On the Feasibility of a Very Large Liquid Argon Detector for Neutrino Oscillation Physics

Kirk T. McDonald

Princeton U. kirkmcd@princeton.edu NuFACT'02, London, England July 4, 2002

http://puhep1.princeton.edu/˜mcdonald/nufact/

The Opportunity for 3-Generation Neutrino Physics

Super-K \Rightarrow oscillation of atmospheric neutrinos.

Super-K and SNO favor LMA solar neutrino solution, and disfavor sterile neutrinos.

 \Rightarrow Physics beyond the standard model, such as SO(10) SUSY.

Three massive neutrinos \Rightarrow six independent parameters:

- Two differences of the squares of the neutrino masses: $1.6 < \Delta m_{23}^2 = \Delta m^2(\text{atmos}) < 3.6 \times 10^{-3} \text{ eV}^2 \text{ @ } 90\% \text{ c.l.}$ $2 \times 10^{-5} < \Delta m_{12}^2 = \Delta m^2 (\text{solar}) < 1.5 \times 10^{-4} \text{ eV}^2 \text{ @ } 90\% \text{ c.l.}$
- Three mixing angles: $\theta_{12} \approx 30^{\circ}$, $\theta_{13} < 10^{\circ}$, $\theta_{23} \approx 45^{\circ}$.
- A phase δ related to CP violation (unknown).

Measurement goals of new experiments:

1. $\sin^2 2\theta_{13}$.

2. Sign of Δm^2_{23} . (Sign of Δm^2_{12} known if LMA solution correct.) 3. $\delta_{\rm CP}$.

With conventional neutrino beams $(\pi \to \mu \nu_{\mu})$, all 3 measurements can be pursued via $\nu_{\mu} \rightarrow \nu_{e}$ appearance.

Best resolution if observe near first (or second) 2-3 oscillation:

Lindner et al., hep-ph/0204352

 \Rightarrow Can't optimize choice of L and E_{ν} until Δm^2_{23} known to $\pm 20\%$. (One year of MINOS in nominal NUMI beam.)

Can't justify "prime time" effort until know that $\sin^2 2\theta_{13}$ is large enough that $\delta_{\rm CP}$ is accessible.

Quality of measurement of δ_{CP} and sign of Δm^2_{23} also affected by value of Δm_{12}^2 .

Use ≈ 1 GeV Neutrinos

Production rate is high.

Interactions are simple \leftrightarrow quasielastic (no pions).

Use an Off-Axis Neutrino Beam (BNL E-889)

 $\pi \to \mu \nu$ decay kinematics has a Jacobian peak: $\theta \approx 2^{\circ}$ / GeV. (Sternheimer, 1955)

Intrinsic background: v_e / v_μ (peak) ~ 0.002 (0.005 for sin²2 θ_{13})

Can Study CP Violation at $L/E = (2n+1)500 \text{ km/GeV}$ [Marciano, hep-ph/0108181]

The *n*th maximum of $\nu_2-\nu_3$ oscillations occurs at $L/E \approx (2n+1)500 \text{ km/GeV}.$

The CP asymmetry grows with distance:

$$
A = \frac{P(\nu_\mu \to \nu_e) - P(\bar{\nu}_\mu \to \bar{\nu}_e)}{P(\nu_\mu \to \nu_e) + P(\bar{\nu}_\mu \to \bar{\nu}_e)} \approx \frac{2s_{12}c_{12}c_{23}\sin\delta}{s_{23}s_{13}} \left(\frac{\Delta m_{12}^2}{\Delta m_{23}^2}\right) \frac{\Delta m_{23}^2 L}{4E_\nu}
$$

⇒ δA A \approx 1 A $\frac{1}{\sqrt{2}}$ N ∝ E_{ν} L $\frac{L}{l}$ N \approx independent of L at fixed E_{ν} .

 $N_{\text{events}} \propto 1/L^2$, \Rightarrow Hard to make other measurements at large L. Low E_{ν} favorable for CP violation measurements.

But since need to disentangle matter effects from CP asymmetries, this suggests use of 2 detectors at oscillation maxima $n = 0$ and $n = 1$ or $2 \Rightarrow R = L'/L = 3$ or 5.

Small $s_{13} = \sin \theta_{13} \Rightarrow$ large CP asymmetry, but low rates.

 \Rightarrow May be difficult to untangle sin δ and s_{13} .

Strategy Overview

- Phase I: New search for $\sin^2 2\theta_{13}$ with sensitivity better than MINOS/NUMI, Super-K/J2K, ICARUS/CNGS.
- Phase II: If $\sin^2 2\theta_{13}$ large enough, upgrade (or new) beam and detector to study CP violation and measure sign of Δm^2_{23} .
- Combine neutrino oscillation physics with nucleon decay measurement.
- Phase I: Use a 1° off-axis NUMI beam at \approx 2 GeV with a 20-30 kton liquid argon detector sited under a bluff at Silver Creek, MN, 640 km from FNAL, 1640 km from BNL. \Rightarrow sin² 2 θ_{13} to 0.003, $\tau/B(p \to K^+\bar{\nu})$ to 10³⁴ year.
- Phase II, Option A:
	- 1. Build 100-200 kton liquid argon detector near Adams, WI, 260 km from FNAL, 1410 km from BNL.
	- 2. Upgrade FNAL beam with a 4-MW, 8-GeV proton driver.
	- 3. New ν beam at BNL with a 1-4 MW proton driver.

 \Rightarrow sin² 2 θ_{13} to 0.0003, $\tau/B(p \to K^+\bar{\nu})$ to 10³⁵ year, search for CP violation and measurement of sign of Δm^2_{23} .

Overview, cont'd

- Phase II, Option B:
	- 1. Build 100-200 kton liquid argon detector near Adams, WI, 260 km from FNAL, 1410 km from BNL.
	- 2. Upgrade FNAL beam with a 4-MW, 8-GeV proton driver.
	- 3. Build new detector in Saskatchewan, 1200 km from FNAL.
- Phase II, Option C:
	- 1. Build 100-200 kton liquid argon detector near Lansing, NY, 350 km from BNL.
	- 2. New ν beam at BNL with a 4 MW proton driver.
- Phase II, Option C cheaper than Option A, but must study CP violation with Lansing detector during separate runs from measurement of sign of Δm^2_{23} with Silver Creek detector.
- Phase II, Option B may be cheapest of all, but baseline to far detector only ≈ 1200 km.

Off-Axis Neutrino Beams from BNL and FNAL

Silver Creek, MN, lat. 47.11[°], long. −91.58[°]

500' overburden with horizontal tunnel.

Adam's Bluff, WI, lat. 43.95°, long. −89.59°

300' overburden with horizontal tunnel.

Off-Axis Neutrino Beams from CERN

Could also use converted LNG tanker in the Gulf of Taranto.

Liquid Argon is the Best Detector Choice

- Density $= 1.4$; $X_0 = 14$ cm; can drift electrons 2-4 m.
- 100\% sampling tracking and calorimetry.
- Construction is simplest of large neutrino detector options.
- Best rejection of neutral current backgrounds, including soft π^{0} 's.
- 10 times better per kton than water Cerenkov for $\nu_{\mu} \rightarrow \nu_{e}$ appearance (Harris).

Drift coord. (m) Full 2D View from the Collection Wire Plane $\mathbf{1}$ $\overline{\mathbf{3}}$ $\overline{2}$ Wire coord. (m) 12 18 Zoom details $\mathbf{1}$ El.m. shower \overline{c} µ stop and decay in e Detail of a long (14 m) u track 3 with &-ray spots El.m. shower

ICARUS – a Working Liquid Argon Detector

- Operates at the Earth's surface with near zero overlap of cosmic ray events.
- Operates with deadtimeless, selftriggering electronics.
- Liquid argon costs \approx \$0.7M/kton.
- Minimize cost of a large detector by building a single module.

LANNDD – Liquid Argon Neutrino and Nucleon Decay Detector

LANNDD Liquid Argon Neutrino and Nucleon Decay Detector

F. Sergiampietri-August 2000

Is a 100-kton Liquid Argon Detector Feasible?

- Use mature, low-cost technology of liquid methane storage tanks (up to 300 kton based on existing structures). Preliminary budget estimate from industry of < \$20M for a 100-kton tank, IF built on the SURFACE.
- 100 kton of liquid argon $= 10\%$ of USA annual production. ⇒ Deliver one trailer-load every 2 hours from Chicago,.... Only 5 ppm O_2 grade available in large quantities, ⇒ On-site liquid-phase purification via Oxisorb (MG). Raw material, delivery + purification \Rightarrow \$0.8M/kton.
- ICARUS electronics from CAEN @ \$100/channel. 3 mm wire spacing \Rightarrow 300k ch \Rightarrow \$30M. 9 mm wire spacing \Rightarrow 100k ch \Rightarrow \$10M. High capacity of long wires \Rightarrow signal may be too weak to use 3 mm spacing.
- With neutrino beam, record every pulse (10[−]³ duty factor). Cosmic rays occupy $\approx 10^{-3}$ of active volume,
	- \Rightarrow \approx 10 MB data per trigger.
	- \Rightarrow Modest (< \$10M) DAQ/computer system.

200-kton Cryogenic Tanks Used for LNG Storage

Double Wall & Double Roof Tank

Chicago Bridge & Iron: can build 100-kton LAr tank for \langle \$20M.

Cryogenic LNG Storage Tanks

– Applied Cryogenic Technology + Cosmodyne.

Can a Proton Decay Search Be Done at the Surface?

• The signature of the decay $p \to K^+\overline{\nu}$ is particularly clean: $K^+ \rightarrow \pi^+ \rightarrow \mu^+ \rightarrow e^+.$

 \Rightarrow Maybe "no background" to 10^{35} year even at surface.

- Need 100% duty factor for proton decay search. ⇒≈ 10 GB/sec data rate at surface.
- May need to go underground (100 m?) to suppress the data rate.

⇒ Additional \$100M to site detector underground.

- Cheaper to buy a big DAQ system and operate at the surface
	- if backgrounds are OK there.

Budget Estimate (Very Rough)

For a 100-kton detector at the surface:

Cost Scaling: Argon \propto mass; rest \propto mass^{2/3}.

R&D Topics

- Liquid-phase purification of industrial grade argon via Oxisorb.
- Mechanics and electronics of wires up to 60-m long.
- Cryogenic feedthroughs, possibly including buffer volume at 150K for low-noise FET's.
- Verify operation of a liquid argon TPC at 10 atmospheres (as at bottom of a 100-kton tank).
- For eventual use at a neutrino factor, verify operation of a liquid argon TPC in a magnetic field (proposals submitted to BNL, CERN).

Simulation Studies

- What is maximum wire spacing consistent with good background rejection of neutral current events, good π^0 identification?
- What is shallowest depth at which proton decay search can be performed to 10^{35} year for $p \to e^+ \pi^0$ and $p \to K^+ \bar{\nu}$?