Physics Opportunities with Muon Beams: Neutrino Factories and Muon Colliders

Presented to the

National Science Foundation "Prospective MRE" Panel November 29, 1999

http://puhep1.princeton.edu/~mcdonald/mumu/NSFLetter/

Past Uses of Muon Beams:

- Measurement of g 2 of the muon.
- Search for "forbidden" processes: $\mu \to e\gamma, \, \mu N \to eN, \, \dots$
- Study of nuclear structure via $\mu N \to \mu X$.

New Opportunities:

- Neutrino factories based on $\mu \to e \nu_{\mu} \overline{\nu}_{e}$.
 - Neutrino oscillations.

– Nucleon structure via $\nu_{\mu}N \rightarrow \mu X$; X includes charm...

- A path to muon colliders.
- Muon colliders.
 - -s-channel production of light Higgs.
 - Precision studies of electroweak/supersymmetry physics.
 [Leptonic initial state;
 - Beamstrahlung suppressed by $(m_e/m_\mu)^2$.]
 - A new path to the energy frontier.

Oscillations of Massive Neutrinos

Neutrinos could have a small mass (Pauli, Fermi, Majorana, 1930's). Massive neutrinos can mix (Pontecorvo, 1957).

In the example of only two massive neutrinos, with mass eigenstates ν_1 and ν_2 with mass difference Δm and mixing angle θ , the flavor eigenstates ν_a and ν_b are related by

$$\begin{pmatrix} \nu_a \\ \nu_b \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}.$$

The probability that a neutrino of flavor ν_a and energy E appears as flavor ν_b after traversing distance L in vacuum is

$$P(\nu_a \to \nu_b) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 [\text{eV}^2] \ L[\text{km}]}{E[\text{GeV}]} \right)$$

The probability that ν_a does not disappear is

$$P(\nu_a \to \nu_a) = \cos^2 2\theta \sin^2 \left(\frac{1.27 \Delta m^2 [\text{eV}^2] \ L[\text{km}]}{E[\text{GeV}]} \right).$$

A Sketch of Current Data

- The "anomaly" of atmospheric neutrinos suggests that GeV ν_μ's disappear while traversing the Earth's diameter.
 ⇒ Δm² ≈ 10⁻³ (eV)² for sin² 2θ ≈ 1.
 (Kamiokande, IMB, Soudan-2, MACRO, Super-Kamiokande)
- The solar neutrino "deficit" suggests that MeV ν_e's disappear between the center of the Sun and the Earth.
 ⇒ Δm² ≈ 10⁻¹⁰ (eV)² for sin² 2θ ≈ 1, if vacuum oscillations. (Homestake, GALLEX, SAGE)
- The LSND experiment at Los Alamos suggests that 30-MeV $\overline{\nu}_{\mu}$'s appears as $\overline{\nu}_{e}$'s after 30 m. $\Rightarrow \Delta m^{2} \approx 1 \text{ (eV)}^{2}$, but reactor data requires $\sin^{2} 2\theta \lesssim 0.03$.

The first two results require at least 3 massive neutrinos.

All results together require at least 4 massive neutrinos.

The measured width of the Z^0 boson (LEP) \Rightarrow only 3 Standard Model neutrinos. A 4th massive neutrino must be "sterile".

The Supersymmetric Seesaw

A provocative conjecture is that neutrino mass m_{ν} is coupled to two other mass scales, m_I (intermediate) and m_H (heavy), according to

$$m_{\nu} = \frac{M_I^2}{M_H}.$$

(Gell-Mann, Ramond, Slansky, 1979)

A particularly suggestive variant takes $m_I = \langle \phi_{\text{Higgs}} \rangle = 250 \text{ GeV};$ Then

$$m_{\nu} \approx \sqrt{\Delta m^2(\text{atmospheric})} \approx 0.06 \text{ eV} \Rightarrow m_H \approx 5 \times 10^{15} \text{ GeV}.$$

This is perhaps the best experimental evidence for a grand unification scale, such as that underlying supersymmetric SO(10) models.

Neutrino oscillations $\stackrel{?}{\Rightarrow}$ Supersymmetry.

Mixing of Three Neutrinos

 $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$ where $c_{12} = \cos \theta_{12}$, etc. (Maki, Nakagawa, Sakata, 1962).

Three massive neutrinos \Rightarrow six independent parameters:

- Three mixing angles: θ_{12} , θ_{13} , θ_{23} ,
- A phase δ related to CP violation,
- Two differences of the squares of the neutrino masses. Ex: $\Delta m_{12}^2 = \Delta m^2$ (solar) and $\Delta m_{23}^2 = \Delta m^2$ (atmospheric).

Measurement of these parameters is a primary goal of experimental neutrino physics.

If four massive neutrinos, then 6 mixing angles, 3 phases, 3 independent squares of mass differences.

[Theorists find the MNS matrix more analyzable than the CKM matrix.]

Matter Effects

 ν_e 's can interact with electrons via both W and Z^0 exchanges, but other neutrinos can only interact via Z^0 exchange.

$$\Rightarrow \sin^2 2\theta_{\text{matter}} = \frac{\sin^2 2\theta_{\text{vac}}}{\sin^2 2\theta_{\text{vac}} + (\cos 2\theta_{\text{vac}} - A)^2},$$

where $A = 2\sqrt{2G_F N_e E}/\Delta m^2$ depends on sign of Δm^2 .

At the "resonance", $\cos 2\theta_{\text{vac}} = A$, $\sin^2 2\theta_{\text{matter}} = 1$ even if $\sin^2 2\theta_{\text{vac}}$ is small (Wolfenstein, 1978, Mikheyev, Smirnov, 1986).

 \Rightarrow 3 MSW solutions to the solar neutrino problem:

Survival Probabilities

Too Many Solutions

There are 8 scenarios suggested by present data:

- Either 3 or 4 massive neutrinos.
- Four solutions to the solar neutrino problem:
 - 1. Vacuum oscillation (VO) solution; $\Delta m_{12}^2 \approx (0.5 - 5.0) \times 10^{-10} \text{ eV}^2, \sin^2 2\theta_{12} \approx (0.7 - 1.0).$
 - 2. Low (Just So) MSW solution; $\Delta m_{12}^2 \approx (0.5 - 2.0) \times 10^{-7} \text{ eV}^2, \sin^2 2\theta_{12} \approx (0.9 - 1.0).$
 - 3. Small mixing angle (SMA) MSW solution; $\Delta m_{12}^2 \approx (4.0 - 9.0) \times 10^{-6} \text{ eV}^2, \sin^2 2\theta_{12} \approx (0.001 - 0.01).$
 - 4. Large mixing angle (LMA) MSW solution; $\Delta m_{12}^2 \approx (0.2 - 2.0) \times 10^{-4} \text{ eV}^2, \sin^2 \theta_{12} \approx (0.65 - 0.96).$
- Atmospheric neutrino data $\Rightarrow \Delta m_{23}^2 \approx (3-5) \times 10^{-4} \text{ eV}^2$, $\sin^2 \theta_{12} > 0.8$.
- θ_{13} very poorly known; δ completely unknown.

The Next Generation of Neutrino Experiments

- Short baseline accelerator experiments (miniBoone, ORLAND, CERN) will likely clarify the LSND result.
- Super-Kamiokande + new long baseline accelerator experiments (K2K, Minos, CERN) will firm up measurements of θ_{23} and Δm_{23}^2 , but will provide little information on θ_{13} and δ .
- New solar neutrino experiments (BOREXino, SNO, HELLAZ, HERON,) will explore different portions of the energy spectrum, and clarify possible pathlength-dependent effects.
 SNO should provide independent confirmation of neutrino oscillations via comparison of reactions ν+²H → p+p+e and ν+²H → p + n + ν.
- Each of these experiments studies oscillations of only a single pair of neutrinos.
- The continued search for the neutrinoless double-beta decay $^{78}\text{Ge} \rightarrow ^{78}\text{Se} + 2e^-$ will improve the mass limits on Majorana neutrinos to perhaps as low as 0.001 eV (hep-ex/9907040).

The Opportunity for a Neutrino Factory

- Many of the neutrino oscillation solutions permit study of the couplings between 2, 3, and 4 neutrinos in accelerator based experiments.
- More neutrinos are needed!
- Present neutrino beams come from $\pi, K \to \mu \nu_{\mu}$ with small admixtures of $\overline{\nu}_{\mu}$ and ν_{e} from μ and $K \to 3\pi$ decays.
- Higher (per proton beam power), and better characterized, neutrino fluxes are obtained from μ decay.

Collect low-energy μ 's from π decay, accelerate the μ 's to the desired energy, and store in a ring while they decay via

0.8

6 Classes of Experiments at a Neutrino Factory

$\nu_{\mu} \rightarrow \ \nu_{e} \rightarrow e^{-}$	(appearance),	(1)
$ u_{\mu} ightarrow \ u_{\mu} ightarrow \mu^{-}$	(disappearance),	(2)
$ u_{\mu} ightarrow u_{ au} ightarrow au^{-}$	(appearance),	(3)
$\overline{\nu}_e \to \ \overline{\nu}_e \to e^+$	(disappearance),	(4)
$\overline{ u}_e ightarrow \ \overline{ u}_\mu ightarrow \mu^+$	(appearance),	(5)
$\overline{\nu}_e \rightarrow \ \overline{\nu}_{ au} \rightarrow au^+$	(appearance).	(6)

[Plus 6 corresponding processes for $\overline{\nu}_{\mu}$ from μ^+ decay.]

Processes (2) and (5) are easiest to detect, via the final state μ . Process (5) is noteworthy for having a "wrong-sign" μ . Processes (3) and (6) with a final state τ require μ 's of 10's of GeV.

Processes (1) and (4) with a final state electron are difficult to detect.

Finely segmented, magnetic detectors of 10's of kilotons will be required.

The Rates are High at a Neutrino Factory

<u>Onargeu current event rates per Ku yr.</u>			
(L = 732 km)	$ u_{\mu}$	$\overline{ u}_e$	
Neutrino Factory	(2×10^{20})	$ u_{\mu}/\mathrm{yr})$	
$10 { m GeV}$	2200	1300	
$20 \mathrm{GeV}$	$18,\!000$	$11,\!000$	
$50 \mathrm{GeV}$	2.9×10^5	1.8×10^5	
$250 \mathrm{GeV}$	3.6×10^7	2.3×10^7	
MINOS (WBB)			
Low energy	460	1.3	
Medium energy	1440	0.9	
High energy	3200	0.9	

Charged current event rates per kt-yr.

Even a low-energy neutrino factory has high rates of electron neutrino interactions.

A neutrino factory with $E_{\mu} \gtrsim 20$ GeV is competitive for muon neutrino interactions.

Scaling Laws for Rates at a Neutrino Factory

Neutrino oscillation probability varies with L/E,

 \Rightarrow Rate $\propto E$ for fixed L/E.

 τ appearance suppressed at low energy. Larger $E \Rightarrow$ larger L.

$\nu_{\mu} \rightarrow \ \nu_{\mu} \rightarrow \mu^{-}$ Disappearance

 $\nu_{\mu} \rightarrow \nu_{\tau} \rightarrow \tau^{-}$ Appearance

$\frac{\Delta m^2_{23}}{(\text{eV}^2)}$	Events (per 10 kt-yr)	
0.002	1200	For conditions as above.
0.003	1900	
0.004	2000	
0.005	1800	

Measuring θ_{13}

Many ways:

$$P(\overline{\nu}_{e} \to \overline{\nu}_{\mu}) = \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \frac{1.27 \Delta m_{23}^{2} L}{E_{\nu}},$$
$$P(\overline{\nu}_{e} \to \overline{\nu}_{\tau}) = \sin^{2} 2\theta_{13} \cos^{2} \theta_{23} \sin^{2} \frac{1.27 \Delta m_{23}^{2} L}{E_{\nu}},$$
$$P(\nu_{\mu} \to \nu_{\tau}) = \cos^{4} \theta_{13} \sin^{2} 2\theta_{23} \sin^{2} \frac{1.27 \Delta m_{23}^{2} L}{E_{\nu}}.$$

Measuring the Sign of Δm_{23}^2 via Matter Effects

The matter effect resonance depends on the sign of Δm^2 (p. 7).

Large effect of Δm_{23}^2 in ν_{μ} (disappearance) if $\sin^2 2\theta_{13} \approx 0.1$.

For smaller $\sin^2 2\theta_{13}$, may be better to use $\overline{\nu}_e \to \overline{\nu}_\mu$ (appearance).

Measuring δ via CP Violation

The phase δ is accessible to terrestrial experiment in the large mixing angle (LMA) solution to the solar neutrino problem (or if there are 4 massive neutrinos).

CP violation:

$$A_{\rm CP} = \frac{P(\nu_e \to \nu_\mu) - P(\overline{\nu}_e \to \overline{\nu}_\mu)}{P(\nu_e \to \nu_\mu) + P(\overline{\nu}_e \to \overline{\nu}_\mu)} \approx \left| \frac{2\sin\delta}{\sin 2\theta_{13}} \sin \frac{1.27\Delta m_{12}^2 L}{E} \right|,$$

assuming $\sin^2 2\theta_{12} \approx \sin^2 2\theta_{23} \approx 1$ (LMA).

Matter effects dominate the asymmetry for L > 1000 km.

Measuring δ via T Violation

If the small mixing angle (SMA) solutions holds, may still be able to measure δ via T violation:

$$P(\nu_e \to \nu_\mu) - P(\nu_\mu \to \nu_e) =$$

$$4J\left(\sin\frac{1.27\Delta m_{12}^2 L}{E} + \sin\frac{1.27\Delta m_{13}^2 L}{E} + \sin\frac{1.27\Delta m_{23}^2 L}{E}\right),$$

$$J = \frac{1}{8}\cos\theta_{13}\sin 2\theta_{13}\sin 2\theta_{12}\sin 2\theta_{23}\sin\delta = \text{Jarlskog invariant}$$

Matter effects could make $\sin 2\theta_{12}$ resonance for $E \approx 100$ MeV and $L \approx 10,000$ km (hep-ph/9911258).

However, not easy to measure $\nu_{\mu} \rightarrow \nu_{e} \rightarrow e^{-}$ (appearance) against background of $\overline{\nu}_{e} \rightarrow \overline{\nu}_{e} \rightarrow e^{+}$ in a large, massive detector in which the electrons shower immediately. [Rates low also.]

Controlling the ν_e Flux via Muon Polarization

For μ^- decay in flight,

$$\begin{split} \frac{dN_{\nu_{\mu}}(\theta_{\nu_{\mu}}=0)}{dx} &= 2Nx^2[(3-2x)+P(1-2x)],\\ \frac{dN_{\overline{\nu}_e}(\theta_{\overline{\nu}_e}=0)}{dx} &= 12Nx^2(1-x)(1+P), \end{split}$$

where $x = 2E_{\nu}/m_{\mu}$, and **P** is the muon polarization.

 $[\theta_{\nu} = 0 \Rightarrow \text{colinear decay}; \text{ at } P = -1, \text{ all colinear decays forbidden}$ for $\theta_{\nu_e} = 0$, but one is allowed for $\theta_{\nu_{\mu}} = 0.$]

Modulate the muon polarization to modulate the relative rates of $\nu_{\mu} \rightarrow \nu_{e} \rightarrow e^{-}$ and $\overline{\nu}_{e} \rightarrow \overline{\nu}_{e} \rightarrow e^{+}$.

(Blondel, http://alephwww.cern.ch/~bdl/muon/nufacpol.ps)

Summary

- The physics program of a neutrino factory/muon collider is extremely diverse, and of scope to justify an international laboratory.
- The first step is a neutrino factory capable of systematic exploration of neutrino oscillations.
 - With $\gtrsim 10^{20} \nu$'s/year can go well beyond other existing or planned accelerator experiments.
 - Beams with $E_{\nu_e} \lesssim 1$ GeV are already very interesting.
 - Higher energy is favored: Rate $\propto E$ at fixed L/E; ν_{τ} appearance practical only for $E \gtrsim 30$ GeV.
 - Detectors at multiple distances needed for broad coverage of parameter space \Rightarrow triangle or "bowtie" storage rings.
 - CP and T violation accessible with $\gtrsim 10^{21}~\nu{\rm 's/year}.$
 - Control of muon polarization extremely useful when studying $\nu_e \rightarrow e$ modes.