

Physics Opportunities with Muon Beams:

Neutrino Factories and Muon Colliders

Kirk T. McDonald

Princeton U.

mcdonald@puphep.princeton.edu

Congress of the Canadian Association of Physicists

York University, June 5, 2000

http://puhep1.princeton.edu/˜mcdonald/mumu/nufact/

A New Opportunity for a New Millenium

- Elementary particle physics can prosper for a 2nd century with laboratory experiments based on innovative particle sources.
- A full range of new phenomena can be investigated:
	- Neutrino mass \Rightarrow a 2nd 3 × 3 (or larger?) mixing matrix.
	- Precision studies of Higgs bosons.
	- A rich supersymmetric sector (with manifestations of higher dimensions).
	- ... And more
- For this we need accelerators with a more cost-effective technology, that is capable of extension to 10's of TeV of constituent center-of-mass energy.

The Solution...

• Accelerator facilities based on muon storage rings: Neutrino Factories and Muon Colliders.

KIRK T. MCDONALD JUNE 5, 2000 2

Why Muons?

- Muons are heavy leptons.
	- $-\Rightarrow$ Very little initial state radiation (beamstrahlung).
	- $-\Rightarrow$ Precision initial state with full-energy coupling to gauge bosons.
	- $-\Rightarrow$ Enhanced coupling to Higgs boson(s).
	- $-\Rightarrow$ Can store muons in rings.
	- $-\Rightarrow$ Lower cost of acceleration.
- But muons decay.
	- $-\Rightarrow$ Secondary neutrino beams.
	- $-\Rightarrow$ Must cool and accelerate the muons quickly.

What is a Muon Collider?

An accelerator complex in which

- Muons (both μ^+ and μ^-) are collected from pion decay following a pN interaction.
- Muon phase volume is reduced by 10^6 by ionization cooling.
- The cooled muons are accelerated and then stored in a ring.
- $\mu^+\mu^-$ collisions are observed over the useful muon life of ≈ 1000 turns at any energy.
- Intense neutrino beams (and spallation neutron beams) are available as byproducts.

Muons decay: $\mu \to e\nu \implies$

- Must cool muons quickly (stochastic cooling won't do).
- Detector backgrounds at LHC level.
- Potential personnel hazard from ν interactions. KIRK T. MCDONALD JUNE 5, 2000 4

A First Muon Collider to study light-Higgs production:

KIRK T. MCDONALD JUNE 5, 2000 5

The Case for a Muon Collider

- More affordable than an e^+e^- collider at the TeV (LHC) scale.
- More affordable than either a hadron or an e^+e^- collider for (effective) energies beyond the LHC.
- Precision initial state superior even to e^+e^- .

Muon polarization $\approx 25\%,$

 \Rightarrow Can determine E_{beam} to 10^{-5} via $g-2$ spin precession.

• Initial machine could produce light Higgs via s-channel: Higgs coupling to μ is $(m_{\mu}/m_e)^2 \approx 40,000 \times$ that to e. Beam energy resolution at a muon collider $< 10^{-5}$, \Rightarrow Measure Higgs width.

Add rings to 3 TeV later. KIRK T. MCDONALD JUNE 5, 2000 6

The Opportunity for a Neutrino Factory

- Many of the neutrino oscillation solutions permit study of the couplings between 2, 3, and 4 neutrinos in accelerator based experiments.
- More neutrinos are needed!
- Present neutrino beams come from $\pi, K \to \mu\nu_\mu$ with small admixtures of $\overline{\nu}_{\mu}$ and ν_e from μ and $K \to 3\pi$ decays.

Cleaner spectra and comparable fluxes of ν_e and ν_μ desirable.
T. McDonald KIRK T. MCDONALD

A Neutrino Factory based on a Muon Storage Ring

- Higher (per proton beam power) and better characterized neutrino fluxes are obtained from μ decay.
- Collect low-energy μ 's from π decay,

Cool the muon bunch,

Accelerate the μ 's to the desired energy,

Store them in a ring while they decay via $\mu^- \to e^- \nu_\mu \overline{\nu}_e$.

[Of course, can use μ^+ also.]

Oscillations of Massive Neutrinos

Neutrinos could have a small mass (Pauli, Fermi, Majorana, 1930's).

Massive neutrinos can mix (Pontecorvo, 1957).

In the example of only two massive neutrinos, with mass eigenstates ν_1 and ν_2 with mass difference Δm and mixing angle θ , the flavor eigenstates ν_a and ν_b are related by

$$
\begin{pmatrix} \nu_a \\ \nu_b \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}.
$$

The probability that a neutrino of flavor ν_a and energy E appears as flavor ν_b after traversing distance L in vacuum is

$$
P(\nu_a \to \nu_b) = \sin^2 2\theta \sin^2 \left(\frac{1.27 \Delta m^2 [\text{eV}^2] L [\text{km}]}{E [\text{GeV}]} \right).
$$

The probability that ν_a does not disappear is

$$
P(\nu_a \to \nu_a) = \cos^2 2\theta \sin^2 \left(\frac{1.27 \Delta m^2 [\text{eV}^2] L [\text{km}]}{E [\text{GeV}]} \right).
$$

KIRK T. MCDONALD JUNE 5, 2000 10

A Sketch of Current Data

- 1. The "anomaly" of atmospheric neutrinos suggests that GeV ν_{μ} 's disappear while traversing the Earth's diameter. $\Rightarrow \Delta m^2 \approx 10^{-3} \text{ (eV)}^2 \text{ for } \sin^2 2\theta \approx 1.$ (Kamiokande, IMB, Soudan-2, MACRO, Super-Kamiokande)
- 2. The solar neutrino "deficit" suggests that MeV ν_e 's disappear between the center of the Sun and the Earth. $\Rightarrow \Delta m^2 \approx 10^{-10} \text{ (eV)}^2 \text{ for } \sin^2 2\theta \approx 1$, if vacuum oscillations. (Homestake, GALLEX, SAGE)
- 3. The LSND experiment at Los Alamos suggests that 30-MeV $\overline{\nu}_\mu$'s appears as $\overline{\nu}_e$'s after 30 m. $\Rightarrow \Delta m^2 \approx 1 \text{ (eV)}^2$, but reactor data requires $\sin^2 2\theta \lesssim 0.03$.
- The first two results require at least 3 massive neutrinos.
- All results together require at least 4 massive neutrinos.
- The measured width of the Z^0 boson (LEP) \Rightarrow only 3 Standard

Model neutrinos. A 4th massive neutrino must be "sterile". KIRK T. MCDONALD JUNE 5, 2000 11

 \overline{a}

 \overline{a}

 \mathbf{r}

Mixing of Three Neutrinos

$$
\begin{pmatrix}\n\nu_e \\
\nu_\mu \\
\nu_\tau\n\end{pmatrix} = \begin{pmatrix}\n\text{c}_{12}\text{c}_{13} & \text{s}_{12}\text{c}_{13} & \text{s}_{13}e^{-i\delta} \\
-\text{s}_{12}\text{c}_{23} - \text{c}_{12}\text{s}_{13}\text{s}_{23}e^{i\delta} & \text{c}_{12}\text{c}_{23} - \text{s}_{12}\text{s}_{13}\text{s}_{23}e^{i\delta} & \text{c}_{13}\text{s}_{23} \\
\text{s}_{12}\text{s}_{23} - \text{c}_{12}\text{s}_{13}\text{c}_{23}e^{i\delta} & -\text{c}_{12}\text{s}_{23} - \text{s}_{12}\text{s}_{13}\text{c}_{23}e^{i\delta} & \text{c}_{13}\text{c}_{23}\n\end{pmatrix}\n\begin{pmatrix}\n\nu_1 \\
\nu_2 \\
\nu_3\n\end{pmatrix}
$$
\nwhere $\text{c}_{12} = \cos\theta_{12}$, etc. (Maki, Nakagawa, Sakata, 1962).

Three massive neutrinos \Rightarrow six independent parameters:

- Three mixing angles: θ_{12} , θ_{13} , θ_{23} ,
- A phase δ related to CP violation,
- Two differences of the squares of the neutrino masses. Ex: $\Delta m_{12}^2 = \Delta m^2$ (solar) and $\Delta m_{23}^2 = \Delta m^2$ (atmospheric).

Measurement of these parameters is a primary goal of experimental neutrino physics.

If four massive neutrinos, then 6 mixing angles, 3 phases, 3 independent squares of mass differences.

 \mathbf{r}

 \overline{a}

 \mathbf{r}

6 Classes of Experiments at a Neutrino Factory

- $\nu_{\mu} \rightarrow \nu_{e} \rightarrow e^{-}$ (appearance), (1)
- $\nu_{\mu} \rightarrow \nu_{\mu} \rightarrow \mu^{-}$ (disappearance), (2)
- $\nu_{\mu} \rightarrow \nu_{\tau} \rightarrow \tau^{-}$ (appearance), (3)
- $\overline{\nu}_e \to \overline{\nu}_e \to e^+$ (disappearance), (4)
- $\overline{\nu}_e \to \overline{\nu}_\mu \to \mu^+$ (appearance), (5)

$$
\overline{\nu}_e \to \overline{\nu}_\tau \to \tau^+ \qquad \text{(appearance)}.
$$
\n
$$
\nu_\mu \to \nu_\mu \to \mu^- \text{Disappearance}
$$
\n(6)

Measuring θ_{13} via $\overline{\nu}_e \rightarrow \overline{\nu}_\mu \rightarrow \mu^+$

10 kton detector, $E_{\mu} = 20 \text{ GeV},$ 2×10^{20} μ decays, $L = 732$ km, $\sin^2 2\theta_{23} = 1,$ Left: $\overline{\nu}_e \rightarrow \overline{\nu}_\mu \rightarrow \mu^+,$ Right: $\nu_{\mu} \rightarrow \nu_{\mu} \rightarrow \mu^{-}$, $Box =$ presently allowed.

Measuring the Sign of Δm^2_{23} via Matter Effects

Measuring δ via CP Violation in

$$
P(\nu_e \to \nu_\mu) - P(\overline{\nu}_e \to \overline{\nu}_\mu)
$$

10 kton detector, 2×10^{21} muon decays, Large angle MSW: $\Delta m_{12}^2 = 10^{-4} \text{ eV}^2,$ $\Delta m_{23}^2 = 2.8 \times 10^{-3} \text{ eV}^2,$ $\theta_{12} = 22.5^{\circ},$ $\theta_{13} = 13^{\circ},$ $\theta_{23}=45^{\circ}$, $\delta = -90^\circ$.

Measuring δ via T Violation in $P(\nu_e \rightarrow \nu_\mu) - P(\nu_\mu \rightarrow \nu_e)$

Modulate the muon polarization to modulate the relative rates of

 $\nu_{\mu} \rightarrow \nu_{e} \rightarrow e^{-}$ and $\overline{\nu}_{e} \rightarrow \overline{\nu}_{e} \rightarrow e^{+}$. KIRK T. MCDONALD JUNE 5, 2000 15

A Neutrino Factory is a Global Facility

- Host lab with the muon storage ring and near detector.
- Could have two larger detectors located elsewhere, possibly one on the same, and the second on another continent.
- For this, the muon storage ring needs 3 straight sections, and would not lie in a horizontal plane.

Large Underground Detectors

Gran Sasso in Italy:

DOE nuclear waste facility in New Mexico:

Physics Summary

- The physics program of a neutrino factory/muon collider is extremely diverse, and of scope to justify an international laboratory.
- The first step is a neutrino factory capable of systematic exploration of neutrino oscillations.
	- $−$ With $\geq 10^{20}$ ν 's/year can go well beyond other existing or planned accelerator experiments.
	- Beams with $E_{\nu_e} \lesssim 1$ GeV are already very interesting.
	- Higher energy is favored: Rate $\propto E$ at fixed L/E ; ν_{τ} appearance practical only for $E \gtrsim 20$ GeV.
	- Detectors at multiple distances needed for broad coverage of parameter space \Rightarrow triangle or "bowtie" storage rings.
	- − CP and T violation accessible with $\gtrsim 10^{21} \nu$'s/year.
	- Control of muon polarization extremely useful when studying $\nu_e \rightarrow e$ modes.

KIRK T. MCDONALD JUNE 5, 2000 18

R&D To Make It Happen

- Design (Neutrino Factory and Muon Collider Collaboration).
- 1-4 Megawatt proton source (BNL, CERN, FNAL, KEK).
- Targetry and capture (BNL, CERN).

• Ionization cooling.

Particles are slowed along their path (dE/dx)

Particles are accelerated longitudinally

Muon Scattering Experiment (RAL, TRIUMF et al.):

An Initial Cooling Demonstration (BNL or TRIUMF):

- Induction linac (LBL).
- Recirculating linac (JLAB).
- Storage Ring (CERN, FNAL).

with participation from many other labs and universities. KIRK T. MCDONALD JUNE 5, 2000 20

R&D Schedule

- FY00: Feasibility study for a basic neutrino factory $(5 \times 10^{19} \nu \text{'s/year}).$
- FY01: Feasibility study for more ambitious neutrino factory $(2-4 \times 10^{19} \nu' s/year).$

Neutrino Factory "book" for Snowmass '01.

- FY02-03: Continued R&D on accelerator design, targetry, cooling...
- FY04: Zeroeth Order Design Report.