Stresses and Deformations in Outer & Inner Shielding Vessels of IDS120

Bob Weggel, M.O.R.E., LLC December 5, 2011

Fig. 1: Cross section of resistive coils, superconducting coils, shielding vessels and shielding. Vessels start at -3 meters (upstream) and end at +3 meters (downstream). Outer vessel: $r_{max} = 1.14$ m; $r_{min} = 0.60$ m; inner vessel: $r_{max} \approx 0.56$ m; $r_{min} = 0.076$ m. Thickness of vessel walls: outer walls = 4 cm; inner walls = 2 cm. Water pressure = (100 - y) kPa. Density of water-buoyed shielding = 9 g/cm³.

Fig. 2: Isometric view of coils & shielding vessels of Fig. 1. Shading of coils & shielding omitted for clarity.

Sag of Coaxial-Tube Beam: 1.14-m r_{max} , 0.60-m r_{min} ; Tubes = 7.85 g/cm³; Annulus = 10 g/cm³

Fig. 3: Sag of outer shielding vessel of Fig. 1, as modeled by beam consisting of two coaxial tubes. Outer tube: $r_{max} = 114$ cm; $t_{wall} = 4$ cm; inner tube: $r_{min} = 60$ cm; $t_{wall} = 2$ cm. Young's modulus of tubes = 200 GPa; tube density = 7.85 g/cm³; density of shielding+water in annulus = 10 g/cm³; support condition: cantilevered from upstream end; loading condition: total load (= weight of tubes, water and shielding) distributed uniformly over entire length.

Sag of Coaxial Tubes: 0.58-m $r_{max}^{},$ 0.16-m $r_{min}^{};$ Point-loaded at z=(L+3)/2

Fig. 4: Sag of inner shielding vessel of Fig. 1, as modeled by beam consisting of two coaxial tubes. Outer tube: $r_{max} = 58$ cm; $t_{wall} = 4$ cm; inner tube: $r_{min.} = 16$ cm; $t_{wall} = 2$ cm. Young's modulus of tubes = 200 GPa; tube density = 7.85g/cm³; density of shielding+water in annulus = 10 g/cm³; support

= 200 GPa; tube density = 7.85g/cm²; density of shielding+water in annulus = 10 g/cm²; support condition: cantilevered from upstream end; loading condition: total load (= weight of tubes, water and shielding) applied at z = (L+3)/2.

Fig. 5: Meshing of shielding vessels of Fig. 1, with mapped mesh (blue) to improve accuracy where stresses change most rapidly.

Fig. 6: Von Mises stress σ_{vM} in outer shielding vessel of Fig. 1 (overall length = 6 meters); maximum $\sigma_{vM} = 33$ MPa.

Fig. 7: Deformation δ in outer shielding vessel of Fig. 1 (overall length = 6 m); $\delta_{max} = 1.45$ mm.

Fig. 8: Von Mises stress in inner shielding vessel of Fig. 1 (overall length = 6 meters); maximum $\sigma_{vM} = 27$ MPa.

Fig. 9: Deformation δ in inner shielding vessel of Fig. 1 (overall length = 6 m); $\delta_{max} = 2.05$ mm.

Fig. 10: Von Mises stress σ_{vM} in outer shielding vessel such as in Fig. 1, but 3 meters longer (i.e., overall length = 9 meters, ~0.4 m longer than in Magnet IDS120h); maximum σ_{vM} = 73 MPa.

Fig. 11: Deformation δ in outer shielding vessel such as in Fig. 1, but 3 meters longer (i.e., overall length = 9 meters, ~0.4 m longer than in Magnet IDS120h); $\delta_{max} = 6.4$ mm.

Fig. 12: Von Mises stress in inner shielding vessel such as in Fig. 1, but 2 meters longer (i.e., overall length = 8 m, ~0.6 m shorter than in Magnet IDS120h); maximum σ_{vM} = 56 MPa.

Fig. 13: Deformation δ in inner shielding vessel such as in Fig. 1, but 2 meters longer (i.e., overall length = 8 m, ~0.6 m shorter than in Magnet IDS120h); δ_{max} = 7.08 mm.