On the Feasibility of a Very Large Liquid Argon Detector for Neutrino Oscillation Physics

Kirk T. McDonald

Princeton U. kirkmcd@princeton.edu NuFACT'02, London, England July 4, 2002

http://puhep1.princeton.edu/~mcdonald/nufact/

The Opportunity for 3-Generation Neutrino Physics

Super-K \Rightarrow oscillation of atmospheric neutrinos.

Super-K and SNO favor LMA solar neutrino solution, and disfavor sterile neutrinos.

 \Rightarrow Physics beyond the standard model, such as SO(10) SUSY.

Three massive neutrinos \Rightarrow six independent parameters:

- Two differences of the squares of the neutrino masses: $1.6 < \Delta m_{23}^2 = \Delta m^2 (\text{atmos}) < 3.6 \times 10^{-3} \text{ eV}^2 @ 90\% \text{ c.l.}$ $2 \times 10^{-5} < \Delta m_{12}^2 = \Delta m^2 (\text{solar}) < 1.5 \times 10^{-4} \text{ eV}^2 @ 90\% \text{ c.l.}$
- Three mixing angles: $\theta_{12} \approx 30^{\circ}, \, \theta_{13} < 10^{\circ}, \, \theta_{23} \approx 45^{\circ}.$
- A phase δ related to CP violation (unknown).

Measurement goals of new experiments:

1. $\sin^2 2\theta_{13}$.

2. Sign of Δm_{23}^2 . (Sign of Δm_{12}^2 known if LMA solution correct.) 3. $\delta_{\rm CP}$. With conventional neutrino beams $(\pi \to \mu \nu_{\mu})$, all 3 measurements can be pursued via $\nu_{\mu} \to \nu_{e}$ appearance.

Best resolution if observe near first (or second) 2-3 oscillation:

Lindner et al., hep-ph/0204352

 \Rightarrow Can't optimize choice of L and E_{ν} until Δm_{23}^2 known to $\pm 20\%$. (One year of MINOS in nominal NUMI beam.)

Can't justify "prime time" effort until know that $\sin^2 2\theta_{13}$ is large enough that δ_{CP} is accessible.

Quality of measurement of $\delta_{\rm CP}$ and sign of Δm_{23}^2 also affected by value of Δm_{12}^2 .

$Use \approx 1 \text{ GeV Neutrinos}$

Production rate is high.

Interactions are simple \leftrightarrow quasielastic (no pions).

Use an Off-Axis Neutrino Beam (BNL E-889)

 $\pi \to \mu \nu$ decay kinematics has a Jacobian peak: $\theta \approx 2^{\circ}$ / GeV. (Sternheimer, 1955)

Intrinsic background: v_e / v_μ (peak) ~ 0.002 (0.005 for sin²2 θ_{13})

Can Study CP Violation at L/E = (2n+1)500 km/GeV[Marciano, hep-ph/0108181]

The *n*th maximum of $\nu_2 - \nu_3$ oscillations occurs at $L/E \approx (2n+1)500 \text{ km/GeV}.$

The CP asymmetry grows with distance:

 $A = \frac{P(\nu_{\mu} \to \nu_{e}) - P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})} \approx \frac{2s_{12}c_{12}c_{23}\sin\delta}{s_{23}s_{13}} \left(\frac{\Delta m_{12}^{2}}{\Delta m_{23}^{2}}\right) \frac{\Delta m_{23}^{2}L}{4E_{\nu}}$

 $\Rightarrow \frac{\delta A}{A} \approx \frac{1}{A\sqrt{N}} \propto \frac{E_{\nu}}{L\sqrt{N}} \approx \text{ independent of } L \text{ at fixed } E_{\nu}.$

 $N_{\text{events}} \propto 1/L^2$, \Rightarrow Hard to make other measurements at large L. Low E_{ν} favorable for CP violation measurements.

But since need to disentangle matter effects from CP asymmetries, this suggests use of 2 detectors at oscillation maxima n = 0 and n = 1 or $2, \Rightarrow R = L'/L = 3$ or 5.

Small $s_{13} = \sin \theta_{13} \Rightarrow$ large CP asymmetry, but low rates.

 \Rightarrow May be difficult to untangle sin δ and s_{13} .

Strategy Overview

- Phase I: New search for $\sin^2 2\theta_{13}$ with sensitivity better than MINOS/NUMI, Super-K/J2K, ICARUS/CNGS.
- Phase II: If $\sin^2 2\theta_{13}$ large enough, upgrade (or new) beam and detector to study CP violation and measure sign of Δm_{23}^2 .
- Combine neutrino oscillation physics with nucleon decay measurement.
- Phase I: Use a 1° off-axis NUMI beam at ≈ 2 GeV with a 20-30 kton liquid argon detector sited under a bluff at Silver Creek, MN, 640 km from FNAL, 1640 km from BNL. $\Rightarrow \sin^2 2\theta_{13}$ to 0.003, $\tau/B(p \to K^+ \bar{\nu})$ to 10^{34} year.
- Phase II, Option A:
 - Build 100-200 kton liquid argon detector near Adams, WI,
 260 km from FNAL, 1410 km from BNL.
 - 2. Upgrade FNAL beam with a 4-MW, 8-GeV proton driver.
 - 3. New ν beam at BNL with a 1-4 MW proton driver.
 - $\Rightarrow \sin^2 2\theta_{13}$ to 0.0003, $\tau/B(p \to K^+ \bar{\nu})$ to 10^{35} year, search for CP violation and measurement of sign of Δm_{23}^2 .

Overview, cont'd

- Phase II, Option B:
 - Build 100-200 kton liquid argon detector near Adams, WI,
 260 km from FNAL, 1410 km from BNL.
 - 2. Upgrade FNAL beam with a 4-MW, 8-GeV proton driver.
 - 3. Build new detector in Saskatchewan, 1200 km from FNAL.
- Phase II, Option C:
 - Build 100-200 kton liquid argon detector near Lansing, NY, 350 km from BNL.
 - 2. New ν beam at BNL with a 4 MW proton driver.
- Phase II, Option C cheaper than Option A, but must study CP violation with Lansing detector during separate runs from measurement of sign of Δm_{23}^2 with Silver Creek detector.
- Phase II, Option B may be cheapest of all, but baseline to far detector only ≈ 1200 km.

Off-Axis Neutrino Beams from BNL and FNAL

Silver Creek, MN, lat. 47.11° , long. -91.58°

500' overburden with horizontal tunnel.

Adam's Bluff, WI, lat. 43.95°, **long.** -89.59°

300' overburden with horizontal tunnel.

Site	Distance to CERN (km)	Lat.	Long.	∠ _{CERN} to Leuca
Voghera	270	44.9°	8.95°	4.4°
Florence	490	43.7°	11.15°	3.9°
Gran Sasso	730	42.45°	13.57°	2.5°
Leuca	1225	39.8°	18.35°	_

Off-Axis Neutrino Beams from CERN

Could also use converted LNG tanker in the Gulf of Taranto.

Liquid Argon is the Best Detector Choice

- Density = 1.4; $X_0 = 14$ cm; can drift electrons 2-4 m.
- 100% sampling tracking and calorimetry.
- Construction is simplest of large neutrino detector options.
- Best rejection of neutral current backgrounds, including soft π^{0} 's.
- 10 times better per kton than water Čerenkov for $\nu_{\mu} \rightarrow \nu_{e}$ appearance (Harris).

Drift coord. (m) Full 2D View from the Collection Wire Plane 1 3 2 Wire coord. (m) 12 18 Zoom details 1 El.m. shower 2 µstop and decay in e Detail of a long (14 m) µ track 3 with *b*-ray spots Elm shower

ICARUS – a Working Liquid Argon Detector

- Operates at the Earth's surface with near zero overlap of cosmic ray events.
- Operates with deadtimeless, selftriggering electronics.
- Liquid argon costs \approx \$0.7M/kton.
- Minimize cost of a large detector by building a single module.

LANNDD – Liquid Argon Neutrino and Nucleon Decay Detector

LANNDD Liquid Argon Neutrino and Nucleon Decay Detector

F. Sergiampietri-August 2000

Is a 100-kton Liquid Argon Detector Feasible?

- Use mature, low-cost technology of liquid methane storage tanks (up to 300 kton based on existing structures).
 Preliminary budget estimate from industry of < \$20M for a 100-kton tank, IF built on the SURFACE.
- 100 kton of liquid argon = 10% of USA annual production.
 ⇒ Deliver one trailer-load every 2 hours from Chicago,....
 Only 5 ppm O₂ grade available in large quantities,
 ⇒ On-site liquid-phase purification via Oxisorb (MG).
 Raw material, delivery + purification ⇒ \$0.8M/kton.
- ICARUS electronics from CAEN @ \$100/channel.
 3 mm wire spacing ⇒ 300k ch ⇒ \$30M.
 9 mm wire spacing ⇒ 100k ch ⇒ \$10M.
 High capacity of long wires ⇒ signal may be too weak to use 3 mm spacing.
- With neutrino beam, record every pulse (10^{-3} duty factor). Cosmic rays occupy $\approx 10^{-3}$ of active volume,
 - $\Rightarrow \approx 10 \text{ MB}$ data per trigger.
 - \Rightarrow Modest (< \$10M) DAQ/computer system.

200-kton Cryogenic Tanks Used for LNG Storage

Double Wall & Double Roof Tank

Feet				
165				
117.9803				
117.7303				
173				
118.0443				

Chicago Bridge & Iron: can build 100-kton LAr tank for < \$20M.

Cryogenic LNG Storage Tanks

– Applied Cryogenic Technology + Cosmodyne.

Can a Proton Decay Search Be Done at the Surface?

• The signature of the decay $p \to K^+ \overline{\nu}$ is particularly clean: $K^+ \to \pi^+ \to \mu^+ \to e^+.$

 \Rightarrow Maybe "no background" to 10^{35} year even at surface.

- Need 100% duty factor for proton decay search. $\Rightarrow \approx 10 \text{ GB/sec}$ data rate at surface.
- May need to go underground (100 m?) to suppress the data rate.

 \Rightarrow Additional \$100M to site detector underground.

- Cheaper to buy a big DAQ system and operate at the surface
 - if backgrounds are OK there.

Budget Estimate (Very Rough)

For a 100-kton detector at the surface:

1.	Liquid argon (industrial grade)\$7	ΌM
2.	Cryogenic storage tank\$2	0M
3.	Surface site preparation\$1	0M
4.	Cryo plant, including Oxisorb purifiers\$1	0M
5.	Electronics (200k channels) \$2	0M
6.	Computer systems\$1	0M
7.	Subtotal\$14	0M
8.	Contingency\$6	0M
9.	Total\$20	0M

Cost Scaling: Argon \propto mass; rest \propto mass^{2/3}.

25-kton detector	\$70M
5-kton detector	\$20M

R&D Topics

- Liquid-phase purification of industrial grade argon via Oxisorb.
- Mechanics and electronics of wires up to 60-m long.
- Cryogenic feedthroughs, possibly including buffer volume at 150K for low-noise FET's.
- Verify operation of a liquid argon TPC at 10 atmospheres (as at bottom of a 100-kton tank).
- For eventual use at a neutrino factor, verify operation of a liquid argon TPC in a magnetic field (proposals submitted to BNL, CERN).

Simulation Studies

- What is maximum wire spacing consistent with good background rejection of neutral current events, good π^0 identification?
- What is shallowest depth at which proton decay search can be performed to 10^{35} year for $p \to e^+ \pi^0$ and $p \to K^+ \bar{\nu}$?