Physics Opportunities with Muon Beams: Neutrino Factories and Muon Colliders

Kirk T. McDonald

Princeton U.

mcdonald@puphep.princeton.edu

Presented at the 5th International Conference on Physics Potential and Development of $\mu^+\mu^-$ Colliders San Francisco, December 15, 1999

http://puhep1.princeton.edu/~mcdonald/mumu/nufact/

The Y2K Problem for Particle Physics

- Can elementary particle physics prosper for a 2nd century with laboratory experiments based on innovative particle sources?
- Can a full range of new phenomena be investigated:
 - Neutrino mass \Rightarrow a 2nd 3 \times 3 (or larger?) mixing matrix.
 - Precision studies of Higgs bosons.
 - A rich supersymmetric sector (with manifestations of higher dimensions).
 - ... And more
- Will our investment in future accelerators result in more costeffective technology, that is capable of extension to 10's of TeV of constituent center-of-mass energy?

The Solution...

• Accelerator facilities based on muon storage rings: **Neutrino Factories** and **Muon Colliders**.

Where We Are Coming From

- (1956) O'Neill: proposes ionization cooling; realizes it won't work for e or p; proposes electron cooling (with Spitzer).
- (1960) Melissinos: proposes a muon storage ring.
- (1966) Budker: develops electron cooling for protons.
- (1968) Tikhonin: first known mention of $\mu^+\mu^-$ collisions.
- (1969-71) Budker, Skrinsky: Development of idea of a muon collider with storage rings.
- (1970) Ado, Balbekov: revival of idea of ionization cooling.
- (1972) Van der Meer: proposes stochastic cooling.
- (1979) Neuffer: proposes muon collider as a Z^0 factory.
- (1980) Cline, Neuffer: muon storage ring as neutrino source.
- (1987) Neuffer: proposes muon collider as a Higgs factory.
- (1993) Mikhailichenko, Zolotorev: optical stochastic cooling.
- (1994) Palmer: proposes high performance source and cooling channel for a muon collider.

What is a Muon Collider?

An accelerator complex in which

- Muons (both μ^+ and μ^-) are collected from pion decay following a pN interaction.
- Muon phase volume is reduced by 10^6 by ionization cooling.
- The cooled muons are accelerated and then stored in a ring.
- $\mu^+\mu^-$ collisions are observed over the useful muon life of ≈ 1000 turns at any energy.
- Intense neutrino beams (and spallation neutron beams) are available as byproducts.

Muons decay: $\mu \to e\nu \implies$

- Must cool muons quickly (stochastic cooling won't do).
- Detector backgrounds at LHC level.
- Potential personnel hazard from ν interactions.

A First Muon Collider to study light-Higgs production:

The Case for a Muon Collider

- More affordable than an e^+e^- collider at the TeV (LHC) scale.
- More affordable than either a hadron or an e^+e^- collider for (effective) energies beyond the LHC.
- Precision initial state superior even to e^+e^- .

Muon polarization $\approx 25\%$,

 $\Rightarrow \text{Can determine } E_{\text{beam}} \text{ to } 10^{-5} \text{ via } g-2 \text{ spin precession.}$ $t\bar{t} \text{ threshold:} \qquad \text{Nearly degenerate } A^0 \text{ and } H^0:$

 Initial machine could produce light Higgs via s-channel: Higgs coupling to µ is (m_µ/m_e)² ≈ 40,000× that to e. Beam energy resolution at a muon collider < 10⁻⁵, ⇒ Measure Higgs width. Add rings to 3 TeV later.

The Opportunity for a Neutrino Factory

- Many of the neutrino oscillation solutions permit study of the couplings between 2, 3, and 4 neutrinos in accelerator based experiments.
- More neutrinos are needed!
- Present neutrino beams come from $\pi, K \to \mu \nu_{\mu}$ with small admixtures of $\overline{\nu}_{\mu}$ and ν_{e} from μ and $K \to 3\pi$ decays.
- Higher (per proton beam power), and better characterized, neutrino fluxes of both ν_μ and ν_e are obtained from μ decay. Collect low-energy μ's from π decay, accelerate the μ's to the desired energy, and store in a ring while they decay via

6 Classes of Experiments at a Neutrino Factory

$ u_{\mu} \rightarrow \ \nu_{e} \rightarrow e^{-}$	(appearance),	(1)
$ u_{\mu} ightarrow \ u_{\mu} ightarrow \mu^{-}$	(disappearance),	(2)
$ u_{\mu} \rightarrow \ \nu_{ au} \rightarrow au^{-}$	(appearance),	(3)
$\overline{\nu}_e \to \ \overline{\nu}_e \to e^+$	(disappearance),	(4)
$\overline{ u}_e ightarrow \ \overline{ u}_\mu ightarrow \mu^+$	(appearance),	(5)
$\overline{\nu}_e \rightarrow \ \overline{\nu}_{ au} \rightarrow au^+$	(appearance).	(6)

$\nu_{\mu} \rightarrow \ \nu_{\mu} \rightarrow \mu^{-}$ Disappearance

 $E_{\mu} = 30 \text{ GeV},$ 2 × 10²⁰ μ decays, L = 7000 km, $\sin^2 2\theta_{23} = 1.$

Δm^2_{23}	Events
(eV^2)	(per 10 kt-yr)
0.002	2800
0.003	1200
0.004	900
0.005	1700
No Osc.	6200

Measuring θ_{13} via $\overline{\nu}_e \rightarrow \overline{\nu}_\mu \rightarrow \mu^+$

Measuring the Sign of Δm_{23}^2 via Matter Effects

Measuring δ via CP Violation in

 $P(\nu_e \to \nu_\mu) - P(\overline{\nu}_e \to \overline{\nu}_\mu)$

Measuring δ via T Violation in $P(\nu_e \rightarrow \nu_\mu) - P(\nu_\mu \rightarrow \nu_e)$

Modulate the muon polarization to modulate the relative rates of $\nu_{\mu} \rightarrow \nu_{e} \rightarrow e^{-}$ and $\overline{\nu}_{e} \rightarrow \overline{\nu}_{e} \rightarrow e^{+}$ (Blondel).

Physics Summary

- The physics program of a neutrino factory/muon collider is extremely diverse, and of scope to justify an international laboratory.
- The first step is a neutrino factory capable of systematic exploration of neutrino oscillations.
 - With $\gtrsim 10^{20} \nu$'s/year can go well beyond other existing or planned accelerator experiments.
 - Beams with $E_{\nu_e} \lesssim 1$ GeV are already very interesting.
 - Higher energy is favored: Rate $\propto E$ at fixed L/E; ν_{τ} appearance practical only for $E \gtrsim 20$ GeV.
 - Detectors at multiple distances needed for broad coverage of parameter space \Rightarrow triangle or "bowtie" storage rings.
 - CP and T violation accessible with $\gtrsim 10^{21}~\nu{\rm 's/year}.$
 - Control of muon polarization extremely useful when studying $\nu_e \rightarrow e$ modes.

R&D To Make It Happen

- Design (Neutrino Factory and Muon Collider Collaboration).
- $\gtrsim 1$ Megawatt proton source (BNL, CERN, FNAL).
- Targetry and capture (BNL, CERN).

• Ionization cooling (FNAL).

- Induction linac (LBL).
- Recirculating linac (JLAB).
- Storage Ring (CERN, FNAL).

with participation from many other labs and universities.