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Muon Requirements

• ≈ 1014 μ±/s for either a muon collider or a neutrino factory.

• The muons come from the decay of soft pions produced in

p-nucleus collisions.

• Our strategy is to maximize the ratio of captured

muons per proton.

i.e., to minimize the proton requirements.

• Goal: 0.1μ/p delivered for physics use.
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The Muon Source

• Pion production peaks at P‖ ≈ 350 MeV/c; P⊥ <∼ 200 MeV/c.
Mars Meson Production - 16 GeV  p + W
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• ⇒ Capture the soft pions in a solenoid magnet channel.

• Capture efficiency improved with a stronger (20 T) field on the

target than in the main channel (1.25 T). [Adiabatic invariance

reduces the pion P⊥ when going from high to low B.]

• ⇒ High-Z target without nearby cooling structure that would

absorb pions.

• ⇒ Liquid mercury jet target.

• Soft pions have v/c < 1, ⇒ Disperse while drifting

⇒ Begin RF manipulation as soon as possible to form a bunch

with reduced energy spread (Phase Rotation).
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Overview of Targetry for a Muon Collider

• 1.2 × 1014 μ±/s via π-decay from a 4-MW proton beam.

• Proton pulse ≈ 1 ns rms for a muon collider.

• Mercury jet target.

• 20-T capture solenoid followed by a 1.25-T π-decay channel

with phase-rotation via rf (to compress energy of the muon

bunch).
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Targetry Issues

• Is a liquid jet target viable?

– 1-ns beam pulse ⇒ shock heating of target.

– Resulting pressure wave may disperse liquid (or crack solid).

– Damage to target chamber walls?

– Magnetic field will damp effects of pressure wave.

– Eddy currents arise as metal jet enters the capture magnet.

– Jet is retarded and distorted, possibly dispersed.

– Hg jet studied at CERN, but not in beam or magnetic field:
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• Is the first rf cavity viable?

– High-gradient (5 MeV/m), low-frequency (≈ 70 MHz) rf

cavity only 3 m downstream of target.

– > 1014 particles traverse the cavity each proton pulse; many

hit the cavity wall.

– Cavities tested against breakdown from beam-induced

showers only up to ≈ 1012 particles/pulse.

• Is the 20-T Solenoid viable?

– Even with water-cooled tungsten inserts, this hybrid

(copper/superconductor) magnet will experience a very high

radiation dose.

– LANL has experience with superconducting magnets in high

radiation areas.

• Other Radiological Issues

– A 4-MW beam leads to activation issues characteristic of

neutron spallation sources.

– Remote handling of activated liquid target material is under

study at CERN ISOLDE, the ORNL NSNS, ...

6



R&D Goals

Long Term: Provide a facility to test key components of the

front-end of a muon collider in realistic beam conditions.

Near Term (1-2 years): Explore viability of a liquid metal jet

target in intense, short proton pulses and (separately) in strong

magnetic fields.

(Change target technology if encounter severe difficulties.)

Mid Term (3-4 years): Add 20-T magnet to AGS beam tests;

Test 70-MHz rf cavity (+ 1.25-T magnet) downstream of target;

Characterize pion yield.
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An R&D Program for Targetry and Capture

at a Muon Collider Source

A Proposal to the BNL AGS Division (P951)
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hDepartment of Physics and Astronomy, SUNY, Stony Brook, NY 11790

(Submitted Sept. 28, 1998)
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Beam Tests at BNL

The BNL AGS has proton beam parameters closest to those

desirable for a muon collider source.

Parameter Muon BNL FNAL CERN LANSCE

Collider AGS Booster PS PSR

Proton Energy (GeV) 16-24 24 8.9 24 0.8

p/bunch 5 × 1013 1.6 × 1013 6 × 1010 4 × 1012 3 × 1013

No. of bunches 2 6 84 8 1

p/cycle 1 × 1014 1 × 1014 5 × 1012 3 × 1013 3 × 1013

Bunch spacing (ns) ≈ 1000 440 18.9 250 –

Bunch train length (μs) ≈ 1 2.2 1.6 2.0 0.25

RMS Bunch length (ns) ≈ 1 ≈ 10 ≈ 1 ≈ 10 ≈ 60
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The 8 Steps in the R&D Program

1. Simple tests of liquid (Ga-Sn, Hg) and solid (Ni) targets with

AGS Fast Extracted Beam (FEB).

2. Test of liquid jet entering a 20-T magnet (20-MW cw Bitter

magnet at the National High Magnetic Field Laboratory).

3. Test of liquid jet with 1014 ppp via full turn FEB (without

magnet).

4. Add 20-T pulsed magnet (4-MW peak) to liquid jet test with

AGS FEB.

5. Add 70-MHz rf cavity downstream of target in FEB.

6. Surround rf cavity with 1.25-T magnet. At this step we have

all essential features of the source.

7. Characterize pion yield from target + magnet system with slow

extracted beam (SEB).

8. Ongoing simulation of the thermal hydraulics of the liquid-

metal target system.
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Issues, 1: Initial Tests with FEB

• Site presently under consideration: A3 line.

• What beamline upgrades are needed to bring a 100 mm-mrad

beam to a spot with σr = 1 mm? (Kevin Brown)
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• Beamline instrumentation upgrades: spot size, beam current,

FEB radiation monitoring.

• Run first tests parasitic to g − 2 expt. in Mar/Apr 2000.

• Data taking via pulse-on-demand once every few minutes; but

desire 1-Hz running for beam tuning.

• Shielding needed for 1-Hz running with 1014 ppp = 100 TP

(Ripp Bowman, Ralf Prigl).

• First test: liquid metal in a trough, a pipe and in free flow

(Princeton).
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• Instrumentation: high-speed camera,

fiberoptic strain sensors (Duncan Earl, ORNL).
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Issues, 2: Pulsed Liquid Jet

• Inspiration:

• Prototype jet using Ga-Sn, a room temperature liquid

(Princeton).
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• May 18, 1999: Ga-Sn jet breaks up too quickly, forms oxide

scum:

• Hg jet under construction at CERN (Colin Johnson, Helge

Ravn), and at Princeton.
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Issues, 3: Full Turn Extraction

• G10 kicker can deliver beam to A-C lines as well as to U line.

• Present power supply sufficient to kick out only 1 bunch.

• Upgrade to kick out all 6 bunches requires ≈ 18 months.

• Initiate design work in FY99 to complete upgrade in early

FY01.
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Issues, 4: Pulsed 20-T Magnet

• The copper magnet will be cooled by LN2, and can be pulsed

once every 10 minutes. Pulse duration ≈ 1 s.

• Engineer: Bob Weggel, designer: Bob Duffin.

• 4 MW (peak) power to be bussed from the MPS power supply

house to the A3 line (Andy Soukas).

• 100 liters of LN2 boiled off each pulse; vent outside of cave.

• A DC magnet is required as a transition between the pulsed

magnet and the DC superconducting magnet around the rf

cavity. This will require ≈ 1 MW average power.
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Issues, 5: 70-MHz RF Cavity

• Cavity has 60-cm-diameter iris, 2-m outer diameter.

(Werner Pirkl, CERN)

• 4-6 MW peak power to be supplied by four 8973 tubes

recommissioned from the LBL Hilac.

(Vince LoDestro, BNL; Don Howard, LBL)
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• Transmit rf power to the cavity via four 6′′-diameter coax lines.

Couple to upstream face of cavity (to avoid need for power

combiner).

• The tubes and electronics should arrive at BNL early FY00.

• Ideal test site would be just outside A3 cave, close to final

location.

• The 8973 tubes may need magnetic shielding.

• We are also embarking on an R&D program with industry to

develop a 50-MW peak power, 70-MHz power supply

(EEV, Eimac, Litton, Thomson).
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Issues, 6: 1.25-T Solenoid Around RF Cavity

• Present plan: use PEP-4 TPC superconducting solenoid

(Mike Green, LBL).

• Use 100-W LHe refrigerator from E-850.

• Need DC transition magnet to protect the superconducting

magnet from quenching during pulsing of the 20-T magnet

(Bob Weggel).

• Need end plate steel and/or bucking coils to complete the

isolation of the superconducting magnet.

• The magnet fringe fields will extend a considerable distance.
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Issues, 7: Characterization of Pion Yield

• The final measure of system performance is the capture of soft

pions that later decay to muons.

• Add bent solenoid spectrometer downstream of TPC magnet.

• Instrument with low-pressure TPC’s and aerogel Čerenkov

counters.

• Collect data with slow beam, < 106 ppp.

• Compare with extrapolations from data of E-910.
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Issues, 8: Simulation of Beam-Jet-Magnet

• ANSYS simulation (Changguo Lu, Princeton):

• HEIGHTS simulation (Ahmed Hassanein, ANL):
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Pressure and Temperature Profiles
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Effect of a Scaled-Down Target
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Schedule

• FY99:

Prepare A3 area; begin work on liquid jets, extraction upgrade,

magnet systems, and rf systems.

• FY00:

Initial beam tests in A3 line. Liquid jet test at NHMFL.

(600 hours of AGS beamtime).

• FY01:

Complete extraction upgrade; test of liquid jet + beam.

(600 hours).

• FY02:

Complete magnet and rf systems; test with 2 ns beam.

(600 hours).

• FY03:

Complete pion detectors; test with low intensity SEB.

(600 hours).
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AGS Operations Issues

• In FY00/01, HEP operation of AGS is only for the g − 2

experiment, with fast extraction. P951 is very compatible with

parasitic running in this condition.

• After FY01, no DOE approved HEP operation of the AGS.

• The AGS2000 program proposes running slow extracted proton

beam 30-35 weeks/yr, for 16-20 hours/day during RHIC

operation.

• P951 requires fast extracted beam, so cannot parasite off the

AGS2000 program; we must interleave running with AGS2000,

but seek <∼ 6 weeks/yr.

• If there is no other HEP operation of the AGS after FY01, P951

would then bear the full incremental cost of proton beam

running.
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