Thoughts on Emittance Diagnostics for a Neutrino Factory Cooling Test

K.T. McDonald

Princeton U.

Decmeber 14, 1999

Princeton/ $\mu\mu/99-20$

http://puhep1.princeton.edu/mumu/tpctrans3.ps

Goal: Measure the emittance of the muon beam to 3% accuracy before and after the muon cooling apparatus.

Overview

Measure muons individually, and form a virtual bunch in software.

Large transverse emittance: $\epsilon_{N,x} = 10,000\pi$ mm-mrad.

 \Rightarrow Confine the muon beam in a solenoid channel.

Don't need bent solenoid unless want momentum measurement.

Can we use a low field, such as 1 Tesla?

IF the cooling apparatus has no rf, and we study only transverse cooling, and the muon beam has a well defined momentum bite,

THEN could skip momentum measurement,

 \Rightarrow Could do tracking at atmospheric pressure.

If want to measure momentum, need low-pressure tracking to avoid multiple scattering.

TPC in a solenoid still the best tracking device.

If the apparatus has 200 MHz rf, need $\sigma_t \approx 50$ psec.

Phase-space parameters of the muon beam at the beginning of the cooling channel at a neutrino factory.

Parameter	Value
$P_0 \; (\mathrm{MeV}/c)$	185
$E_0 \; (\mathrm{MeV})$	198
γ	2.02
eta	0.87
γeta	1.76
$\epsilon_{x,N} = \epsilon_{y,N} \ (\pi \text{ mm-mrad})$	9,000
$\epsilon_x = \epsilon_y \; (\pi \; \text{mm-mrad})$	5,100
β^{\star} (cm) [typical]	63
$\sigma_x = \sigma_y \; (\text{mm})$	57
$\sigma_{x'} = \sigma_{y'} \text{ (mrad)}$	90
σ_P/P	0.10
$\sigma_E/E = \beta^2 \sigma_P/P$	0.076
$\sigma_z~({ m cm})$	10
$\sigma_t = \sigma_z/\beta c \text{ (ps)}$	340

Parameters for 1.25-T Bent Solenoid Channels

Parameter	Targetry	Cooling
	Channel	Channel
$\overline{P_0}$	185 MeV/c	185 MeV/c
σ_P/P_0	0.3	0.1
B_s	1.25 T	1.25 T
λ_B	3.1 m	3.1 m
$ heta_{ m bend}$	0.1 rad	0.25 rad
$R_{ m bend}$	5 m	3 m
$B_{ m Guide}$	0.10 T	0.16 T
R_s	$40~\mathrm{cm}$	$40~\mathrm{cm}$
L_s	2.6 m	4.95 m
Cost (for one bend)	0.6M\$	0.9M\$
$\beta^{\star} = P_0/eB_s$	49 cm	$49~\mathrm{cm}$
ϵ_x	_	$5,100\pi$ mm-mrad
$\sigma_x = \sigma_y = \sqrt{\epsilon_x \beta^*}$	_	50 mm
$\sigma_{x'}=\sigma_{y'}$	_	102 mrad
$L_{ m tracking}$	$50~\mathrm{cm}$	$50~\mathrm{cm}$
n	33 clusters/m	33 clusters/m

Comments

If want momentum measurement:

- Use bent solenoid + TPC.
- If $B \approx 1$ T, need low pressure TPC.
- Need $\pi/\mu/e$ particle ID, \Rightarrow Čerenkov counters.
- Even measure longitudinal emittance, need $\sigma_t \approx 50$ psec,
 - \Rightarrow Could use "conventional" timing.

Could we skip the bent solenoid and measure P in a single TPC?

- Longitudinal diffusion $\Rightarrow \sigma_{\theta} \approx 10^{-4}$.
- In a single TPC, $\sigma_P/P = \sigma_\theta/\theta$, so have $\sigma_P/P < 0.01$ for $\theta > 0.01$.
- Since $\theta_{\rm rms} = 0.09$, this may be adequate(?).