Physics Opportunities with Muon Beams: Neutrino Factories and Muon Colliders

Kirk T. McDonald

Princeton U.

mcdonald@puphep.princeton.edu

Presented at the 5th International Conference on Physics Potential and Development of $\mu^+\mu^-$ Colliders San Francisco, December 15, 1999

http://puhep1.princeton.edu/˜mcdonald/mumu/nufact/

The Y2K Problem for Particle Physics

- Can elementary particle physics prosper for a 2nd century with laboratory experiments based on innovative particle sources?
- Can a full range of new phenomena be investigated:
	- Neutrino mass \Rightarrow a 2nd 3 \times 3 (or larger?) mixing matrix.
	- Precision studies of Higgs bosons.
	- A rich supersymmetric sector (with manifestations of higher dimensions).
	- ... And more
- Will our investment in future accelerators result in more costeffective technology, that is capable of extension to 10's of TeV of constituent center-of-mass energy?

The Solution...

• Accelerator facilities based on muon storage rings: Neutrino Factories and Muon Colliders.

Where We Are Coming From

- (1956) O'Neill: proposes ionization cooling; realizes it won't work for *e* or *p*; proposes electron cooling (with Spitzer).
- (1960) Melissinos: proposes a muon storage ring.
- (1966) Budker: develops electron cooling for protons.
- (1968) Tikhonin: first known mention of $\mu^+\mu^-$ collisions.
- (1969-71) Budker, Skrinsky: Development of idea of a muon collider with storage rings.
- (1970) Ado, Balbekov: revival of idea of ionization cooling.
- (1972) Van der Meer: proposes stochastic cooling.
- (1979) Neuffer: proposes muon collider as a Z^0 factory.
- (1980) Cline, Neuffer: muon storage ring as neutrino source.
- (1987) Neuffer: proposes muon collider as a Higgs factory.
- (1993) Mikhailichenko, Zolotorev: optical stochastic cooling.
- (1994) Palmer: proposes high performance source and cooling channel for a muon collider.

What is a Muon Collider?

An accelerator complex in which

- Muons (both μ^+ and μ^-) are collected from pion decay following a pN interaction.
- Muon phase volume is reduced by 10^6 by ionization cooling.
- The cooled muons are accelerated and then stored in a ring.
- $\mu^+\mu^-$ collisions are observed over the useful muon life of ≈ 1000 turns at any energy.
- Intense neutrino beams (and spallation neutron beams) are available as byproducts.

Muons decay: $\mu \rightarrow e\nu$

- Must cool muons quickly (stochastic cooling won't do).
- Detector backgrounds at LHC level.
- Potential personnel hazard from ν interactions.

A First Muon Collider to study light-Higgs production:

The Case for a Muon Collider

- More affordable than an e^+e^- collider at the TeV (LHC) scale.
- More affordable than either a hadron or an e^+e^- collider for (effective) energies beyond the LHC.
- Precision initial state superior even to e^+e^- .

Muon polarization $\approx 25\%$,

 \Rightarrow Can determine E_{beam} to 10^{-5} via $g-2$ spin precession. $t\bar{t}$ threshold: Nearly degenerate A^0 and H^0 :

• Initial machine could produce light Higgs via s-channel: Higgs coupling to μ is $(m_{\mu}/m_e)^2 \approx 40,000 \times$ that to e. Beam energy resolution at a muon collider $< 10^{-5}$, \Rightarrow Measure Higgs width. Add rings to 3 TeV later.

The Opportunity for a Neutrino Factory

- Many of the neutrino oscillation solutions permit study of the couplings between 2, 3, and 4 neutrinos in accelerator based experiments.
- More neutrinos are needed!
- Present neutrino beams come from $\pi, K \to \mu\nu_{\mu}$ with small admixtures of $\overline{\nu}_{\mu}$ and ν_e from μ and $K \to 3\pi$ decays.
- Higher (per proton beam power), and better characterized, neutrino fluxes of both ν_{μ} and ν_{e} are obtained from μ decay. Collect low-energy μ 's from π decay, accelerate the μ 's to the desired energy, and store in a ring while they decay via

6 Classes of Experiments at a Neutrino Factory

$\nu_\mu\rightarrow\ \nu_\mu\rightarrow \mu^+$ Disappearance

Measuring θ_{13} via $\overline{\nu}_e \rightarrow \overline{\nu}_\mu \rightarrow \mu^+$

Measuring the Sign of Δm^2_{23} via Matter Effects

Measuring δ via CP Violation in

 $P(\nu_e \rightarrow \nu_\mu) - P(\overline{\nu}_e \rightarrow \overline{\nu}_\mu)$

Measuring δ via T Violation in $P(\nu_e \rightarrow \nu_\mu) - P(\nu_\mu \rightarrow \nu_e)$

Modulate the muon polarization to modulate the relative rates of $\nu_{\mu} \rightarrow \nu_{e} \rightarrow e^{-}$ and $\overline{\nu}_{e} \rightarrow \overline{\nu}_{e} \rightarrow e^{+}$ (Blondel).

Physics Summary

- The physics program of a neutrino factory/muon collider is extremely diverse, and of scope to justify an international laboratory.
- The first step is a neutrino factory capable of systematic exploration of neutrino oscillations.
	- $−$ With $\geq 10^{20}$ ν 's/year can go well beyond other existing or planned accelerator experiments.
	- Beams with $E_{\nu_e} \lesssim 1$ GeV are already very interesting.
	- Higher energy is favored: Rate $\propto E$ at fixed L/E ; ν_{τ} appearance practical only for $E \gtrsim 20$ GeV.
	- Detectors at multiple distances needed for broad coverage of parameter space \Rightarrow triangle or "bowtie" storage rings.
	- − CP and T violation accessible with $\gtrsim 10^{21} \nu$'s/year.
	- Control of muon polarization extremely useful when studying $\nu_e \rightarrow e$ modes.

R&D To Make It Happen

- Design (Neutrino Factory and Muon Collider Collaboration).
- \bullet \gtrsim 1 Megawatt proton source (BNL, CERN, FNAL).
- Targetry and capture (BNL, CERN).

• Ionization cooling (FNAL).

- Induction linac (LBL).
- Recirculating linac (JLAB).
- Storage Ring (CERN, FNAL).

with participation from many other labs and universities.