

Large Underground Space for Neutrino Detectors

Kirk T. McDonald

Princeton University

June 26, 2001

Meeting with Brierley Associates

Ithaca, NY

http://puhep1.princeton.edu/~mcdonald/nufact/

Neutrinos

- Recent evidence indicates that neutrinos have mass.
 The total mass of neutrinos in the universe is likely large than that of ordinary matter.
- Neutrinos are much like electrons but without electric charge.
- The heaviest neutrino weighs about 1/10,000,000 of an electron.

 \Rightarrow Neutrinos produced on Earth or in the Sun move at very close to the speed of light.

- Most neutrinos pass through the Earth without interacting.
- Go underground to avoid cosmic rays.
- To detect low-energy neutrinos, natural radioactivity must be low.
- → Need large underground space for neutrino detectors.

KIRK T. MCDONALD

(At Least) Three Kinds of Neutrinos

- There are 3 kinds of electrons: e, μ , and τ . The main difference is their mass: $m_{\mu} \approx 200 m_e, m_{\tau} \approx 3700 m_e$.
- For each type of electron, there is a type of neutrino: ν_e, ν_μ , and ν_τ .

The neutrinos differ mainly in their masses – but these are not well known yet.

- Apparently, neutrinos can change their type: "neutrino oscillation".
- The distance over which a neutrino changes its type depends on its energy.
- For the most probable type of oscillation, the best distance for observation is 400 km $\times E_{\nu}$ in GeV.
- Example: Ithaca to Brookhaven Lab is 360 km \Rightarrow best for $E_{\nu} \approx 0.9 \text{ GeV} \text{which}$ is a good energy for neutrino beams at BNL.

KIRK T. MCDONALD

Superkamiokande Sets The Standard

SuperK is a water tank, 40 m diameter, 50 m tall.

It is located about 2000 m underground in a zinc mine in western Japan.

A New Large Detector Concept: LANNDD

Liquid Argon Neutrino and Nucleon Decay Detector

LANNDD Liquid Argon Neutrino and Nucleon Decay Detector

F. Sergiampietri-August 2000

KIRK T. MCDONALD

LANNDD is 50 m Diameter, 60 m High

http://xxx.lanl.gov/abs/astro-ph/0105442

LANNDD Physical Parameters

NuFact'01 - March 24-30, 2001

F. Sergiampietri LANNDD 26

```
http://www.hep.princeton.edu/~mcdonald/nufact/sergiampietri\_nufact01.pdf
```


Where to Put a Large Neutrino Detector?

Previous (smaller) neutrino detectors are in existing mines.

Is a New Site Affordable?

- For an accelerator-based neutrino experiment, Physics output \propto neutrino flux \times detector mass.
- ⇒ Physics/dollar optimized when accelerator costs are similar to detector/site costs.
- Accelerator upgrades to a 4-MW proton source to drive the neutrino beam will cost \approx \$400M.
- A 50-100 kton neutrino detector will cost \$100-200M.
- In this context, a site cost of \$100-200M is justifiable.
- A recent prosposal seeks \$200M to upgrade the Homestake Mine site – but only for small detectors.
 http://www.sns.ias.edu/jnb/Laboratory/NSFproposal.pdf
- Can a new, large site be commissioned for a similar cost?

	CUNL	Homestake	San Jacinto	Soudan
mwe ^a 16	00 ^h 1840 ⁱ	6156 ^j (6700) ^k	A: 5000 ¹	2200 ^m
	3172 ^j (3524) ^k	6656 ^j (7100) ^k	B: 6000	
			C: 6510	
			D: 7000 ¹	
Depth (m)	655	2255	See note u	710
	1300	2438		
Depth (ft)	2150	7400	See note u	2300
	4265	8000		
Density	2.44	2.73	2.73	3.1
Figure of	ⁿ \$11/ton	\$140/m ³	′\$73/m ³	
Merit ^b	°\$23/m ³	^q \$50/ton		
	^p \$25/m ²			
LII Factor ^c	1.1 1.	05- 1.1	1	1.2
Halls \$5.	9M °	\$40M ^s for	\$33M ^t	
	3 halls of	3 halls of	3 halls of	
	15m x 10m x	18m x 18m x	20m x 20m x	
	100m	100m	100m	
Cavern D ^d	See note u	See note u	\$81.8M [∨]	\$70M ^w
Cost of	(\$0M) \$2-	\$3.8M/year ^y	\$2.3M/year ^y	\$1M/year ^w
Operations	10M/year ^x	\$76M over 20	\$46M over 20	\$20M over
	(\$0M) \$40M-	year lifetime	year lifetime	20year lifetime
	\$200M			
	over 20 year			
	lifetime			
Cost of	^z \$43.6M +(\$14.2)	\$43M ^{aa}	\$51M ^{bb}	\$21M ^w
Access ^e			\$65M ^{bb}	
			\$82M ^{bb}	
Declared	25%		25%	
Contingency				
Surface	25kft ² = \$6M	3 bldg = \$53M	\$18kft ²	
Building	+\$10M	32kft ² ; 175kft ² ;	warehouse +	
Costs		41kft ²	12k ft ² lab +	
			$30kft^2$ Admin =	
			\$6.6M	
Total ^g	\$63.7M (\$104M)	\$83M (\$159M)	\$115M	
			(\$161M) ^{cc}	

Appendix C.3: Comparison of Select Characteristics and Costs of Four Principal Candidate Sites

Table 3—Summary of Major Development Tasks for NUSL at Homestak	0
Table 5—Summary of Major Development Tasks for NOSE at Homestak	c

Task	Location/Type	Estimated Cost ¹
Laboratory excavations and finishes	Lower Campus	\$12,130,000
Control and scientist support facilities	Lower Campus	\$3,980,000
Facilities for Detector Mechanical Support Systems	Lower Campus	\$1,110,000
Ultra-low background counting facility and equipment	Lower Campus	\$2,900,000
Refuge Room and Sump	Lower Campus	\$400,000
Cosmogenic Decay Storage Areas	Lower Campus	\$250,000
TotalforLowerCampus		\$20,770,000
Demolish and clear existing structures	Upper Campus	\$5,000,000
Renovate existing structures for science,	Upper Campus	\$5,000,000
administration		
New building for science, administration	Upper Campus	\$6,125,000
New near-underground space for outreach	Upper Campus	\$14,000,000
Receiving and warehousing space	Upper Campus	\$3,750,000
Totalfor UpperCampus		\$33,875,000
Road Improvements and Parking	Access	\$3,000,000
Immediate Shaft and Cage Improvements	Access	\$8,500,000
Drifts at 7400 level	Access	\$20,210,000
Ramp system improvements	Access	\$1,500,000
Yates shaft improvements	Access	\$30,710,000
Underground materials handling and transport	Access	\$1,625,000
systems		
Totalfor Access		\$65,545,000
Lower Campus System Upgrades	Systems	\$22,110,000
Upper Campus System Upgrades	Systems	\$3,250,000
Lower Campus Isolation Systems	Systems	\$500,000
Sealing Unused Underground Areas	Systems	\$400,000
Total Systems	\$26,260,000	
Sub-TotalLa boratory Development	\$146,450,000	
EDIA (12%)		\$17,574,000
Contingency (25%)	\$36,612,500	
TotalforLa boratory Development	\$200,636,500	

¹Estimated costs are in FY2003 dollars.

Figure 3-Distribution of Development Costs for the National Underground Science Laboratory at Homestake

Siting Criteria for a Large Neutrino Detector

- Good access so can construct a large underground facility.
 ⇒ Horizontal tunnel preferable to vertical shaft.
- Deeper is better but a large neutrino detector does not need to be as deep as a small one. At least 2000' underground.
- A dry site is preferable.
- Low natural radioactivity is preferable.
 This and the previous item tend to favor sites in salt beds if big caverns are viable there.
- The site should be near suitable academic, cultural and industrial infrastructure.

Extensive Salt Beds in the Great Lakes Area

How deep?

Vertical access only?

Horizontal Access Sites Along the Hudson and in the White Mountains

High Peak near Catskill, NY is 3650' high and 170 km from BNL. Possible access: L = 2.6 mi, $\Delta h = 3050'$, or L = 4.0 mi, $\Delta h = 3300'$.

Mt. Washington, NH is 6288' high and 390 km from BNL. Possible access: L = 2.8 mi, $\Delta h = 4300'$.

Mt. Adams, NH is 5774' high and 390 km from BNL. Possible access: L = 3.0 mi, $\Delta h = 4400'$.

Water, radioactivity...?