Physics Opportunities with Muon Beams: Neutrino Factories and Muon Colliders

mcdonald@puphep.princeton.edu

Presented to the

National Science Foundation "Prospective MRE" Panel November 29, 1999

http://puhep1.princeton.edu/˜mcdonald/mumu/NSFLetter/

Past Uses of Muon Beams:

- Measurement of $g 2$ of the muon.
- \bullet Search for "forbidden" processes: $\mu \rightarrow e \gamma, \, \mu N \rightarrow e N, \, ...$
- Study of nuclear structure via $\mu N \to \mu X$.

New Opportunities:

- Neutrino factories based on $\mu \to e\nu_{\mu}\overline{\nu}_{e}$.
	- Neutrino oscillations.

– Nucleon structure via $\nu_\mu N \to \mu X$; X includes charm...

- A path to muon colliders.
- Muon colliders.
	- s-channel production of light Higgs.
	- Precision studies of electroweak/supersymmetry physics. [Leptonic initial state;
		- Beamstrahlung suppressed by $(m_e/m_\mu)^2$.
	- A new path to the energy frontier.

Oscillations of Massive Neutrinos

Neutrinos could have a small mass (Pauli, Fermi, Majorana, 1930's). Massive neutrinos can mix (Pontecorvo, 1957).

In the example of only two massive neutrinos, with mass eigenstates ν_1 and ν_2 with mass difference Δm and mixing angle θ , the flavor eigenstates ν_a and ν_b are related by

$$
\begin{pmatrix} \nu_a \\ \nu_b \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}.
$$

The probability that a neutrino of flavor ν_a and energy E appears as flavor ν_b after traversing distance L in vacuum is

$$
P(\nu_a \to \nu_b) = \sin^2 2\theta \sin^2 \left(\frac{1.27 \Delta m^2 [\text{eV}^2] L [\text{km}]}{E [\text{GeV}]} \right).
$$

The probability that ν_a does not disappear is

$$
P(\nu_a \to \nu_a) = \cos^2 2\theta \sin^2 \left(\frac{1.27 \Delta m^2 [\text{eV}^2] L [\text{km}]}{E [\text{GeV}]} \right).
$$

A Sketch of Current Data

- The "anomaly" of atmospheric neutrinos suggests that GeV ν_{μ} 's disappear while traversing the Earth's diameter. $\Rightarrow \Delta m^2 \approx 10^{-3} \text{ (eV)}^2 \text{ for } \sin^2 2\theta \approx 1.$ (Kamiokande, IMB, Soudan-2, MACRO, Super-Kamiokande)
- The solar neutrino "deficit" suggests that MeV ν_e 's disappear between the center of the Sun and the Earth. $\Rightarrow \Delta m^2 \approx 10^{-10} \text{ (eV)}^2 \text{ for } \sin^2 2\theta \approx 1$, if vacuum oscillations. (Homestake, GALLEX, SAGE)
- The LSND experiment at Los Alamos suggests that 30-MeV $\overline{\nu}_{\mu}$'s appears as $\overline{\nu}_{e}$'s after 30 m. $\Rightarrow \Delta m^2 \approx 1 \text{ (eV)}^2$, but reactor data requires $\sin^2 2\theta \lesssim 0.03$.

The first two results require at least 3 massive neutrinos.

All results together require at least 4 massive neutrinos.

The measured width of the Z^0 boson (LEP) \Rightarrow only 3 Standard Model neutrinos. A 4th massive neutrino must be "sterile".

The Supersymmetric Seesaw

A provocative conjecture is that neutrino mass m_{ν} is coupled to two other mass scales, m_I (intermediate) and m_H (heavy), according to

$$
m_{\nu} = \frac{M_I^2}{M_H}.
$$

(Gell-Mann, Ramond, Slansky, 1979)

A particularly suggestive variant takes $m_I = \langle \phi_{\text{Higgs}} \rangle = 250 \text{ GeV};$ Then

$$
m_{\nu} \approx \sqrt{\Delta m^2(\text{atmospheric})} \approx 0.06 \text{ eV} \Rightarrow m_H \approx 5 \times 10^{15} \text{ GeV}.
$$

This is perhaps the best experimental evidence for a grand unification scale, such as that underlying supersymmetric SO(10) models.

Neutrino oscillations $\stackrel{?}{\Rightarrow}$ Supersymmetry.

Mixing of Three Neutrinos

 $\begin{array}{c} \hline \rule{0pt}{2.2ex} \$ ν_e ν_μ ν_τ $\begin{array}{c} \hline \end{array}$ = $\begin{array}{c} \hline \rule{0pt}{2.2ex} \$ $c_{12}c_{13}$ s₁₂c₁₃ s₁₃e^{-iδ} $-s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta}$ $c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta}$ $c_{13}s_{23}$ $\mathrm{s}_{12}\mathrm{s}_{23}-\mathrm{c}_{12}\mathrm{s}_{13}\mathrm{c}_{23}e^{i\delta} \quad -\mathrm{c}_{12}\mathrm{s}_{23}-\mathrm{s}_{12}\mathrm{s}_{13}\mathrm{c}_{23}e^{i\delta} \quad \mathrm{c}_{13}\mathrm{c}_{23}$ $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \hline \rule{0pt}{2.5ex} \$ ν_1 ν_2 ν_3 $\begin{array}{c} \hline \end{array}$ where $c_{12} = \cos \theta_{12}$, *etc.* (Maki, Nakagawa, Sakata, 1962).

 $\sqrt{2}$

Č.

Three massive neutrinos \Rightarrow six independent parameters:

• Three mixing angles: θ_{12} , θ_{13} , θ_{23} ,

 $\overline{}$

 \mathbf{r}

 $\overline{}$

- A phase δ related to CP violation,
- Two differences of the squares of the neutrino masses. Ex: $\Delta m_{12}^2 = \Delta m^2$ (solar) and $\Delta m_{23}^2 = \Delta m^2$ (atmospheric).

Measurement of these parameters is a primary goal of experimental neutrino physics.

If four massive neutrinos, then 6 mixing angles, 3 phases, 3 independent squares of mass differences.

[Theorists find the MNS matrix more analyzable than the CKM matrix.]

Matter Effects

 ν_e 's can interact with electrons via both W and Z^0 exchanges, but other neutrinos can only interact via Z^0 exchange.

$$
\Rightarrow \sin^2 2\theta_{\text{matter}} = \frac{\sin^2 2\theta_{\text{vac}}}{\sin^2 2\theta_{\text{vac}} + (\cos 2\theta_{\text{vac}} - A)^2},
$$

where $A = 2\sqrt{2}G_F N_e E/\Delta m^2$ depends on sign of Δm^2 .

At the "resonance", $\cos 2\theta_{\text{vac}} = A$, $\sin^2 2\theta_{\text{matter}} = 1$ even if $\sin^2 2\theta_{\text{vac}}$ is small (Wolfenstein, 1978, Mikheyev, Smirnov, 1986).

 \Rightarrow 3 MSW solutions to the solar neutrino problem:

Survival Probabilities

Too Many Solutions

There are 8 scenarios suggested by present data:

- Either 3 or 4 massive neutrinos.
- Four solutions to the solar neutrino problem:
	- 1. Vacuum oscillation (VO) solution; $\Delta m_{12}^2 \approx (0.5 - 5.0) \times 10^{-10} \text{ eV}^2$, $\sin^2 2\theta_{12} \approx (0.7 - 1.0)$.
	- 2. Low (Just So) MSW solution; $\Delta m_{12}^2 \approx (0.5 - 2.0) \times 10^{-7} \text{ eV}^2$, $\sin^2 2\theta_{12} \approx (0.9 - 1.0)$.
	- 3. Small mixing angle (SMA) MSW solution; $\Delta m_{12}^2 \approx (4.0 - 9.0) \times 10^{-6} \text{ eV}^2$, $\sin^2 2\theta_{12} \approx (0.001 - 0.01)$.
	- 4. Large mixing angle (LMA) MSW solution; $\Delta m_{12}^2 \approx (0.2 - 2.0) \times 10^{-4} \text{ eV}^2$, $\sin^2 \theta_{12} \approx (0.65 - 0.96)$.
- Atmospheric neutrino data $\Rightarrow \Delta m_{23}^2 \approx (3-5) \times 10^{-4} \text{ eV}^2$, $\sin^2 \theta_{12} > 0.8.$
- θ_{13} very poorly known; δ completely unknown.

The Next Generation of Neutrino Experiments

- Short baseline accelerator experiments (miniBoone, ORLAND, CERN) will likely clarify the LSND result.
- Super-Kamiokande + new long baseline accelerator experiments (K2K, Minos, CERN) will firm up measurements of θ_{23} and Δm_{23}^2 , but will provide little information on θ_{13} and δ .
- New solar neutrino experiments (BOREXino, SNO, HELLAZ, HERON,) will explore different portions of the energy spectrum, and clarify possible pathlength-dependent effects. SNO should provide independent confirmation of neutrino oscillations via comparison of reactions $\nu+{}^2H \rightarrow p+p+e$ and $\nu + ^2H \rightarrow p + n + \nu.$
- Each of these experiments studies oscillations of only a single pair of neutrinos.
- The continued search for the neutrinoless double-beta decay $78\text{Ge} \rightarrow 78\text{Se} + 2e^-$ will improve the mass limits on Majorana neutrinos to perhaps as low as 0.001 eV (hep-ex/9907040).

The Opportunity for a Neutrino Factory

- Many of the neutrino oscillation solutions permit study of the couplings between 2, 3, and 4 neutrinos in accelerator based experiments.
- More neutrinos are needed!
- Present neutrino beams come from $\pi, K \to \mu\nu_{\mu}$ with small admixtures of $\overline{\nu}_{\mu}$ and ν_e from μ and $K \to 3\pi$ decays.
- Higher (per proton beam power), and better characterized, neutrino fluxes are obtained from μ decay.

Collect low-energy μ 's from π decay, accelerate the μ 's to the desired energy, and store in a ring while they decay via

6 Classes of Experiments at a Neutrino Factory

[Plus 6 corresponding processes for $\overline{\nu}_{\mu}$ from μ^{+} decay.]

GeV.

Processes (2) and (5) are easiest to detect, via the final state μ . Process (5) is noteworthy for having a "wrong-sign" μ . Processes (3) and (6) with a final state τ require μ 's of 10's of

Processes (1) and (4) with a final state electron are difficult to detect.

Finely segmented, magnetic detectors of 10's of kilotons will be required.

The Rates are High at a Neutrino Factory

Charged current event rates per kt-yr.

Even a low-energy neutrino factory has high rates of electron neutrino interactions.

A neutrino factory with $E_{\mu} \gtrsim 20$ GeV is competitive for muon neutrino interactions.

Scaling Laws for Rates at a Neutrino Factory

Neutrino oscillation probability varies with L/E ,

 \Rightarrow Rate \propto E for fixed L/E .

 τ appearance suppressed at low energy. Larger $E \Rightarrow$ larger L.

$\nu_\mu\rightarrow\ \nu_\mu\rightarrow \mu^+$ Disappearance

 $\nu_\mu\rightarrow\,\,\nu_\tau\rightarrow\tau^+$ Appearance

Measuring θ_{13}

Many ways:

$$
P(\overline{\nu}_e \to \overline{\nu}_\mu) = \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \frac{1.27 \Delta m_{23}^2 L}{E_\nu},
$$

$$
P(\overline{\nu}_e \to \overline{\nu}_\tau) = \sin^2 2\theta_{13} \cos^2 \theta_{23} \sin^2 \frac{1.27 \Delta m_{23}^2 L}{E_\nu},
$$

$$
P(\nu_\mu \to \nu_\tau) = \cos^4 \theta_{13} \sin^2 2\theta_{23} \sin^2 \frac{1.27 \Delta m_{23}^2 L}{E_\nu}.
$$

Measuring the Sign of Δm^2_{23} via Matter Effects

The matter effect resonance depends on the sign of Δm^2 (p. 7).

Large effect of Δm_{23}^2 in ν_μ (disappearance) if $\sin^2 2\theta_{13} \approx 0.1$.

For smaller $\sin^2 2\theta_{13}$, may be better to use $\overline{\nu}_e \to \overline{\nu}_\mu$ (appearance).

Measuring δ via CP Violation

The phase δ is accessible to terrestrial experiment in the large mixing angle (LMA) solution to the solar neutrino problem (or if there are 4 massive neutrinos).

CP violation:

$$
A_{\rm CP} = \frac{P(\nu_e \to \nu_\mu) - P(\overline{\nu}_e \to \overline{\nu}_\mu)}{P(\nu_e \to \nu_\mu) + P(\overline{\nu}_e \to \overline{\nu}_\mu)} \approx \left| \frac{2 \sin \delta}{\sin 2\theta_{13}} \sin \frac{1.27 \Delta m_{12}^2 L}{E} \right|,
$$

assuming $\sin^2 2\theta_{12} \approx \sin^2 2\theta_{23} \approx 1$ (LMA).

Matter effects dominate the asymmetry for $L > 1000$ km.

Measuring δ via T Violation

If the small mixing angle (SMA) solutions holds, may still be able to measure δ via T violation:

$$
P(\nu_e \to \nu_\mu) - P(\nu_\mu \to \nu_e) =
$$

\n
$$
4J \left(\sin \frac{1.27 \Delta m_{12}^2 L}{E} + \sin \frac{1.27 \Delta m_{13}^2 L}{E} + \sin \frac{1.27 \Delta m_{23}^2 L}{E} \right),
$$

\n
$$
J = \frac{1}{8} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta = \text{Jarlskog invariant.}
$$

Matter effects could make $\sin 2\theta_{12}$ resonance for $E \approx 100 \text{ MeV}$ and $L \approx 10,000 \text{ km}$ (hep-ph/9911258).

However, not easy to measure $\nu_{\mu} \rightarrow \nu_{e} \rightarrow e^{-}$ (appearance) against background of $\overline{\nu}_e \to \overline{\nu}_e \to e^+$ in a large, massive detector in which the electrons shower immediately. [Rates low also.]

Controlling the ν_e Flux via Muon Polarization

For μ^- decay in flight,

$$
\frac{dN_{\nu_{\mu}}(\theta_{\nu_{\mu}}=0)}{dx} = 2Nx^{2}[(3-2x)+P(1-2x)],
$$

\n
$$
\frac{dN_{\overline{\nu}_{e}}(\theta_{\overline{\nu}_{e}}=0)}{dx} = 12Nx^{2}(1-x)(1+P),
$$

where $x = 2E_\nu/m_\mu$, and P is the muon polarization.

 $[\theta_\nu = 0 \Rightarrow$ colinear decay; at $P = -1$, all colinear decays forbidden for $\theta_{\nu_e} = 0$, but one is allowed for $\theta_{\nu_\mu} = 0$.]

Modulate the muon polarization to modulate the relative rates of $\nu_{\mu} \rightarrow \nu_{e} \rightarrow e^{-}$ and $\overline{\nu}_{e} \rightarrow \overline{\nu}_{e} \rightarrow e^{+}$.

(Blondel, http://alephwww.cern.ch/˜bdl/muon/nufacpol.ps)

Summary

- The physics program of a neutrino factory/muon collider is extremely diverse, and of scope to justify an international laboratory.
- The first step is a neutrino factory capable of systematic exploration of neutrino oscillations.
	- $−$ With $\gtrsim 10^{20}$ ν 's/year can go well beyond other existing or planned accelerator experiments.
	- Beams with $E_{\nu_e} \lesssim 1$ GeV are already very interesting.
	- Higher energy is favored: Rate $\propto E$ at fixed L/E ; ν_{τ} appearance practical only for $E \gtrsim 30$ GeV.
	- Detectors at multiple distances needed for broad coverage of parameter space \Rightarrow triangle or "bowtie" storage rings.
	- − CP and T violation accessible with $\gtrsim 10^{21} \nu$'s/year.
	- Control of muon polarization extremely useful when studying $\nu_e \rightarrow e$ modes.