The High-Power-Target System of a Neutrino Factory

K. McDonald *Princeton U.* (April 6, 2013) 10th IDS-NF Plenary Meeting *Rutherford Appleton Laboratory*

KT McDonald

IDS-NF Plenary Meeting (RAL)

Apr 6, 2013

The Target System of a Muon-Collider or Neutrino Factory

Target and Capture Topology: Solenoid

 \Rightarrow Beam dump (mercury pool) out of the way of secondary π 's and μ 's.

KT McDonald

Shielding of the superconducting magnets from radiation is a major issue. Magnet stored energy ~ 3 GJ!

Apr 6, 2013

5-T copper magnet insert; 15-T Nb₃Sn coil + 5-T NbTi outsert. Desirable to replace the copper magnet by a 20-T HTC insert.

IDS-NF Plenary Meeting (RAL)

Proton Beam Energy	8 GeV
Rep Rate	50 Hz
Bunch Structure	3 bunches, 240 µsec total
Bunch Width	2 ± 1 ns
Beam Radius	1.2 mm (rms)
Beam β [*]	≥ 30 cm
ϵ_{\perp}	\leq 5 (π) μ m
Beam Power	4 MW (3.125 \times 10 ¹⁵ protons/sec)

http://www.hep.princeton.edu/~mcdonald/mumu/target/hkirk/hkirk_101811.pdf IDS Plenary Meeting, Oct. 18, 2011

Harold G. Kirk

Target type	Free mercury jet			
Jet diameter	8 mm			
Jet velocity	20 m/s			
Jet/Solenoid Axis Angle	96 mrad			
Proton Beam/Solenoid Axis Angle	96 mrad			
Proton Beam/Jet Angle	27 mrad			
Capture Solenoid Field Strength	20 T			

Jet/Solenoid/Proton-Beam Geometry

All "useful" pions for the Neutrino Factory produced at z < 0, \Rightarrow Center of beam-jet interaction is at z = -37.5 cm.

IDS-NF Plenary Meeting (RAL)

6

Apr 6, 2013

Optimization of Pion Production via MARS1512

Proton Beam Emittance and β^*

IDS-NF Plenary Meeting (RAL)

Proton Beam Final Focus with β^* of 0.65 m

Final focus consists of 4 room-temperature quads.

KT McDonald

J. Pasternak, Aug 7, 2012 http://www.hep.princeton.edu/~mcdonald/mumu/target/Pasternak/pasternak_080712.pdf

IDS-NF Plenary Meeting (RAL)

Mercury Target Module with Beam Dump/Collection Pool

Baseline: Mercury target module (double containment vessel) is surrounded by the 5-T copper magnet (all within the 15-T SC magnet. [Difficult to build.]

10

Alternative concept has no 5-T copper magnet (only 15-T magnet.

Both concept incorporate a Mercury-collection pool as beam dump.

Splash mitigation a remaining challenge.

KT McDonald

IDS-NF Plenary Meeting (RAL)

Apr 6, 2013

20-T Field on Target "Tapers" in 15 m to 1.5 T in Decay Channel

KT McDonald

The taper exchanges longitudinal and transverse phase space. May be advantageous to use shorter taper, and higher field in decay channel.

Arogram

11

Apr 6, 2013

IDS-NF Plenary Meeting (RAL)

Radiation Damage to Nb Superconductor

The ITER project quotes the lifetime radiation dose to the superconducting magnets as 10²² n/m² for reactor neutrons with E > 0.1 MeV. This is also 10^7 Gray = 10^4 J/g accumulated energy deposition. For a lifetime of 10 "years" of 10^7 s each, the peak rate of energy deposition would be 10^4 J/g / 10^8 s $= 10^{-4} W/g = 0.1 mW/g (= 1 MGray/year of 10^7 s).$

The ITER Design Requirements document, <u>http://puhep1.princeton.edu/~mcdonald/examples/magnets/iter_fdr_DRG1.pdf</u> reports this as 1 mW/cm³ of peak energy deposition (which seems to imply $\rho_{\text{magnet}} \approx 10 \text{ g/cm}^3$).

	Parameters	Unit	Н	DT	TBA		
	Local nuclear heat in the conductor	kW/m ³	0	1			
	Local nuclear heat in the case and structures	kW/m ³	0	2			
	Peak radiation dose to coil insulator	Gray	0	10×10^6			
	Total neutron flux to coil insulator	N/m ²	0	10 ²²			
	Total nuclear heat in the magnets	kW	Se	e Table 1.	15-5		
Damage to Nb-base	ed superconductors appears to	^{1.2}	//				
become significant	at doses of $2-3 \times 10^{22} \ n/m^2$:	1			<u> </u>	<u> </u>	
A. Nishimura <i>et al.</i> , Fu http://puhep1.princeton.edu/	u <mark>sion Eng. & Design 84</mark> , 1425 (2009) ~mcdonald/examples/magnets/nishimura fed 84 1425 0'	9 0.8	-	-0-0		^	-
Reviews of these c	onsiderations for ITER:	_ ^S	0	T _{C0} (K) Nb ₃ Ge, 20.6			
J.H. Schultz, IEEE Symp. Fusion Eng. 423 (2003) http://puhep1.princeton.edu/~mcdonald/examples/magnets/schultz_ieeesfe_423_03.pd		0.6		Nb ₃ Al, 18.5 Nb ₃ Pt, 10.5 Nb ₅ Sn, 18.2	$\sum_{\alpha} \langle \gamma \rangle$	þ	-
http://puhep1.princeton.edu/~mcdonald/examples/magnets/schultz_cern_032205.pdf		0.4		Nb ₃ Ga, 20.2 Mo ₃ Os, 12.8	× C		-
Reducti	ion of critical current of various Nb-based	0.2		V ₃ Si, 16.9 Nb ₃ Sn, 17.7 (Nb ₃ Sn, 16.6 (Bronze) in situ)		

IDS-NF Plenary Meeting (RAL)

Table 1.17-1 Maximum Nuclear Load Limits to the Magnet

KT McDonald

Conductors as a function of reactor neutron fluence. 0 1020 10^{21} From Nishimura et al.

 10^{22}

Neutron fluence (n/m^2)

 10^{23}

Apr 6, 2013

 10^{24}

High Levels of Energy Deposition in the Target System

(J. Back, N. Souchlas)

Power deposition in the superconducting magnets and the He-gas-cooled tungsten shield inside them, according to a FLUKA simulation.

Approximately 2.4 MW must be dissipated in the shield.

Some 800 kW flows out of the target system into the downstream beam-transport elements.

Total energy deposition in the target magnet string is ~ 1 kW @ 4k. Peak energy deposition is

about 0.03 mW/g.

IDS-NF Plenary Meeting (RAL)

Shielding of the Superconducting Solenoids Drives the Design

MARS15 simulations (with MCNP data for very low particle energies) indicate that use of He-gas-cooled, tungsten-bead shielding

- \Rightarrow Inner radius of the 15-T solenoid around the target must be 120 cm;
- \Rightarrow Stored energy in target magnet system ~ 3 GJ (same as LHC octant).
- \Rightarrow Target-magnet module weighs ~ 200 tons \Rightarrow Need big crane for assembly.

Of the 4-MW proton beam power, some 500 kW continues down the 30-cm-radius beam pipe beyond z = 15 m (= end of taper); mostly in the form of GeV scattered protons.

This energy would eventually be deposited in the rf cavities and low-Z absorbers of the cooling section, if not removed earlier.

A chicane + proton absorber in the decay channel (15 < z < 60 m) will mitigate this issue.

RDR Readiness

Blue = "ready", Red = "not so ready"

Target System Overview (-3 < z < 65 m, including "chicane") Alternatives: Ga or C targets; shorter taper; 15-T peak field; 2-2.5/T min field Particle Production Simulations Beam-Jet Interaction (data from MERIT expt. + simulations) Energy Deposition simulations for 0 < z < 15 m Energy Deposition simulations for 15 < z < 65 m Magnet configuration for 0 < z < 15 m Magnet configuration for 15 < z < 65 m Mercury handling system Magnet power supplies Cooling systems Civil engineering Utilities Safety

