse.

Proton beam readily tilted with respect
to magnetic axis.

Shielding of the superconducting magnets

= Beam dump (mercury pool) out of from radiation is a major issue.
the way of secondary n's and p's. Magnet stored energy ~ 3 GJ!

5-T copper magnhet insert; 10-T Nb;Sn coil + 5-T NbTi outsert.
Desirable to eliminate the copper magnet (or replace by a 20-T HTS insert).
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From A. Kurup's IDS-NF Costing Talk

m Target Module (= Mercury Module)

m Magnets

= Magnet Shielding

® Remote Handling and
Hot Cells

M Buildings, tunnels and

Target System Cost Breakdown  Infrastructure
m Other

Neutrino Factory Cost Breakdown s

[See Backup Slides for
supporting details.]

Proton Driver
Target, Capture and
Decay

Muon Front-End

Muon Acceleration

Decay Ring
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Targetry Activities

Prograc®

1. Simulation of beam-jet interaction in a magnetic field (R. Samulak, T. Guo).

2. Simulation of turbulent flow inside, and out of, the nozzle (F. Ladiende, V.
Zhan).

3. Simulation of particle production vs. beam & target parameters (X. Ding).

Simulation of the effect of the magnetic configuration on particle production
(H. Sayed).

Simulation of secondary-energy deposition in the target system (N. Souchlas).
Design of the magnets and shielding for the target system (R.J. Weggel).
Design of the mercury-handling system (V.B. Graves).

Coordination of the above, and interface with other MC/NF Systems (J.S. Berg,
H.G. Kirk, K.T. McDonald).

+

® N o O

The above activities are projected to continue well beyond FY15.

Past activities included a proof-of-principle demonstration of a free mercury jet in
a 15-T magnetic field in an intense proton beam (CERN MERIT experiment).
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The MERIT experiment established proof-of-principle of a free mercury jet target ina
strong magnetic field, with proton bunches of intensity equivalent to a 4 MW beam.

- The magnetic field stabilizes the liquid metal jet and reduces disruption by the
beam.

* The length of disruption is less than the length of the beam-target interaction,
= Feasible to have a new target every beam pulse with a modest velocity jet.

- Velocity of droplets ejected by the beam is low enough to avoid materials damage.

* The threshold for disruption is a few x 10!2 protons, permitting disruption-free
operation at high power if can use a high-rep-rate beam.

- Even with disruption, the target remains fully useful for secondary particle
production for = 300 pus, permitting use of short bunch trains at high power.

* No apparent damage to stainless-steel wall only 1 cm from interaction region.

[See Backup Slides for additional details.]
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Simulation of Beam-Jet Interaction in a Magnetic Field o }(’(
(R. Samulyak, T. Guo, SUNY Stony Brook) T¢

Prograt®

FronTier simulation of high-speed-jet cavitation and breakup:

Simulation of mercury thimble experiments
Smoothed-Particle-Hydrodynamics (2001) using the Lagrangian particle code:

simulation of MERIT beam-jet interaction:

@l
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Simulation of Turbulent Flow in the Nozzle
(F. Ladiende, Y. Zhan, SUNY Stony Brook)

Progra®

Issue in MERIT: Free jet took on elliptical FLUENT simulations indicate that if no
cross section, major axis vertical.

perturbations inside the pipe, the flow out
of the nozzle would be nearly axisymmetric.
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(X. Ding)

Simulation of Particle Production vs. Beam & Target Parameters
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Vary: beam energy, beam radius, beam angle,

Normalized Distribution
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Effect of the Magnetic Configuration on Particle Production @7&{
(H. Sayed)

Prograc®

The magnetic field of the target system varies from B, at the target to B; at the front end,
over distance z,.

Vary B;, B; and z,,,.

Results: Better production if
B., B;and z,,4 are larger. 0.42 g g g g ! ! !

. 0.41
Present baseline:

B=20T,B=15T,2,4=1500em. — .|

Could reduce B;from 20 0 15 T
if compensate with larger B; and z,,.

0.39 -
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[Reduce cost, and simplify the mercury

target module.] T
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Secondary-Energy Deposition in the Target System ¢
(N. Souchlas + J.Back) B
fogra
Practical lifetime of superconducting coils (insulation) against radiation damage is ~ 10 MGray = 104 J/q.
For a lifetime of 10 “years" of 107 s each, the peak rate of energy deposition would be 104 J/g / 108 s
=104 W/g = 0.1 mW/g (= 1 MGray/year of 107 s).
Use MARS15 (Souchlas) [and Fluka (Back)] to simulate energy deposition.
—=W.ith shielding, most energy deposition in the SC magnets is due to 1-100 MeV neutrons.
—Dense shield most effective. We now consider He-gas-cooled W beads.
—Present baseline is R,yter shield = Rinner magnet = 120 cm.
~ 500 kW of power (mostly scattered protons) leaves target system and enters the front end.
Deposited Power (MGray/year)
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Ui (R.J. Weggel)
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Design of the Magnets and Shielding for the Target System * % ?

Prograc®

Evolution of coil design to permit gaps for services cable-in- condun‘r conductor, as in ITER Central Solenoid

to the internal He-gas-cooled W-bead shielding:

IncoloymAlloy@08tConduitl

3 6J stored magnetic energy
(6 G6J in ITER Central Solenoid;
' \ 3 6J in LHC octant)

Vessel sag [mm]

Shield mass ~ 200 tons,

On-axis field [T]

— Sag when cantilevered.
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Design of the Mercury-Handling System é" % by
(V.B. Graves)

L—— Superconducting magnet

Outer shielding module

Inner shielding module

. Mercury target module —

Double containment
Mercury vessel

Mercury/He-gas services at -
upstream end of mercury module —

Magnet/shielding/mercury
modules weigh ~ 200 tons

Splash mitigator in mercury collection pool
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Targetry Effort in FY12-15 7@{

Prograc®

Targetry activities in FY13-15 will continue the engineering design studies listed on slide 6.

Beyond FY15: Similar level of effort, with addition of hardware studies of mercury-pool splash issues.
FTEs
Fy12 FY13 FY14 FY15

H. Kirk (Admin) 0.7 0.7 0.7 0.7
J.S. Berg (Admin.) 0.1 0.1 0.1 0.1
H. Sayed (Particle production) 1 1 1 1
K.T.M (Admin.) 0 0.1 0.1 0.1
X. Ding (Particle production) 0.4 0.4 0.4 0.4
Samulyak Grad. (Beam/jet interaction) 1 1 1 1
Ladeinde Grad. (Nozzle hydrodynamics) 1 1 1 1
V. Graves (Mercury system) 0.15 0.3 0.3 0.3
N. Souchlas (Energy deposition) 0.5 0.5 0.5 0.5
B. Weggel (Magnet/shielding) 0.3 0.3 0.3 0.3
Total FTEs 5.15 5.25 5.25 5.25

M4&S (FY12 k$)

BNL Travel 25 25 25 25
Princeton Travel 8.5 8.5 8.5 8.5
Total M&S 335 335 335 335
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Extract from A.

Kurup's Sheet TCDCostSummary.xlsx

aAccels,
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Prograc®

Name

Target Module

Magnets

Magnet Shielding

Quench Protection System
Vacuum

Cryogenics

Diagnostics

Controls and Interlocks

Health and Safety

Mechanical

Decommissioning

Remote Handling and Hot Cells
Buildings, tunnels and Infrastructure

Total

Total Cost (| Comments

HaHHiatt - Scaled from SNS
BHH##H#R  Estimated by Bob Weggel
" uHHH#HE  Estimated by Bob Weggel

Hit##t#tst | Scaled from LBNE
" pussusts  Scaled from LBNE

#iH#H### USD
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Target Module Costs Scaled from SNS (ORNL)

1.06 - Target Systems

116,396,901

1.06.01 - Target Assemblies

14,402,190

1.06.02 - Moderator Systems

8,661,901

1.06.03 - Reflector Assemblies

7,900,655

1.06.04 - Vessel Systems

11,848,901

1.06.05 - Target Station Shielding

13,405,475

1 Nk N
P VO U0 - |r1||n—| llIIlIIV 1V\n—-|n'~s

AN 723N Noo FLOH
LU, IV JUTTD CONTROL

1.06.07 - Remote Handling Systems

14,348,362

1.06.08 - Controls

3,076,899

1.06.09 - Beam Dumps

3,066,529

1.06.10 - Technical Support

12,896,977

1.06.11 - ORNL Field Coordination

16,058,914

SNS/JINS Mercury target .

Mercury-loop utilities

Mercury pump
(PM pump)

Heat exchanger
600 kw
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3z Magnet and Shielding Costing by Bob Weggel

Prograc®

20-T, 120-cm-1.R. Target Magnets with Large Axial Gaps at 4, 10, 15 &20 m

Bob Weggel, Magnet Optimization Research Engineering, LLC
3/22/2012

e s | | e
"—I U s | | |

Target Magnet IDS120j: three solenoids per cryostat; large axial gaps at z=4, 10, 15 & 20 m [drawing courtesy Van Graves]. Target Magnet IDS120k is
very similar, but the outboard solenoids in all cryostats except the first are of optimized (larger) inner radius, to improve field profile. U=3.34 GJ.
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Selected Parameters of Target Magnet IDS120k Tg((
Prograc®
1247 kA 0.1 meters ALelec 1724 pQcmat20°C 7.0 nQcm/deg 100 °CTo 40.0 atmospheres AP 0.10m ALy
Coil designation Units Cul Cu2 Cu3l Cu4d Cub SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 SC9 SC10 SC11 sC12
SSt shell thickness cm 0255 0325 0183 0160 0.145
Current density jAcoi kAlcm?  5.00 2.201 2.074 1412 1.204 1.059 1.931 2176  2.673 3346 4122 4072 4503 4.666 4.645 4645 4645  4.645
Coil length cm 100.2 1236 2072 2120 2156 3523 77.78 4520 3123 2554 15.45 13.00 3413 10.96 1412 320.3 14.12
Gap between coils cm 0.00 8730 1486 7428 8320 1050 3731 2789 70.76 3971 3971  72.00
Upstream end cm -876  -111.0 -121.0 -1258 -1295 -2409 1114 2765 4702 5757 9143 1035 1085 1454 1536 1590 1950
Downstream end cm 12.6 12.6 86.2 86.2 86.2 111.4 189.2 3217 5015 8311 9298 1048 1426 1465 1550 1910 1964
Inner radius cm 1834  23.85 2958  36.21 4330 120.0 120.0 120.0 1200  89.65 1183  72.36 69.92 69.94 7188 50.08 71.88
Radial depth of conductor cm 4760 4903 5943 6435 6861 7583 6434 7583 55.63  4.155 52.02 14.55 2.456 16.45 1812 2334 18.12
Outer radius cm 2310 2876 3552 4264 5016 1958 1843 1958 1756 9381 1703 8691 7238 86.39 90.00 5242  90.00
Volume, inc. SSt shell m3 3993 0.066 0108 0260 0.347 0444 2651 4.79 3.40 1.61 0.61 0.73 0.09 0.37 0.09 0.13 0.24 0.13
Maximum on-axis field T 20.22 19.01 17.89 16.88 15.97 15.13 1354 8.29 477 3.58 2.17 1.90 177 153
SCy, MPa & fr. 6.00 none 0 0.093 0.070  0.029 0.018  0.017 0.011 0.011 0011 0010 0.010 0.010 0.010
Cuy, MPa & fr. 8.95 100 0 0550 0550 0550 0550 0550 0.154 0174 0214 0268 0330 0326 0360 0373 0372 0372 0372 0372
SSty, MPa & fr. 7.80 700 700 0.051 0062 0030 0024 0.021 0521 049 043 0313 0159 0174 008 0.056 0.061 0061 0.061 0.061
SStem & SC M$ 30M $87.5 0000 0256 0326 0183 0160 0.145 $742 $100 $29 $176 $062 $049 $006 $.025 $.005 $008 $.014  $.008
Coil tons $/m3 6.50 2244 0356  0.583 1.382 1835 2344 159.0  27.92 18.07 7.80 2.56 3.12 0.37 141 0.34 0.49 0.92 0.49
M$@3$400/kg 040  $2.60  $89.8 4 4 4 4 4 paths/layer
Magnet MW or MA-m 11.26 86.49 1.53 2.28 2.58 2.46 241 5119 1041 9.09 5.40 2.52 297 0.43 1.75 0.41 0.60 1.12 0.60

Coil dimensions are in rows 3 through 11. Anticipated for the complete magnet, but not tabulated above, are an additional seven sets of three sole-
noids each that repeat solenoids SC #10, SC #11 and SC #12 at multiples of 5 m, to a distance z = 50 m. The cost estimates in the columns with first-row
entries “kA” and “0.1” include solenoids to z =20 m.

The cost of each solenoid is based on its mass of superconductor (if any), copper, stainless steel and insulation. The assumed unit cost of fabricated
NbsSn (SC #1-#3) is 30 MS/m?>; that of NbTi (SC #4 and up) is $X M$/m>. The assumed cost of copper, stainless steel and insulation is $X/kg. Costs of
cryostats, shielding vessels, shielding and other components have yet to be estimated.

The estimated cost of the resistive magnet is 6.50 metric tonnes x $X/kg = SY M. The cost of SC#1 is the sum of two components: superconducting
and non-superconducting. The non-superconducting cost is 159.0 tonnes x $X/kg = Y MS. The cost attributed to the superconductor is 26.51 m® x 0.093
x Y M$/m? = Z MS, for a total of $X. MS.

The non-superconducting unit cost of $X/kg compares to the SY/kg reported for resistive magnets at the National High Magnetic Field Laboratory
(NHMFL) at Tallahassee, Florida. The superconducting unit cost of Z M$/m?® approximately doubles the non-superconducting unit cost a superconduct-
ing magnet. The average unit cost for all the superconducting magnets is X M$ / 224.4 tonnes = $Y/kg. This compares with the$Z/kg reported for su-
perconducting and hybrid magnets at the NHMFL.

Weggel's cost estimate agrees to within 2% with the Green-Strauss algorithm (A. Bross).
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Target Hall

A major cost driver will be
civil construction and

shielding.

LBNE 2-MW target station — = -

~ $175m

| S A
Crude sketch to start IDS-NF || e/

costing AN
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i
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EO1T1 - M0 EXTRAGTION (SHALLOW CONGEPT)
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N

Hot cell operations (?)

Magnet power Cryogenics He loop
suppiies

Water cooling

Hotcell (?)

\ Quench protection
y, R v,

Proton beam———

Magnet assembly area, and hot storage (?)

Staging area

Vertical shaft (?)
or horizontal access (?)

L

205000

LApproxrm ate location of final focys gdag”

90.0000

Concrete sh eldng assumed o be 5 m thick, => floor also 5 m thick, and 5 m shie ang above the beamiine

200 ton bndge crane, hook height ~ 10m, => building height ~ 15m
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LBNE Target Hall Concept T'C}(’(
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LBNE 20 — TARGET COMPLEX 7@{
Site Plan
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LBNE 20 — Target Complex
o Target Hall, Support Rooms, Service Rooms
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Power Supply Room, RAW Room, Air Handling Room,
Truck Bay, 2 Story Mechanical Wing
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The NF Target System Hall is equivalent in many ways to the LBNE Decay Pipe.
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Decay Pipe Cross Section
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LBNE CD-1 Director's Review -

26-30 March 2012
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We may need concrete shielding ~ 5.5 m thick around the entire target system.
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Decay Pipe Air Cooling Ducting at Target Hall

Prograt®

5.5m RADIATION ZONE
_—(MIN. CONCRETE SHIELDING

AIR RETURN FROM
DECAY PIPE AIR RETURN FROM

END 1.3m x 3.6m RETURN AIR DUCT
WEBS ENCASED IN 3' FEET OF
1.3m x 1.8m SUPPLY AIR DUCT CONCRETE (NOT SHOWN)
ENCASED IN 3' FEET OF
CONCRETE (NOT SHOWN) TO AIR HANDLING
ROOM
LBNE CD-1 Director's Review - 26-30 March 2012

We must have an activated-air-handling system for the Target System Hall.
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Proof-of-principle demonstration of a
mercury jet target in a strong
magnetic field, with proton
bunches of intensity equivalent to
a 4-MW beam.

Performed in the TT2A/TT2 tunnels
at CERN, Nov. 2007.

SO 11.05.2005 - dimensions not propodional 1o machines red sires [ from A8 complex cdr
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Disruption Length Analysis (H. Park, PhD Thesis)

Observe jet at viewport 3 at 500 frames/sec, 0T !
measure total length of disruption 0.4- 10T 2G|
of the mercury jet by the proton beam. . 5T v B=I5T, 24GeV/]

Images for 10 Tp, 24 GeV,10 T: dibyry

: ' ——B=5F eV

Before ' M/

e ] C ]
1
L

. urves are global fits

0 1 2 3 4 5 6 7 8 9
Total energy deposition (10° J)

Disruption length never longer than region of overlap of jet with proton
beam.

No disruption for pulses of <2 Tpin0O T (<4 Tpin 10 T).
Disruption length shorter at higher magnetic field.

o
w
1

o
N
1

o
=
|

Disruption length (m)

O
o
1
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Measure position of tip of filament in each

i
e oF - L B
T A R - e

&

180 '
B=5T.24GeV  Curves| are global fi

| ®
. — | A B=10T,24GeV
1f4r(;am|e: Ia':‘d If':" for' 1.-V anld V . é 160 | w B=15T24Gev s T
. O B=5T,14GeV
Slope « velocity = 1404 A gorot 1acev 10T
é‘ |——Fit,B=0T
120 - S 1201 Figg=sT 0T
S 100 Fgposst
> |—Fit,B=
100 - i 4= Fit,B=20T 15T
S 80{——FitB=25T
e E g
= 3 60- 20 T
A 80- _ T | Y
: . 40+ N | 20T
v = Time at x -
604 which filament . S 20- W
| is first visible ol B/% T4 MW,50Hzy
ol 0 25 50 75 100 125 150
-50 0 50 100 150 200 250 300 350 400 Peak energy deposition (J/g)
Time (19)| Filament velocity suppressed by high magnetic field.
Filament start time >> transit time of sound across the jet.
— New transient state of matter???
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? Pump-Probe Studies 7,

? Is pion production reduced during later bunches due to disruption of the mercury jet by the earlier
bunches?

At 14 GeV, the CERN PS could extract several bunches during one furn (pump), and then the remaining
bunches at a later time (probe).

Pion production was monitored for both target-in and target-out events by a set of diamond diode
detectors. - -

PUMP: 12 bunches,
12 x10'? protons

PROBE: 4 bunches,

><1O12 protons Single—‘rur'n extraction 4-Tp pr-obe extracted on 4-Tp probe extracted

= O delay, 8 Tp next turn = 3.2 ys delay  after 2nd full turn
Ratio Target In-Out/Target Out = 5.8 HS Delay
1.2
. Results consistent with
e, ) 1 no loss of pion
Probe,, e in-Probe e [ € 1 || ’ | production for bunch
i et delays of 40 and 350
Ratio = PUMPiarget i =P UMPrarge 09 | ; us, and a 5% loss (2.5-
PrObetarget out o) €ff€CT) of pion
Pump 0.8 ' ' ' : production for bunches
target out 0 200 400 600 800 1000 delayed by 700 ps.

Delay Time, usec
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