

High Power Hg Target Conceptual Design Review

Hg Jet Nozzle Analysis

M. W. Wendel

Oak Ridge National Laboratory February 7-8, 2005

> OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

An Initial Computational Fluid Dynamic Analysis was completed.

1 cm Hg nozzle at 20 m/s

2 1.9-cm supply lines at 2.8 m/s

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Only the mercury itself was modeled in the simulation.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

The computational mesh consisted of 230,545 hexahedral control volumes.

The computed flow shows smooth streamlines for the inlet lines and reservoir, but extreme conditions near the nozzle inlet.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

The computed pressures show cavitation will occur at the nozzle inlet.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

The computed pressures are particularly low where the flow accelerates around the corners.

A shorter (1/2-inch) orifice was also analyzed

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Computed stream-lines are similar and the total pressure drop is just under 800 psi.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Again, cavitation is predicted, although the conditions are less severe.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Cavitation is highly likely because of the low pressure at the nozzle exit, and the high velocity in the nozzle.

•
$$P_{\text{static}} = P_{\text{stagnation}} - \frac{1}{2} \rho V^2$$

for 20 m/s, $\frac{1}{2} \rho V^2 = 400 \text{ psi}$ for 30 m/s, $\frac{1}{2} \rho V^2 = 900 \text{ psi}$

 $-\rho$ is density

- V is velocity
- If P_{static} < P_{sat}, then mercury will cavitate
- The CFD model is not conservative in predicting cavitation due to the transient aspect of the flow which is not simulated.
- In the SNS Target Test Facility mitered bends, **CFD** results showed much less severe conditions than computed here.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Cavitation in the nozzle is undesirable.

- Short nozzle lifetime
- Choked flow
- Erratic jet flow pattern
- Noise

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Design changes can reduce or eliminate cavitation.

- Redesign the nozzle
 Rounded corners
 Contoured inlet
- Increase the chamber pressure
- Ultimately the nozzle design needs to be tested.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Recommended Future Work

- Analyses on improved nozzle designs
- Literature searches on intake nozzle designs

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

