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ABSTRACT 

In an experiment conducted at the Caltech l.5 GeV electron 

synchrotron, we measured the cross section for photoproduction of 

eta mesons from deuterium. The measurement was performed by detect

ing and measuring the energies of both photons from the ~ --7 '2:y decay 

mode using two totally absorbing lead glass Cherenkov counters. These 

counters were placed symmetrically about the photon beam line in order 

to best detect eta mesons photoproduced along the beam line. By 

varying the placement of the Cherenkov counters and by varying the 

synchrotron end-point energy, we were able to obtain information on 

the forward and backward cross section for photoproduction over an 

energy range from about 725 MeV to about l225 MeV. 

Within the framework of the impulse approximation, we expressed 

our results as a sum of the differential cross section for eta photo

production from protons plus that from neutrons. The unfolding of the 

cross section was performed by finding the function that was the 

smoothest (using a well-defined measure of smoothness) function that 

fit the .data to within a given degree of accuracy (as measured by x2). 

The results show that for photon energy below 950 MeV, the 

cross section for photoproduction from neutrons is about equal in the 

forward and backward directions, and is about the same as the cross 

section for photoproduction from protons. Above 950 MeV, a signif

icant angular asymmetry is seen, and the neutron cross section shows 

signs of reaching a minimum, then rising. These results are inter-
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preted in terms of contributing isobars. 
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I. INTRODUCTION 

A. Symmetry Considerations 

At the time we decided to perform this experiment on 

/ + d __, ~ + n + p, much information on the reaction / + p __, ~ + p 

below 1.5 GeV photon energy was available or about to become available 

(see especially reference 22 and references therein). The cross 

sectipn had been measured at a few angles to within about a ten percent 

accuracy from slightly above threshold to 1.45 GeV with a density of 

about one measurement every 15 MeV. A measurement of the polarization 

of the recoil proton( 22 ) was being analyzed. Information was also 

becoming available on cross sections for eta photoproduction from 

protons at energies higher than the 1.5 GeV to which we were limited 

at Caltech. But no measurements had yet been made on eta photopro-

duction from neutrons. Moreover, work had already begun on a 

/ + p __, ~ + p experiment with kinematics such that the recoil proton 

could not be detected. Merely replacing the hydrogen target with a 

deuterium target allowed us to examine eta photoproduction from 

neutrons. As it turned out, a group at Frascati was also working on 

/ + n __,~ + n.( 23 ) Their measurements gave cross sections at two 

energies around 850 MeV and at center-of-mass angles -.4<cos(G) < .6. 

We proposed to map out the cross section for the same reaction, but 

at cos(G) ~ ±1 and over the energy range from threshold to as high 

an energy as we could successfully reach with the methods, equipment 

and time available. The reader deserves an explanation of how such 

information can be valuable. 
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We begin by writing down a general expression for photopro-

duction to lowest order in the electromagnetic interaction. Consider 

the reaction 

y + a~b. 

The amplitude for this reaction to lowest order is of the form 

Amplitude oe eµ (b I j cit) I a>, 
µ 

where eµ is the polarization four-vector of the photon (we use the 

notation xµ yµ = t_j = x
0

y
0 

-~.Y), jµ (t) is the electromagnetic 

~. current operator and k is the four vector photon momentum. Such 

matrix elements are non-zero only if the isospin of b differs from 

that of a by zero or one. From this observation, it follows that j 

can be made up of no more than an isoscalar component plus an isovector 

component. If ·t . .V .S we wri e J = J + J -µ µ µ isovector + isoscalar, then 

it is a matter of simple group theory to obtain certain relations for 

photoproduction of pi mesons from nucleons. C24 ) Following Walker, (lB) 

we use the notation AV3 for the part of the amplitude corresponding 

to 1rN final states with I=3/2, AVl for the part corresponding to I=l/2 

final states from the jv part s of the current, and A for the I =l/2 

final states from .s 
J 

Then 

+ A+ = )1/3 AV3 _)2/3 (AVl AS) y + P ~re + n: 
I A.l 

0 Ao = )2/3 AV3 +)1/3 (AVl _AS) )' + P ~re + p: 
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I + n ~ 1t' + p: 

I A.l 

We write down the corresponding equations for photoproduction of etas. 

I + p ~ T)+ p: 
' 

I A.2 

Photoproduction of pions was historically studied first, and 

has been and will continue to be known better than eta photoproduction. 

But although eta photoproduction experiments are harder, in some 

respects they are more rewarding. The special simplicity of equations 

I A.2 arises from the fact that the final state can only be isospin 1/2, 

rather than both 1/2 and 3/2. In the case of pion photoproduction, in 

order to separate I=l/2 from I=3/2, two photoproduction amplitudes 

must be known, and amplitudes are usually hard to extract from experi-

mental yields, which represent probabilities. The separation is 

performed automatically when the final state is an eta-nucleon system. 

Let us now extend our discussion of symmetries to SU(3) (see 

for example reference 37). If we take the Fourier transform of J. 
0 

and integrate over all space we get the electric charge, Q, which in 

the language of SU(3) satisfies Q = I + Y/2 = z-component of the 
z 

isospin + half the hypercharge. This operator, Q = j (0), is the U-spin 
0 

zero member of an SU(3) octet of operators. If we assume j (it) also 
µ 

has U=O (regardless of whether or not it is entirely octet) then 



4 

electromagnetic transitions cannot change U. Af3 Lipkin( 2G) first 

pointed out, the member of the J,,9* (anti-decuplet) isodoublet corre

sponding to the proton has U-spin = 3/2, so cannot be photoproduced 

from the U=l/2 proton. The member of the :JvO* isodoublet corresponding 

to the neutron has U=l, and can be photoproduced. One reason, then, 

for our interest in photoproduction of I=l/2 states from neutrons is 

the possibility of seeing evidence of a l~*· Remember that the inter-

mediate states of our experiment will all be I=l/2 non-strange baryons. 

A lO*, or for that matter anything other than an octet, would be 

surprising in our experiment because in any three-quark model of the 

baryons, I=l/2 non-strange baryons must be members of octets. 

If we move a little further along the path toward current 

algebra, we can suppose that the electromagnetic current is not only 

a U=O operator, but is a member of an SU(3) octet. We now can de-

compose the photoproduction amplitudes with respect to SU(3) repre-

sentations in the same way used in the derivation of equations 

I A.l and I A.2, but first we restrict ourselves to the case of 

resonances in the intermediate state. The intermediate states of 

photoproduction from nucleons must be limited to members of the 

possible irreducible representations of 

8 x 8 
d f 

= 1 + ~ + ~ + l,O + l,O* + ?_,7 • 

The restriction to strangeness = zero, isospin = 1/2 excludes the 1 

and 10 from consideration. Then simple manipulation of SU(3) 
"' 

Clebsch-Gordon coefficients at the photon vertex relates AS to AVl 

and relates AS~ to Av~. Similar manipulation at the decay vertex 
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relates AVT) to AVl and AST) to As. The results, of course, depend on 

the representation to which the resonance belongs. Table I.l 

summarizes the results. ay/(l-CY.y) is the D to F ratio at the photon 

vertex when the intermediate state is in an octet, and a/(1-a) is the 

D to F ratio at the decay vertex. a and a can be expected to vary 
y 

from one resonance to another. When an octet resonance is pure 

isovector (as Walker(lB) obtains for the Sl1 (l535), the Dl
3

(l520) and 

the F15 (l688)) then it means ay ~.75. When an octet resonance is 

observed in photoproduction of pi mesons, but not in photoproduction 

of etas, then for that resonance a~ .75. 

For those components of the amplitude that are in a 10* or 

?_,7, the ratios given in Table I.l are correct regardless of whether 

or not a resonance dominates. Then equations I A.l and I A.2 can 

have their l,.9* and ?_,7 parts separated from their octet parts: 

A+ :::: J 1 / 3 AV3 _ J 2/ 3 (AVl s 
+ 2A27) - A n r, 

Ao :::: 12;; AV3 + j1-;; (A~l s 
2A27) - A + 8 

A - = .f1i; AV3 _ j2/3 (AVl s 
+ AlO - A27) 8 + A8 

I A.3 

Aon= j2 / 3 AV3 + /lj; (A~ s 
+ ~O - A27) + A8 ' 

AT)+= AST) 
8 

- AVT) 
8 + 6A27 

A T)O:::: AST) 
8 

AVT) 
+ 8 + ~o + 3A27 

For each octet resonance, the components of the octet amplitudes 

corresponding to that resonance still satisfy the relationships given 

in Table I.l. From equations I A.3 we see, as pointed out earlier, 
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that the J;,O* does not contribute to photoproduction from protons. We 

also see that the ~7 component contributes more to eta photoproduction 

than to pi photoproduction and contributes more to photoproduction 

from protons than from neutrons. 

B. Resonances and Exchanges 

Some of the intermediate states that we might expect in eta 

photoproduction are (from the Review of Particle Properties)( 25 ) 

Pl1 (1470), Dl3(1520), SlJ_(l535), D15 (1670), F15 (1688), Sli.(1700), and 

Pi1 (1780 ). Other particles are expected to be too high in mass to 

greatly affect this experiment. We will discuss these resonances one 

by one. 

Pl
1

(1470), the Roper resonance, has not yet been shown to 

appear in photoproduction. It is probably below threshold for our 

reaction, but its mass is known very poorly. It was once suspected, 

in fact, that the large cross section near threshold is caused by the 

Roper. Although it now seems pretty certain that the Sll dominates 

near threshold, the tail of the Roper may be able to influence the 

cross section even if the Pll is below threshold. The effect of the 

Roper resonance must be suppressed by the angular momentum barrier. 

As Levi Setti( 32) points out, the effect of the angular momentum 

barrier can be described qualitatively as follows: Maximum angular 

momentum allowable in outgoing state = center-of-mass momentum of an 

outgoing particle x maximum distance over which the strong interactions 

can act (one or two fermis). From this point of view, we expect the 
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TABLE I.l 

SU(3) Derived Relationships for Resonances 

Representation of Resonance 

Ratio 8 10* ?.,7 
rv rv 

A/.v1 3-40'. A I - 3 

Ah AVTJ 
l -3 

A~ AS 3 - 40'. ---3 

A~ AVI 
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tail of the Roper to start having an effect when the photon lab energy 

exceeds 750 MeV (so that the eta has c.m. momentum of over 134 MeV/c 

and the center-of-mass energy is over 1513 MeV). The interference of 

the Pll with the Sll would cause a cos(9) term in the center-of-mass 

cross section. Such a term is not observed in y + p -7 T) + :p (as of 

this writing) up to a photon energy of 865 MeV. See, for example, 

reference 2l. If the Roper resonance were in an SU(3) l,O*, this absence 

of the cos(g) term would be easily explained by U-spin conservation, as 

discussed in the previous section. But according to the quark model 

as used by Faiman and Hendry( 28 ) (and later by Copley, Karl and 

Obryk)( 29 ) the P' should be produced even less frequently from neutrons 
' 11 

than from protons. If we see evidence of a Roper resonance in photo-

production from neutrons, it will at least contradict the version of 

the quark model used by Copley, Karl and Obryk. Such evidence would 

even suggest that the Pll is in a lO*, contradicting all models which 

make baryons from three quarks. 

We now turn to a discussion of the D13(1520), observed promi

nently in elastic pion-nucleon scattering (the "second resonance") 

and in y + N -?N + ~ • Although the angular momentum barrier should 

strongly suppress the Dl3 in ~ + p -? T) + n , a D13 ' term can be seen 

there as an interference with the nearby Sll" Such interference 

produces a substantial cos
2

(9) term in the reaction ~ + p -7 T) + n 

at pion kinetic energy of 655 and 704 Mev.C 2o) These energies corre-

spond to 805 and 855 MeV in eta photoproduction. But an experiment 

conducted at Orsay( 2l) found little or no cos 2(9) dependence in 

y + p -? T) + p when the photon energy varied from 750 MeV to 865 MeV. 
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In order to see whether such an interference term is to be expected in 

y + n ~~ + n, we must try to understand why none was seen with a 

proton target. 

Suppose an experiment is performed in which two unpolarized 

particles collide to produce one or more outgoing particles. We have 

in mind a cross section measurement or a measurement of the polarization 

of a recoil particle. In the center-of-mass, the results of the experi-

ment must be independent of the azimuthal angle about the axis of the 

two unpolarized incoming particles (the z-axis). It follows that the 

interference between states of differing jJzj cannot contribute to the 

results of such an experiment. For the Dl3, jJzj = 1/2 or 3/2. But 

.~~ + N(l7, 18, 19) it is known from partial wave analyses of y + p _," 

that in photoproduction from protons the Di3 is produced primarily in 

a jJzj = 3/2 state. It follows that even if the Dl3 contributes as 

large a fraction to the amplitude for y + p ~ ~ + p as it does to that 

for 1L + p -7~ + n, in the photoproduction case the Dl3 will not inter-

2 
fere with the J=l/2 states to produce a cos (g) term. Similarly it 

will not contribute to the recoil proton polarization. One way of 

detecting the Dl
3 

in y + p -7~ + p would be to measure the polarized 

photon asymmetry or the polarized target asymmetry. In either case, 

only the interference between differing jJzl contributes to the 

asyrrrrnetry. 

At this point in our reasoning, the question is whether IJzl = 1/2 

can be expected when the Dl
3 

is photoproduced from neutrons. According 

to Copley, Karl and Obryk, (29 ) the answer is yes. From their use of a 

quark model, the cancellation of the jJzj = 1/2 that occurs in photo-
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production of the Di; should not occur in photoproduction of the Di~ 

But conside~ on the other hand, the argument of Bietti. ( 30) He 

concludes from current algebra considerations that 

a) 

b) 

E Vl 
2-

M Vl = 
2-

E S 
2-

2.7, and 

o. 

and Vl M2_ are parts of the electric dipole and magnetic quadrupole 

moments that contribute to AVl in equation I A.l. ES is a part of 
2-

the electric dipole that contributes to As. Subscript "n±" denotes 

a part of the amplitude corresponding to a state of angular momentum 

j = n~ and parity -(-l)n. The Dl
3 

is then contained in "2-" multi

poles. From equation I A.l, the statement that Dl3 is not photo

produced with jJzj = 1/2 is equivalent to the statement that there is 

no component of AVl_As corresponding to such a state, which implies 

that 

3 = 2 .7 
= 

1 - {_; Vl 
M2-

(see Walker ' s paper(lB) for definitions allowing one to relate the 

condition jJzj = 3/2 to relations between multipoles). Thus both 

~- and M~- are small, and Dl3 is produced primarily through the 

isovector current. From equation I A.l it follows that if AS is zero 

for production of the Dl3 , then the Di
3 

should be produced with just 

as small a fraction of jJzj = 1/2 from a neutron target as from a 
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proton target. Our confidence in Bietti's work is encouraged by the 

phase shift analysis of Walker, (l8 ) who finds that the Dl3 is indeed 

produced primarily by isovector current and that the JJzl = 1/2 

component of the Dl
3 

is small for both proton and neutron targets. 

C9pley, Karl, and Obryk recognize the contradiction between Walker's 

results and their theory, but point to more recent experimental evidence 

from DESY contradicting Walker's conclusions. ( 3l) Walker himself 

admits that his fits based on photoproduction from neutrons "must be 

regarded as tentative."(l8 ) Measurement of the cos 2(g) term in eta 

photoproduction from neutrons would supply valuable evidence for re-

solving the above discussed theoretical and experimental contradictions. 

The Frascati experiment( 23 ) in which the y + n -7 ~ + n cross section 

was measured at center-of-mass angles -.4 < cos (g) < + .6, combined 

with our results at cos(g) ~ ±1, can give a crude estimate of the 

cos
2

(g) term at energies appropriate for observing Sll - Dl3 inter-

ference. 

Next we discuss the Sll . Both the reactions n + p -7 ~ + n 

and y + p . -7~ +p show a strong enhancement in the cross section near 

threshold. In the former reaction, references 33 and 34 made it clear 

that the S-wave dominates. It is plausible, then, that the similar 

behavior of y + p -?~ + p near threshold is also explained by Sll 

dominance. This view is supported by the phase shi~ analyses of 

references 35 and 36, where it is found that a dominant Pll would be 

inconsistent with the data. See also Appendix F. 

Over a rather small energy range, the Frascati group finds 

approximately the same cross section for y + n -?~ + n as for 
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y + p ~~ + p. Suppose our more complete explcration of the energy 

range near threshold supports the belief that near threshold A~O is 

dominated by an Sll of about the same magnitude as appears in A~+. Then 

by the symmetry considerations of the previous section, the Sll is 

verified to be in an SU(3) octet. It is hard to say much about the 

value of a for the Sll because the effect of phase space depends so 

strongly on the poorly known Sll mass and width. But if a were near 

.75, we pointed out in the previous section that the amplitude for 

decay into the eta-nucleon system would be small compared to that into 

system is so much smaller that that for the pi-nucleon sys tem, a near 

.75 would imply decay almost exclusively into a pi-nucleon state. The 

large Sll enhancement near threshold of y + p ~~ + p and of 

~ + p ~~ + n excludes this possibility, and it is even likely that 

the majority of' the Sll decays are into an eta-nucleon state (see the 

baryon references given in the Review of Particle Properties( 25 )). As 

mentioned previously, Walker(lB) tentatively finds that A8/AVl is small, 

so that for this resonance a is near .75. 
y 

Recall that for pion photoproduction off protons it is well 

established that for the Dl3 the JJ
2

J= 1/2 amplitudes nearly vanish. 

From the point of view of Copley, Karl and Obryk, this fact is a 

consequence of the near cancellation of two quantities. In the approx-

imation that the Sll is produced at the same energy as the Dl3, exact 

cancellation for the Dl
3 

would imply that the ratio of isoscalar to 

isovector contribution to the Sli is 
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t an G + 2 
tan G - 16 

where G is the mixing angle between the s11 with total quark spin 1/2 

and the s11 with total quark spin 3/2. The quark model experts have 

not yet been able to decide what the mixing angle should be. Faiman 

( 28) 0 ( 29) 0 and Hendry suggested 35 j Copley, Karl and Obryk preferred 70 • 

In either case, A8~/AV~ is small. 

From what has been said so far, both quark model and experiment 

agree that the Sil is produced primarily in an isovector interaction. 

But in that case, we would expect y + d T> ~ + d near threshold because 

deuterons are isoscalars. Anderson and Prepost, ( 38 ) however, find that 

the cross section for y + d ~ ~ + d is not zero, and in fact is large 

enough to be consistent with production entirely by an isoscalar inter-

action. 0 This result favors an s
11 

mixing angle near 90 , and contra-

diets Walker. Furthermore, as Faiman and Hendry( 28 ) point out, g near 

90° implies the existence of an unacceptably large Si1 (1700). 

In our experiment, not only do we hope to improve on the accuracy 

of the Frascati results, but we may have a handle on the relative sign 

between A~+ and A~O (if the sign is positive, the reaction is mainly 

isoscalar; if the sign is negative, the reaction is mainly isovector). 

The eta can be photoproduced from either the proton or the neutron in 

the deuteron. But the final states for the two processes contain the 

same particles, so they can interfere. Constructive interference would 

indicate positive relative sign between A~+ and A~o, and destructive 

interference would indicate negative relative sign. We will later 
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analyze this experiment in terms of the impulse approximation, but we 

can already see qualitatively that the interference should appear only 

in forward eta photoproduction. For backward photoproduction, the 

nucleon from which the eta was photoproduced would be moving rapidly 

down the beam line while the spectator would be moving relatively 

slowly in the lab. The final states with the proton as spectator could 

then be distinguished in principle from those with the neutron as 

spectator, and the two kinds of final states would not interfere. We 

will therefore look for evidence of an enhancement or depression in 

the forward cross section. 

We have completed our discussion of the possible (known) inter-

mediate states near threshold. The n15 (1670) lies in the upper part of 

the energy range covered by this experiment. Its absence from photo

production from protons was first predicted by Moorhouse( 40) as a 

consequence of a quark model. Ecklund and Walker( 39 ) did find possible 

evidence for a n
15 

in positive pion photoproduction from protons, but 

its amplitude was small. We can expect a larger amplitude for pion 

photoproduction from neutrons, but it is possible that the D to F 

ration for the n15 is such as to prevent its decay into the eta-nucleon 

channel. This effect occurs for the F15 • 

The F15 (1688) is not observed in y + p -7~ + P, but it is seen 

in y + p -">no+ p. Reusch, Prescott and Dashen( 43 ) used SU(3) arguments 

corresponding to certain entries in Table I.l to conclude from these 

facts that the F
15 

must be in an octet and must have .5 Sa S 1.0. 

For our purposes, we need only note that the 

+ neutrons far less frequently than the F15 is 

F~5 is photoproduced from 

photoproduced from protons,(53 ) 
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contradicting the result of reference 18, which had the F15 photoproduced 

primarily by an isovector interaction. Because isospin conservation at 

0 the decay vertex implies that the amplitude for F15 -7 ~ + n is equal to 

+ that for F15 -7 ~ + p, the F15 should be even harder to see in eta 

photoproduction from neutrons than it is in eta photoproduction from 

protons. 

The s~1 (1700) may appear in our experiment as an angular 

asymmetry caused by its interference with the P~1 (1780). In the frame

work of the quark model, Moorhouse( 40) has predicted that if the mixing 

angle of the s11 resonances is small, the si1 (1700) will be absent in 

photoproduction from protons and present in photoproduction from 

neutrons. 

The Pi
1

(1780) is seen clearly in the reaction n + p -7 ~ + n 

as a bump in the cross section and as an interference between its low 

energy tail and the high energy tail of the 811 (1535). ( 20) This 

resonance seems to appear (somewhat less clearly) in y + p -7 ~ + p, (
42

) 

so the angular asymmetry from such an interference could appear in our 

data. 

We conclude this part with a brief discussion of the possible 

t-channel contributions. Charge conjugation limits us to such states 

as the p0
, w, ¢and B

0
(1235). Assuming the usual w-¢ mixing angle 

(sin2 (G) = 1/3) and assuming the electromagnetic current transforms 

under SU(3) like a U = zero member of an octet, the vector meson-photon-

pseudoscalar meson coupling constants can be related: 
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= 0 

gp~y ~P~Y 

g¢~r = -4~ gp~y 

1 
gw~y = J3gp~ 

where we have neglected ~-x0 mixing. Since the ¢ doesn't couple strongly 

to the nucleon, p exchange is expected to dominate the eta photoproduction 

exchanges, and it contributes only to AV~ • Dar and Weisskopf( 4l) argue 

more carefully, come to a similar conclusion (ignoring the B(l235)), and 

successfully predict the high energy behavior of eta photoproduction 

from protons. Similar success should be anticipated when their methods 

are applied to 1 + n ~~ + n. Our experiment, however, covers only 

energies within the resonance dominated region. Although t-channel 

exchanges can produce interference effects at our energies, we will 

say no more about this topic because we don't believe we can reliably 

estimate such effects. 
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II. EXPERIMENTAL METHOD 

A. General Considerations 

Because it was our intention to learn about photoproduction off 

neutrons in the forward and backward directions, we were faced with 

certain serious experimental difficulties. The non-existence of free 

neutron targets required the use of nuclei with more than one nucleon. 

The deuteron is the simplest such nucleus, and has the special virtue 

of being loosely bound. But even in the deuteron there is considerable 

Fermi motion of the individual nucleons. The effect of this Fermi 

motion was, of course, a decrease in our kinematical resolution. 

Another problem associated with photoproduction of etas from 

neutrons is the detection of the recoil particle. Since we were 

especially concerned with forward and backward angles, the recoil 

nucleon tended to be going down the beam line where it was very 

difficult to separate from the general background. A spectrometer is 

useless when the recoil particle is a neutron, and even for protons 

a spectrometer can't help if the recoil proton is moving too slowly 

to leave the target, as can occur in forward photoproduction. 

In this experiment we ignored the recoil nucleon and concen

trated on detecting the eta from its ~ ~ '2:y mode of decay. If we 

could measure exactly the energy and direction -of each decay photon, 

we would thereby be measuring the four-momentum of each such photon, 

and if the two photons came from a particle decay, we would know the 

four-momentum of the particle. The invariant mass of the two photon 

system would determine whether or not the event was an eta decay. 
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In practice it is difficult to accurately measure both the 

energy and direction of photons in the energy range associated with 

this experiment. We found that the accuracy of our measurement was 

barely adequate for determination of the number of etas among the 

events detected at a given experimental setting, and was not adequate 

for determining the momentum of individual etas. 

Figure 1 shows the layout of the experiment. A beam of 

bremsstrahlung photons with endpoint energy somewhere between 700 

and 1250 MeV was collimated, scraped, and magnetically swept clean 

of charged particles before passing through a liquid deuterium target. 

Some of the photons participated in nuclear reactions, including 

photoproduction of etas, but most passed through the target unaffected, 

and the beam energy was absorbed in an ion chamber and in the lead 

and cement that shielded the rest of the apparatus from the ion 

chamber. 

In order to detect etas through their two photon decay mode, 

each photon had to pass through lead apertures, then through a veto 

counter, then go into a totally absorbing Cherenkov counter. The 

veto counter served to eliminate the background from charged particles. 

It also served to veto showers associated with photons converting in 

the lead aperture. The two Cherenkov counters with their vetoes, 

apertures, and shielding (both against radiation and magnetism) were 

placed symmetrically on either side of the beam upon rails on a 

platform. The summed signal from each Cherenkov counter was pulse 

height analyzed and the time between the signals from the two counters 
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was measured. The resulting three numbers were stored on magnetic 

tape by a PDP-5 on-line computer. 

For a given eta momentum, the position of the counters on the 

rails was chosen so as to maximize the counting rate. Some useful 

kinematic facts for determining the appropriate setting and for 

separating etas from the background follow. 

Let e be the half-angle between the two decay photons, and 

let dn/de be the density of photon pairs for a given eta velocity, ~. 

y-2 = 1-~2 • Then(l) 

dn cos e 
dB = 

When the etas we wished to detect were expected to have 

velocity ~' the photon detectors were separated by half-angle such 

that dn 
de was large -- i.e., sin e = l/y, or cos e = ~. The photon 

detectors were symmetrically placed because we were interested in 

photoproduction along the beam line. 

Call E
1 

and E
2 

the energies of the two photons detected. 

The background contamination from detection of two photons from such 

0 
y+Z-71! +Z processes as 

0 
y+Z -7 1L + y + Z 

y+Z -7 2y + Z 

0 y+Z -7 21! + Z -7 4y + Z 

+ y+Z -7 e + e + z, 

with bremsstrahlung of the electron and positron, limited severely 
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our ability to obtain the eta yield at each setting. Etas were, 

however, separable from the background by virtue of the equation 

m = 2sin e)E1E2 

where "m 11 is the invariant mass of the photon pair, and is the eta 

mass when the event comes from eta decay. Details of the background 

subtraction will be covered later in the section on data analysis. 

The physical layout of the experiment was such as to permit 

e to be varied from below 35° to about 102°. If we neglect Fermi 

motion, for each incoming photon energy, k, there is associated an 

eta velocity ~ for forward eta production, and with that velocity is 

associated an optimal e = arccos(~). Similarly there is an optimal e 

for backward photoproduction. Table II.l shows the optimal g as a 

function of k for forward and backward produced etas. 

As we collected data, we saw that the background became 

large compared to the eta signal for the more extreme forward and 

backward angles physically allowed by our layout, so we collected 

0 0 data only for e values between 35 and 97 • 
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k(MeV) 

709 

725 

750 

775 

800 

850 

900 

950 

1000 

1050 

1100 

1200 

1300 

1400 

1500 
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TABLE II.l 

Optimal Counter Half-Angles, e, for Detection 

of Etas Produced by Photons of Energy, k. 

Forward Backward 

64 65 

57 72 

52 77 

49 80 

46 82 

42 86 

39 88 

36 91 

34 93 

32 94 

30 96 

27 98 

25 100 

23 101 

22 103 
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B. The Primary Beam 

The incident photon beam was bremsstrahlung produced on a 

1/3211 tantalum radiator by electrons from the Caltech 1. 5 GeV 

synchrotron. 

The synchrotron was run at energies from below 710 MeV 

(threshold for eta production) up to about 1250 MeV, with energy 

monitored and regulated by measuring the synchrotron magnetic field 

during the dump. ( 2, 3) 

11 
In each dump there were around 10 electrons hitting the 

6 
radiato~ causing about .5xl0 photons per MeV to pass through the 

target. O~en, unless the beam was unusually stable, these numbers 

would vary by typically a factor of two from one dump to the next. 

At energies below 925 MeV the dump was generally about 60 ms in 

length, while above 925 MeV it was stretched out to around 150 ms. 

The longer dump had the advantage of allowing fewer accidental coin-

cidences in our logic, but could only be achieved by operating at 

one cycle per second, rather than two, resulting in a lower overall 

intensity. Furthermore, at some energies the magnetic field had a 

slope during the dump. This slope caused a slope in end point 

energy, and the resulting uncertainty in energy was proportional to 

the dump length. I should add, however, that for most runs the 

error in the synchrotron end point energy was mainly caused by the 

.5% uncertainty in the calibration of the beam energy meter. (
3

) 

The size and shape of the beam spot at the target was 

determined by the primary collimator downstream from the tantalum 
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radiator. The diameter of the circular beam was measured (by placing 

photographic film in the beam) to be .76 ± .02" at the position of 

the target. Two scrapers were used to clean off the spray from the 

primary collimator, and the beam was then swept clean of charged 

particles by a magnet upstream of a lead wall with an aperture. The 

hole in the wall was 1. 4" in diameter, compared with a beam width 

at that point of about half that amount, so the wall served only to 

stop the particles swept out of the beam. 

Since we wanted to measure a cross section, we had to 

accurately know the number and energy distribution of the photons 

passing through our target. The energy distribution was calculated 

by means of a program written here, BPAK I. (
4

) 

To measure the total beam energy, an ion chamber was used in 

conjunction with an integrator of a type developed by R. Littauer. (5 ) 

In such an integrator, the charge from the ion chamber goes into a 

capacitor. The capacitor is placed across an input amplifier (which 

effectively amplifies the capacitance). When the capacitor reaches 

a certain voltage, an approximately equal charge of opposite sign 

is dropped on that capacitor from a precision capacitor which has been 

charged to a standard voltage. One full charge of the precision 

capacitor is defined to be a "bip" (beam integrator pulse). The 

amount of charge in a bip was measured at least once, and usually 

more than once, per day. This measurement was performed by dumping 

200 pulses into the integrator input from another precision capacitor 

(of known capacitance) that was charged to a carefully measured 
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voltage. Typically, one bip would equal roughly 2xl0-7 coulombs, 

with the exact number measureable for a given run to within better 

than .5%. Given the number of bips in a run, we were able to 

determine the total charge that had come from the ion chamber. 

In order to find the integrated beam energy corresponding 

to that charge, we compared the ion chamber with a Wilson quanta

meter. (s, 7) A Wilson quantameter contains nearly all the beam 

energy, numerically integrates the ionization produced in the showers, 

and compensates for shower loss through the sides. Arguments will 

soon be given for expecting totally absorbing Cherenkov counters to 

give light pulses proportional to shower energy. Similar a~guments 

apply to the charge produced per shower in a Wilson quantameter. 

The charge per MeV can be theoretically calculated at least as well 

as it can be measured, and is independent of the energy of the 

photons producing the showers. For the dimensions, materials, and 

gas temperature and pressures in the quantameter we used, the 

calibration constant was 5.78 ± .18xlo18 MeV/coulomb. 

The calibration of the ion chamber used to monitor our 

experiment -was performed relative to the quantameter for several 

synchrotron endpoint energies. A thin ionization chamber was placed 

before the quantameter and the number of bips from the quantameter 

-was measured for a certain amount of beam passing through the thin 

ion chamber (as measured by thin ion chamber bips). This procedure 

was repeated with the quantameter replaced by our ion chamber and 

with the same amount of beam through the thin ionization chamber. 
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The ratio between the charge from our chamber and that from the 

quantameter for the same integrated beam gives us the information we 

need to know to get our calibration constant. Unlike the Wilson 

quantameter, our ion chamber had a calibration constant that varied 

with synchrotron endpoint energy. This calibration constant is 

shown in Table II. 2, where U is the number of MeV that must go into 

the chamber from a bremsstrahlung spectrum of endpoint energy E to 

produce one coulomb of charge. 

TABLE II.2 

Ion Chamber Calibration Constant 

E Ux1018 
(MeV /coulomb) 

0 

650 57 .1 

750 58.0 

880 58.9 

1000 60.0 

1100 60.7 

From what has been said above, it follows that one bip 

13 corresponded to about l.2xl0 MeV. For use in analyzing our 

data, we standardize the bip to l.2132xlo13 MeV. 

The calibration constant of our ion chamber was taken several 

times during our running, for the chamber had a slow leak and had to 
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be refilled every few months. In the several months between r e -

fillings the calibration constant declined 1 to 'Cl/o, as compared 

with a 3% uncertainty in the theoretical values used to determining 

the quantameter calibration constant. In order to correct for the 

gradual change of the calibration "constant," for each run we 

corrected the calibration constant by assuming that it fell linearly 

with time between fillings. 

C. The Deuterium Target 

Shown in Figure 2 is the condensing deuterium target used 

in this experiment. According to formulae given in Reference 1 6, 

0 hydrogen at a typical Pasadena pressure of 750 mm Hg boils at 20.2 K, 

0 0 while deuterium at the same pressure boils at 23.5 K, and at 20.2 K 

has a vapor pressure of only 243 rmn Hg. By letting deuterium into 

our target at about atmospheric pressure, it could easily be made 

to condense by surrounding the target with liquid hydrogen. At the 

temperature of the liquid hydrogen, deuterium has a density of 

-3 
0.171 g cm 

The hydrogen was allowed to boil off and escape into the 

atmosphere, but the deuterium, of course, was kept in a closed 

system. When the target was allowed (or forced) to heat up, the 

deuterium could escape into a storage tank. 

In order to minimize the use of liquid hydrogen, the hydrogen 

dewar was surrounded by li~uid nitrogen, and the entire system was 

kept well insulated from the rest of the laboratory by vacuum and 
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Figure 2. Condensing deuterium target. 
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highly reflecting aluminized mylar. For obvious reasons, the hydrogen 

and nitrogen baths did not extend down as far as the target itself, 

but only cooled the lower part of the tube leading from the deuterium 

storage tank to the target. 

The composition of the "deuterium" used was measured before 

the experiment to be by weight 97.3% deuterium, .4% hydrogen, and 2.3% 

other (nitrogen and oxygen). 

In the course of the experiment, three target lengths were 

used. We started with 6.639"; then,when a leak developed in the 

first target, we put in a new one of length 6. 390"; and finally, for 

better kinematic resolution,we did some runs with a target of length 

3. 27.011
• 

In addition to deuterium, the incoming photons had to pass 

through a total of sixteen mils of mylar. The main obstruction in the 

target to the outgoing eta decay photons was the 1/16 inch aluminum 

outer case of the target (.018 radiation lengths). 

D. The Cherenkov Counters 

The photons from the eta decay were detected by two totally 

abosrbing Cherenkov counters - one called PbG-1, the other called 

PbG-2. These counters are described in Appendix H. Here we 

describe the principles by which they work and some of the problems 

associated with their use. 

Suppose we have an electron - or photon - induced shower in 

some material. Let P(E) be the probability per unit E that a given 
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small piece of the total track length of charged particles will be 

from a particle in the shower of energy E. Then according to cal

culations performed by Richards and Nordheim, (B) P(E) is independent 

of incident particle energy when that energy is sufficiently high 

(in the case of lead, the incident energy should be higher than 

the maximum of E and 70 MeV). It follows that· the total path length 

of charged particles in the shower is proportional to the incident 

energy . This conclusion is not sensitive to small variations in 

P(E) with incident energy, for the ionization loss per track length 

is a slowly varying function of velocity for relativistic particles. 

Furthermore, the amount and spectrum of the Cherenkov radiation per 

path length is also a slowly varying function of ~ = velocity. 

dN 
dv= (1 - 1 ) 

where A = atomic number and n is the index of refraction as a 
v 

function of frequency, v. 
(9) 

We therefore can expect the spectrum 

of Cherenkov radiation t o be independent of incident energy, and the 

total amount to be proportional to that energy. Because ionization 

losses and Cherenkov radiation are slowly varying functions of ~' 

we can expect statistical variations in shower development to have 

only a small effect on the total Cherenkov light emitted. 

Since there are no other particles near the eta mass that 

decay with any appreciable probability into two photons, there is, near 

the eta mass, only one peak in the invariant mass spectrum of the 
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photon pairs observed. It is the size of this peak that we require, 

rather than its precise position or shape. In order to measure the 

size accurately, the Cherenkov counters must have good resolution. 

Some effects which act to decrease this resolution are(lO) 

1) photo-electron statistics, 

2) variation in the efficiency of light collection with 

variation in the position, direction and depth of the 

showers, and 

3) failure of the counter to totally absorb the shower. 

The first of the above mentioned effects appeared to be the 

major limitation on energy resolution. With seven phototubes 

producing a total of around a hundred photoelectrons in a typical 

shower, the gains had to be properly set in order to take full 

advantage of the amount of light available . 

Suppose cr is the standard deviation of the signal from a 

single phototube in the counter, µ is the mean of that signal, and 

G = gain 
a2 
µ 

Assume that for showers of a given energy, flue-

tuations in one tube are independent of those in another in the 

same counter, and that a 
µ 

for a given tube is independent of its 

voltage. Then the best resolution is obtained when the gains for 

the different phototubes in the same counter are all equal. In 

Appendix A we discuss the assumptions, prove that the gains should 

indeed be matched, and discuss the effect of errors in the matching. 

The gains were matched with the help of light-emitting 

diodes taped to the face of each counter. We would give the diodes 



32 

several thousand identical pulses, thereby simulating the pulses 

of Cherenkov light from identical showers. The signals from each 

of the phototubes would be pulseheight analyzed, and a and µ would 

be calculated, thereby giving the gain. By varying the voltages of 

each tube, the gains would be set equal. 

Because gains could be matched so easily to within better 

than 10% (we had the help of an on-line computer), we were able 

to do the matching many times during the experiment. This experi

ment used the same counters as were used in a prior experiment, so 

by the time the data collection began, the phototubes had been "on" 

continually for nearly a year, and were relatively stable. Although 

gains were frequently matched, the voltage changes were always small; 

so even if we had matched gains only once, the drift in the course 

of the experiment would not have caused the gains to differ from a 

central value by more than 20%. As is shown in Appendix A, 20% 

matching is close enough to avoid seriously degrading the resolution. 

The other effects tending to decrease the resolution are 

believed to be smaller than the effect of statistics at the photo

cathode. We now discuss these other limitations on the resolution. 

Statistical fluctuations in shower development could indeed 

be expected to hurt resolution, for the phototubes did not all have 

the same conversion efficiences, and even if they did, the absorption 

of short wavelengths by the glass would cause the pulse-height to 

depend on the depth of penetration of the shower. That is, statis

tical fluctuations in shower depth would broaden the resolution. 
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Cherenkov counters nearly identical to the ones we used had been made 

earlier at Caltech. In fact, we used the old lead glass blocks. 

Those who constructed the earlier counters made several different 

tests of their counters(lO) in a monoenergetic positron beam. From 

these tests they concluded that the light from the showers was 

nearly isotropic (indicating either that there was much shower 

spread or that there was a large amount of ultraviolet light scat

tering). Furthermore, they found that there were many reflections 

from the faces of the counters. It could be anticipated, then, 

that the counters we built would be relatively insensitive to 

variation in the location and development of showers. 

Our own tests in the same positron beam showed that varying 

the origin of the shower over the portion of the face used during 

the experiment varied the pulse height of the summed signal by less 

than 1%. Hence fluctuations in the lateral development of showers 

should have had little effect on the resolution. This result holds 

in spite of the fact that each counter consisted of two glass blocks 

imperfectly optically joined (the summed signals over the three 

phototubes in a given block would be twice as large when the shower 

occurred in the same block as when it occurred in the other). 

So far as statistical fluctuations in depth are concerned, 

tests in the positron beam showed that the pulse height of the 

summed signal was nearly proportional to the positron energy (see 

Fig. 3 ). Since more energetic showers penetrate more deeply, this 

proportionality indicates that fluctuation in penetration depth 
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could not be a serious problem. 

The third of the above-mentioned sources of decreased 

resolution, incomplete shower absorption, was not a serious problem. 

We worried that some photons could come in at a position and angle 

such that substantial leakage through the sides could occur, but 

tests in the positron beam indicated that fewer than 5% of the in-

coming photons would lose over 10% of their energy in this manner. 

We consider, now, the possibility of showers escaping 

through the back, rather than the sides of the counter. Approximate 

formulae given by Crawford and Messel(ll) lead to the conclusion 

that 500 MeV photon showers in lead have only 3.6% energy penetration 

to depth greater than fourteen radiation lengths. The calculations 

leading to the formulae can be trusted, for similar calculations 

on electron-induced showers in lead agree with experiment. (l2) 

Our counters were fourteen radiation lengths deep and usually dealt 

with showers of less energy than 500 MeV. Since the Compton effect 

attenuates low-energy photons more per radiation length for low Z 

than high Z materials, we could expect less leakage through lead 

glass than calculations give through lead. Thus we can conclude 

that shower leakage through the backs of the counters was negligible. 

A final problem associated with the use of these counters 

is that of drift in the gain of the phototubes and the pulse-~ight 

analyzing system. As has been already indicated, these drifts were 

not large enough to seriously upset the gain matching. Nonetheless, 

the overall dri~ of the summed pulse-height analyzed signal could 
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have been large enough to make it impractical to combine the data 

from several runs at the same setting. In fact, it turned out that 

the entire system was stable to within C!1/a over periods of days. 

This stability was monitored, and instabilities were compensated 

for, in the following manner: 

F h t 1 d d . t. (B. 207) or eac coun er we p ace a ra ioac ive source i on 

a scintillator and attached the scintillator to the side of the 

counter's front face with the bonding agent RTV. At least once, 

and generally twice, a day we would pulse-height analyze the light 

flashes from Auger electrons in the scintillator, and we would 

record the location of the peak in the spectrum. Figure 4 shows 

an example of such a spectrum. The first "peak" is really just the 

effect of the cutoff imposed by a discriminator in the fast logic. 

By using positron-induced showers of known energy, it was found at 

one time that the source peak in PbG-1 had about the same location 

as the peak from showers of 170 MeV, while the source peak for 

PbG-2 corresponded to 184 MeV. 

According to what has been said earlier about Cherenkov 

radiation, showers from initial electrons or positrons of a given 

energy should produce just as much Cherenkov radiation as showers 

from photons of the same energy. We were therefore able to use 

the information in Fig. 3 to find the relationship between shower 

energy and pulse height. We could fit our results to a straight 

line 

h = A(E-E ) , 
0 
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where h is the pulse height in volts, A is a constant which is 

irrelevant for our purposes, E is the shower energy, and E is an 
0 

energy pedestal characteristic of the counter. Although the error 

in the measurement of E was about 15 MeV for each of the counters, 
0 

the method described in part III C for extracting the yields was 

insensitive to such an error. For a pulse of h volts, the pulse 

height analyzer would give a channel number x = a + bh, where a was 

carefully monitored (see next section), and b is a proportionality 

constant. Then E(x) = E + C*(x-a) for some calibration constant, 
0 

C. If E is the shower energy for showers producing pulse heights 
s 

equal to those from the source peak, and if x is the channel number 
s 

corresponding to the source peak, we can conclude that 

c = 
E - E s 0 

x - a 
s 

E as obtained in the positron beam was not very reproducible. 
s 

In practice, for each individual run we usually used the location of 

the observed etas to find C with reproducibility to within about 

two percent. Then we could use the above equation as an independent, 

more reliable determination of E • In those runs for which the 
s 

quality of the data was too poor to accurately establish the energy 

calibration, we could determine C with the above equation using E s 

as determined by other runs. 
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E. Electronics 

Figure 5 shows the layout of the logic. Not shmm are 

delay lines, certain "master" signals used to gate the pulse height 

analysis systems, inverting transformers used when the polarity of 

one module's output pulses would otherwise be incompatible with the 

input re~uirements of a succeeding module, and non-inverting trans

formers that were sometimes used to set D.C. levels to ground. 

Details of the pulse height analyzers and their interfaces with the 

computer are also omitted, as are certain other circuits considered 

irrelevant for understanding our method. Of the circuits denoted 

in Fig. 5, those in Table II. 3 are described in Reference 14. The 

"name" is the name used in that reference. 

Let us follow through the logic on the PbG-1 (lead glass 

counter number one) side of the system. The signals from the seven 

phototubes of PbG-1 entered a resistor network that served as a 

passive "adder." There was an additional input to the adder into 

which standard signals were sent for continuous calibration and 

monitoring during the run. Since the "adder" was really an averager, 

the output signal was rather small, and was amplified before being 

multiplexed. Three outputs came from the multiplexer. One was 

used in the fast logic, and the other two were used for pulse height 

analysis and timing purposes whenever the fast logic detected a 

possible eta. The "fast logic" consisted of the electronics to 

detect possible etas, while the "slow logic" consisted of the 

electronics to pulse height analyze the two PbG signals and determine 
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their relative time separation. The fast logic required of the order 

of a hundred nanoseconds to operate, while the slow logic required 

about a millisecond. 

The multiplexer output for the fast logic went into a dis

criminator whose bias was set to exclude photons of energy less 

than about one hundred MeV. The eta meson has a mass of about 

548.6 MeV. Because our counters were symmetrically placed, the 

decay photons tended to share the total eta energy about equally, 

and few etas were rejected by the requirement that each photon 

have energy greater than 100 MeV. As will be seen in section IIIC 

our method for determining the number of etas with both decay 

photons entering our counters automatically compensates for those 

etas with a photon rejected by a discriminator. The "x"'s in 

Fig. 5 represent discriminator outputs that were scaled. One of 

the discriminator outputs from the PbG-1 input was sent into 

coincidence with v1 to form the veto pulse, v1 x PbG-1, while 

another was sent into anticoincidence with that veto pulse to form 

PbG-1 x (V 1 x PbG-1) = y 1 • V 1 represents the signal from the veto 

counter before the PbG-1 Cherenkov counter. 

The veto efficiency was measured both before and a~er the 

running of this experiment by detecting charged pions passing all 

the way through the Cherenkov counter and determining what per

centage were vetoed by our system. At the highest counting rates 

used in this experiment, the efficiency was typically 95%. It was 

noticed, however, that during the running, one anticoincidence 
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circuit was s omewhat l ess s table than expected, and the r esult could 

hnve lJecn a. l owe r ed vet o ef' f :i. c :i. ency at times . 'l'his ins t ability did 

not indu ce a s ystematic error, :for it would merely i ncrease the 

background which we subtract later. The method used i n section III 

to subtract the background is not highly sensitive to the source of 

the background. 

The r
1 

pulse was sent to a discriminator, then if the r
1 

pulse was of sufficient size, the discriminator gave a pulse that 

was placed in coincidence with a similar signal from the PbG-2 side 

of the logic. At this point, the beam gate also came in. The beam 

gate, a voltage level indicating that the beam is being dumped, was 

necessary to prevent the fast logic from being fooled by the noise 

and radiation produced during injection of electrons into the 

synchrotron. The resulting coincidence constituted the "master" 

trigger, master == r 1 x r 2 x beam gate, and was used to gate the 

slow logic. 

Whenever gated by a master pulse, the slow logic would 

digitize the PbG-1 and PbG-2 signals with a two dimensional Nuclear 

Data 160-F, 150-M analogue to digital converter (ADC) used in its 512 

channel mode. The output of the Nuclear Data would be made availab le 

to the computer by a buffer in an interface, and the interface would 

signal the computer that a master pulse had occurred. 

The time difference between the two signals was measured by 

1) differentiating the signals with a capacitor, 

2) sending the differentiated signals into zero crossing 
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discriminators(l5 ) (ZCD's in Fig. 5 ), 

3) whenever a trigger occurred, using one of the ZCD's to 

trigger a discriminator and the other to reset that dis-

criminator, and finally 

4) pulse height analyzing the integrated output of the 

triggered and reset discriminator. 

The pulse height analysis of the discriminator output was not done 

with a Nuclear Data, but was done by sending the signal into a 

"super pulse-height analyzer"(l3 ) (SPHA) whose output was a constant 

signal of length proportional to the charge of the input signal. 

The SPHA output was digitized in the usual manner (a clock and a 

scaler) by a Lecroy Digitizer. As in the case of the Nuclear Data 

interface, the digitizer interface held the digitizer output in a 

buffer and sent a pulse to the computer to indicate that data were 

about to become available. 

The computer was a Programmed Data Processor-5 (PDP-5) 

manufactured by the Digital Equipment Corporation. As peripheral 

equipment it had an oscilloscope, a Teletype Model 33 ASR and a 

Hewlett-Packard digital magnetic tape unit. The PDP-5 had 4096 

twelve-bit words, a cycle time of six microseconds, and had a single

level interrupt. External devices (including the interfaces mentioned 

above) could inform the computer of their status either at the com

puter's request (by way of a skip bus) or by driving the interrupt 

bus to ground. 

Next we describe the PDP-5 machine language program used 
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with this experiment. This incomplete description is intended 

primarily as a framework in which to describe the data manipulation, 

monitoring, and calibration done with the help of the computer. 

During a run, the computer program had two modes of operation 

a data input mode and a monitor mode. Normally the computer was in 

the monitor mode, but an interrupt caused by a pulse from an interface 

would send the program into the data input mode. In this mode it 

would wait for data to be available from the pulse-height analyzers, 

strobe those data in and store them in a buffer, then return to the 

place in the monitor program at which it was interrupted. When the 

buffer was full, the data input mode would continue storing the data 

in an overflow region, and would ring a bell on the Teletype either 

if the overflow region was unreasonably full or if the tape unit to 

which the data eventually would go was at the end of the tape. In 

the rare event (less than .01% of the time) that the data input mode 

was entered and no data were available within about a second, this 

fact would be noted in the memory, and the computer would return to 

the monitor mode without collecting the data. 

The monitor mode had as its most essential function the 

storage of data on tape, but most of its time was spent either 

displaying or making computations required for display. By re

peatedly examining switches set by the experimenter, the program 

would decide what to display on the oscilloscope, and would also 

determine the scale of the display. There were four possible dis

plays -- a display of the buffer containing the PbG-1 pulse heights, 
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one of the buffer containing the PbG-2 pulse heights, one of the 

buffer containing the time differences, and a display of all binned 

information collected since the beginning of the run. We binned 

each of the input numbers, and also binned a fourth number calculated 

by the computer and intended to be nearly proportional to the 

invariant mass of the two-photon system detected. The computations 

and binning were interleaved with the display. 

In order. for the program to store its buffer on magnetic 

tape, the buffer had to be full and the beam gate had to be off (the 

computer had provision for testing the status of the beam gate). The 

overflow from the buffer was not innnediately stored on magnetic tape. 

Instead, a~er the buffer had been stored on tape all numbers in the 

buffer were set to zero. Then any overflow was placed at the 

beginning of the buffer. 

Some other functions of the monitor mode were counting the 

number of beam gates in a run, counting the number of bips in a run, 

and sending out calibration pulses. 

The bips were counted with the help of a univibrator triggered 

by the beam integrator pulse. The computer tested the status of the 

univibrator frequently enough to count the number of bips to within 

1% -- a negligible error resulting from electronic noise in the lab 

falsely triggering the uni vibrator. Each time a new bip was detected 

this information would be st0red in the same buffer as the rest of 

the data. The bip count was also taken on a scaler not interfaced 

with the computer. 
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Calibration pulses could be used during the data collection, 

because during a period of several milliseconds before the beginning 

of each dump the beam gate was on. This time could be used for 

calibration without interfering with the data collection. Several 

times per bip the computer would, at the beginning of a beam gate, 

send out a pulse to fire a pulser that sent phototube-like signals 

into each of the two adders. These signals simulated eta events, 

and were treated as such by the electronics. They were distinguished 

from real events in the buffer by a single bit, which was set to one 

only when the incoming event was preceded by the output of a cali

bration pulse. 

Figure 6 contains photographs of most of the possible 

oscilloscope displays as seen at the end of a typical run. 

The bottom photograph shows an oscilloscope display of the 

part of the buffer containing the analyzed pulse heights from one 

of the Cherenkov counters. Each point represents one event. Events 

are displayed from left to right in order of their occurrence. The 

faint vertical dotted line on the left was produced by the computer's 

display subroutine, and could be shi~ed horizontally to any specified 

position on the display by appropriately setting the "switch register." 

The vertical position of each point in the photograph indicates the 

pulse height associated with the corresponding event, with zero pulse 

height events at the same height as the bottom of the dotted vertical 

line. The few events that apparently have zero pulse height will be 

explained shortly. 
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The top photograph shows the part of the buffer containing 

the time differences as received from the Lecroy Digitizer. As in 

the bottom photograph, the left-most events came in first, and the 

vertical position of each dot corresponds to the numerical value in 

the buffer. Above all the other points are ten equally high dots. 

These points represent the digitized time for calibration events. 

They are separated from the other events by virtue of the single bit 

which for calibration pulses is set to one. Below the calibration 

data, but above the rest of the timing data, are three equally high 

dots. These are the "bip markers", and each is stored in the buffer 

as if it were an event with three special values for timing and 

pulse height data. These same three "bip markers" can be seen as 

three dots at zero pulse height in the bottom photograph. 

The buffer as displayed in the top and bottom photographs 

is :full. The short line at lowest allowable height near the right 

of the two photographs represents part of the (empty) overflow region 

of the buffer. 

The center photograph displays all the binned information. 

The left-most third of the photograph contains the invariant mass 

spectrum of all events in the run. The low-mass cutoff of the 

spectrum (i.e., the sharp rise of the left edge of the spectrum) is 

a consequence of discriminator cutoffs. Although most of the 

spectrum consists of background, on the tail of the mass spectrum 

is a small bump containing the etas. Moving to the right :i.n the 

same photograph, the peak at the center of the photograph is part 
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of the time spectrum, with a full width at half maximum of about four 

nanoseconds. The two peaks in the right-most part of the photograph 

are the pulse height spectra from the two counters. They are each 

sharply cut off at low pulse heights by the discriminators. It 

takes a lot of imagination to see any evidence of etas in either of 

the single counter spectra. 

Before and after each run, the computer helped with the 

collection and storage of other data. At the beginning of each run, 

the computer would request that such information as the synchrotron 

end-point energy, the counter angles, and the date and time be typed 

in. The experimenter and the computer would together find the 

channel number of the peak of the distribution from the radioactive 

sources in each Cherenkov counter (see the previous section for the 

use of these numbers). Also at the beginning of a run, the experi

menter would send pulses into both adders from the same pulser used 

for calibration during the run. This would then be done again at 

twice the pulse height. With the help of the computer, the experi

menter would find the pulse-height analyzer channels corresponding 

to each side of the logic and each voltage of the pulser. Recall 

from the previous section that if "h" represents the pulse height , 

the channel 11 x" followed the relationship x = a + bh. "a" is called 

the "pedestal," and was found easily with the use of the data from 

the pulser. Incidentally, it was found that the major instability 

in the above described relationship lay in the _pedestal. The pulser 

-was tested to be sufficiently stable that the shi~ of the pedestal 
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during the run could be determined by the calibration pulses taken 

during the run. When all the beginning-of-run data were available 

the computer would store the data on tape and the run would begin. 

At the end of the run, the computer would type out the 

number of gates, bips, triggers, triggers without data, and the 

number of records put on tape. It would also type out requests 

for the contents of the scalers used to monitor the fast electronics. 

Finally, comments could be typed in, and the end-of-run data would 

all be stored on tape. 
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TABLE II.3 

Circuits Used in This Experiment 

CIRCUIT NAME 

Amp FA-1 

Multi TM-4 

L-3* 

Co inc TC-6 

Co inc TC-6 

Disc TVD-3 

TVD-4** 

Gate TG-3 

Limiter L-3 

* Limiters were used as multiplexers for the master signal. 

** TVD-4's are DC coupled, so were used instead of the AC coupled 

TVD-3's in parts of the logic with high counting rates. 
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III. DATA ANALYSIS 

A. Raw Data 

Data were taken at settings chosen according to the criteria 

given in Section II A. In Table III.l we have a list of setting along 

with various information about the data collected at those settings. 

In the column labeled "target" is the length in inches of the appendix 

of the deuterium target used for the setting (see Section II C). The 

"energy" is the nominal end-point energy of the synchrotron before 

correcting for the error in calibration of the beam energy meter. This 

correction is discussed in Appendix F. The "angle" is the approximate 

angle between the center of each of the two symmetricall-y placed 

Cherekov counters and the beam line. For purposes of data analysis, 

the geometry of the detection system was defined more precisely by 

surveying. The number of "bips" is a measure of the total photon beam 

energy passing through the target (see Section II B). "Events" repre

sents the total number of triggers to which the computer responded at 

a given setting, excluding triggers from calibration pulses (see 

Section II E). The column labeled "etas" contains the estimated number 

of etas whose two decay photons entered the two Cherenkov counters. To 

obtain the number of etas, we had to separate the eta events from the 

large background contamination consisting of (1) accidentals in which 

two unrelated photons simultaneously entered the two counters, (2) true 

coincidences from processes other than y + d -7 ~ + n + p~2 y + n + p, 

and (3) both coincidences and accidentals in which at least one of the 

particles considered to be a photon was in reality a charged particle 
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that our veto counters faj.led to detect. Later (Section III C) we 

discuss the background subtraction along with the method used for 

estimating the number of etas. Essentially the method involved finding 

for the data of each run a good fit involving several parameters, one 

of which could be interpreted as the number of etas. 

Table III.l includes only data from runs which were ultimately 

used to obtain a cross section. Runs were rejected when the good fit 

needed to extract the number of etas could not be found (i.e., when 

the fit to the foreground or to the background made according to the 

method of Section III C was more than 2.5 standard deviations away 

from perfect). Runs were also rejected when some anomaly caught during 

or after the run made the data untrustworthy or when the amount of data 

collected was too small for us to trust the results of our method for 

extracting the number of etas (we included only runs with more than 

eighty bips). 
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TABLE III 

Settings for Which Data Were Collected 

Target Angle Energy BIPS Events Etas 

3.27 35 1150 2315 224572 470 

3.27 37 1025 2314 139894 425 

3.27 37 1100 1215 84723 349 

6.39 40 925 201 28934 856 

3.27 40 950 2529 101832 1266 

6.639 40 875 266 30055 720 

6.639 45 825 966 110231 4867 

6.639 45 850 1031 121760 6673 

6.639 50 775 1037 86376 4273 

6.639 50 800 364 36461 2405 

6.39 50 800 379 36527 2270 

6.639 55 725 1025 66068 2395 

6.639 55 750 1029 68467 5308 

6.639 60 725 339 24458 1193 

6.639 60 750 190 14077 1299 

6.639 65 725 1020 50701 4271 

6.639 65 750 516 48539 3181 

6.639 70 725 116 5426 425 

6.39 70 750 236 14630 1106 

3.27 70 775 451 5448 563 

6.639 75 750 311 15656 1117 

6.39 75 750 236 12506 836 
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TABLE III, cont. 

Target Angle Energy BIPS Events Etas 

6.639 75 775 512 23152 2362 

6.39 75 775 237 10740 1084 

6.639 80 800 871 32028 3208 

6.639 80 850 936 30532 4550 

6.39 85 825 482 21920 1177 

6.639 85 875 1464 57771 4432 

6.639 90 800 639 16070 515 

6.639 90 925 1041 28908 1960 

6.639 90 975 1050 24017 1766 

6.639 93 1025 1058 21717 1474 

6.639 93 1100 1271 28666 2001 

6.639 95 1100 1068 22344 1185 

3.27 95 1100 2629 13102 667 

6.639 95 1175 541 12603 653 

6.639 95 1195 541 12008 572 

6.639 97 1175 363 7219 282 

3.27 97 1175 2283 15368 409 

6.639 97 1225 934 18540 787 
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B. Accidental Background 

In order to determine the number of etas detected at a given 

setting we must somehow estimate and remove the background. In this 

section, we discuss the estimate of the size and distribution of the 

accidental background. 

Figure 7 displays the counting rate as a function of the 

time separation between the pulses from the two Cherenkov counters. 

There are two curves in this figure, both corresponding to the same 

run. The true coincidences are concentrated in the peaks, while the 

accidental coincidences are spread out over a wider range of time. 

The taller peak (drawn with a slightly thicker line) represents the 

result of correcting for an effect to be described shortly. Twenty-five 

units of "digitized time" correspond to about one nanosecond. Our• 

resolution, then, is about three nanoseconds full width at half 

maximum. One simple way of excluding most of the accidentals is to 

make a timing cut (represented by vertical dotted lines in Figure 

and delete all events that are too far out of time. 

To approximately account for the accidentals under the 

timing peak, we can estimate their number by interpolating the time 

distribution of the accidentals. We can obtain the distribution in 

pulse heights of those accidentals by assuming that the energy dis

tribution of accidentals under the timing peak is the same as that 

of accidentals outside the peak. We return to these points later. 

No matter how we deal with the accidentals, any improvement 
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in time resolution helps. We now discuss a small improvement in the 

time resolution that was made af'ter the data had been collected. 

Although we used zero-crossing discriminators in the experi-

ment, there was still a small amount of slewing. That is, the time 

it took for a signal from one of the two Cherenkov counters to be 

detected by a discriminator depended to a small extent on the size 

of the incoming pulse. We estimated the amount of this slewing using 

the data collected during the normal course of the experiment. We 

binned the data with respect to E
1

, E2, and T (the pulse-heights 

from the two counters and the relative time measured between the two 

pulses). For a fixed E
1 

and E
2

, the time bin corresponding to coin

cidences can be estimated by, for example, seeing which time bin has 

the most counts. 

Let T .. be the time difference measured between coincidences 
lJ 

of energy E1 = Ei and E2 = Ej. Then we expect to find the form 

if the time of detection of each pulse is a function of the incoming 

pulse-height. Knowledge of T
1 

and T2 allows us to correct for the 

slewing by finding i and j corresponding to the pulse-heights of the 

events and by then computing 

T corrected 

Any determination of T .. is subject to statistical errors. 
lJ 

We use T
1 

and T
2 

because they can be determined with somewhat smaller 
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statistical errors. Consider 

Then minimizing S with respect to the unknowns (T1 )i and (T2)j is 

expected to give an estimate of those parameters. We get the equations 

= Nl L (T. . - (T2) . ) 
. lJ J 
J 

III B.l 

= Nl I (T .. - (Tl). ) 
. lJ l 
l 

where "N" is the number of values i (or j) may take, and T. . means 
lJ 

Tij observed. 

Equations III B.l do not have a unique solution. If (T1 )i 

and (T2)j is a solution, then so is (T1 )i + C and (T2)j - C for any 

value, C, that is constant over all i and j. Without loss of gener-

ality, we can choose C so that for some bin, k, (T1 )k = (T2)k • We 

obtain T
1 

and T2 by iteration: 

a) 

b) 

For all i and j, pick an initial guess for (T1 )i and (T2)j. 

Evaluate a new set of T
1 

and T2 using equations III B.l. 

c) Adjust T
1 

and T2 with C chosen as described above. 

d) Return to step b. 

This iterative proceedure was found in practice to converge. 

Some improvements were made in the method as described above. 

To better estimate T .. , we interpolated the accidental background 
lJ 

under the coincidence peak for each i, j pair, and af'ter subtracting 
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the accidentals found the median of the coincidence peak. We also 

counted the number of events under the coincidence peak, N .. , and 
lJ 

(because we expected to be able to estimate T .. better when N. . was 
lJ lJ 

large) we weighted S according to 

s = 

The weighting factor, N .. , changed the equations to be solved, but 
lJ 

not the method of solution. The two curves of Figure 8 show the 

average over all runs of the slewing correction for each of the two 

zero-crossing discriminators. As can be seen, one of the two dis-

criminators accounted for most of the slewing. Figure 7 shows the 

timing distribution for a particular run before and after correcting 

for the slewing, with the slightly narrower peak showing the slight 

improvement that was typically achieved. The "digitized time" is the 

number sent into the computer by the Lecroy Digitizer (see Section II E). 

At this point it should be noted that the numerical output of the 

digitizer was not linear in the time difference between the two 

signals. With the help of delay cables of known length, we were 

able to calibrate the digitizer output in terms of nanoseconds (see 

Figure 9 ) • The calibration curve was not needed in the data analysis, 

but its non-linearity partly accounts for the non-uniformity of the 

accidental timing distribution of Figure 7. 

Now let 1 s consider the distribution in pulse-heights of the 

accidentals beneath the timing peak. Suppose we bin events for an 

entire run with respect to the two pulse-heights. Define A .. 1 to be 
lJ 

the number of accidentals in one such bin for events outside the 
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timing cut. A .. ' is directly measurable from the experiment. 
iJ 

Define 

the non-measurable quantity, A .. , to be the number of accidentals in 
iJ 

the run beneath the timing coincidence peak and with pulse-heights in 

bin i, j. Even though we cannot measure A .. directly, we can expect 
lJ 

to have 

A .. 
iJ 

f A. .. ' 
iJ ' III B. 2 

where we use the notation "expectation value of x" = (x) = x and take 

f to be a constant for the run independent of i and j. One simple way 

of estimating f is to linearly interpolate the accidental rate outside 

the timing cut into the time zone of the coincidences. A more elaborate 

method that failed is described in the following paragraph. 

As WcIB discussed in Section II E, each time the meter monitoring 

the bremsstrahlung beam reset, a "bip" marker was placed in the incoming 

data stream. Between any two adjacent "bip" markers, consider the two 

quantities: 

N. = the number of events during the "bip" that are within 
in 

the timing cut, and 

N t = the number of events during the "bip" that are outside 
OU 

the timing cut. The standard deviation of N t tells us something 
OU 

about how the beam intensity varied during the run. For such a 

variation of beam intensity, the correlation between N. and N t in OU 

can be used (in the absence of dead time) to compute the number of 

accidentals within the timing cut. This method would allow us to 

measure f if the statistics were good enough. Unfortunately, they 
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weren't, so no more will be said about this method. In a later section 

we will dis cuss the effect of errors in f. But now that we have 

equation III B.2, we are motivated to more closely examine A .. ' . 
lJ 

The two photons of an accidental event cannot be correlated 

in energy. In other words, knowledge of the pulse-height from one of 

two photons from an accidental event gives no clue as to what the 

pulse-height from the other photon might be. Mathematically, this 

means that A .. ' is of the form 
lJ 

For a given A~., let us assume that during any infinitesimal 
lJ 

time interval the probability of an event occurring in bin (i, j) is 

not dependent on when, whether, or in what bins other events occurred; 

so, for example, we are neglecting the effect of dead time. It follows 

from the above assumption that the probability distribution of the 

observed value of A .. ' will follow a Poisson distribution. Thus for 
lJ 

a given set of a1 and a 2, the probability of the observed set of Aij' 

is 

L = 1T 
i,j 

(A-, )A'.. . . lJ 
~ 

(Aj_j) ! 

(A'..) 
e- lJ 

To find the best values of a
1

(i) and a 2(j) for all i and j, we use 

the maximum likelihood method (Appendix E ) • That is, we choose a
1 

and a
2 

such that L is maximized. L is maximized when we maximize 

W = log[ L Tf (A'. . ! )J = 
ij lJ 

L (A .. ' log(A .. ') - AiJ"') 
ij lJ lJ 
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with respect to a
1

(i) and a 2(j). Setting derivatives of W equal to 

zero gives the two equations 

:::::; 

:::::; 

L: A I 

. ij 
J 

L: A ' 
i ij 

L: a
1

(i) 
i 

III B.3 

All solutions of equations III B.3 with the same product, a
1

(i) a
2
(j) , 

are equivalent. Without loss of generality, we can specify, for 

example, that 

Then equations III B.3 are the exact maximum likelihood solutions for 

a
1 

and a
2

• With the help of equation III B.2, we will later use these 

solutions for A .. ' in the estimation of the total background contami
lJ 

nation of the eta events. This estimation of the total contamination 

is the major problem to be dealt with in the next section. 

C. Background Subtraction 

Figure 10 shows the distribution of events in the E
1

-E
2 

plane 

(where E
1 

and E2 are the observed pulse-heights in the two Cherenkov 

counters) a~er timing cuts have been made. For showers produced by 

photons of a given energy, the pulse-height is nearly proportional, 

on the average, to that energy (see section II.D). In Figure 10 
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the pulse-height is expressed in terms of the corresponding energy. 

The method of calibrating the energy vs pulse-height will be described 

shortly. The peak at high energies in Figure 10 comes from the etas. 

Etas are restricted to this region of the plane by virtue of the 

relationship 

where g is half of the angle between the two photons, m is the invariant 

mass of the two photon system, and the E. are the pulse-heights expressed 
l 

in terms of energy. As the pulse-heights get lower in Figure 10, the 

density of etas drops to zero, but the background density rises until 

all events are cut off by biases in the electronic logic. Notice that 

even though we display in Figure 10 a setting with an unusually 

prominent eta peak, there is still a considerable background under the 

peak. The main problem involved in estimating the yields is the back-

ground subtraction. 

The first step in making the background subtraction is to bin 

the events according to the pulse-heights. In our notation, i and j 

refer to the bins in which E
1 

and E
2 

, respectively, fall. For a 

particular run, N .. is the number of events in the i , j'th bin. 
lJ 

Assume that we have already eliminated as many accidentals as we can 

by making timing cuts. Then A. . is the number of accidentals remain
lJ 

ing in the background, and its average is estimated by the method 

described in the preceeding section. Let B .. denote the non-accidental 
lJ 

background and Y .. denote the eta yield in bin i, j. In our notation, 
lJ 
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N .. = A .. + B .. + Y .. 
1J 1J 1J 1J 

III C.l 

Our intention is to determine the total yield of etas at a given 

setting essentially by estimating A .. and B .. under the eta peak and 
1J 1J 

applying equation III C.l. 

In those regions of the plane for which Y .. is small, we can 
1J 

estimate B .. by neglecting Y . . in equation III C.l and using the results 
1J 1J 

of the preceding section for A ..• 
1J 

In order to determine B .. beneath 
1J 

the eta peak, we use the approximation that as in the case of acci-

dentals, the energies of the two photons from background events are 

uncorrelated. With this approximation, the average of B .. is of the 
1J 

form 

B .. 
1J 

= III C. 2 

Insofar as the experiment is completely symmetric about the beam line 

of the incoming photons, b1 = b 2 • We do not, however, assume this 

symmetry. 

0 In the region of the E1 - E2 plane corresponding to n pro-

duction, equation III C.2 is rendered invalid by the concentration of 

events with pulse-height pairs corresponding to the pion mass. If we 

are to have any hope of using equation III C.2, we must avoid that 

part of the background with low invariant mass. We exclude from 

consideration all events with measured invariant mass below about 

240 MeV. 

With the above proviso, we experimentally justify the use of 
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equation III C.2 in two ways : 

1) When the target is hydrogen, rather than deuterium, eta 

photoproduction can be kinematically excluded for certain settings 

close to those for which etas are abundantly produced. Then Y .. is 
l J 

everywhere zero, and we can test equation III C.2. We made such 

tests near settings for which etas moving forward in the center-of-mass 

are produced, as well as near settings for which etas moving backward 

in the center-of-mass are produced. For each of the settings, 

equation III C.2 was satisfied to within statistical errors. 

2) For all runs, equation III C.2 can be checked in the 

region of the E1 - E2 plane where the effect of Yij can be neglected. 

Such checks show almost no measurable deviation from zero correlation. 

Later we will discuss the (elementary) statistical methods used to 

check how well equation III C.2 is satisfied by the assumptions we 

make, including that of .zero correlation. But first let us discuss 

how the assumption of no correlation allows us to determine B . . under 
lJ 

the eta peak. 

Suppose we divide the i-j plane into four regions as follows: 

·~ 2 4 

j 

1 3 

' 

i 

Suppose further that we know the background in regions 1, 2, and 3, 
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but not in region 4. If n. is the total number of background counts 
l 

in region i, then the assumption of no correlation gives within sta-

tistical errors 

so that n4 can be computed in tenns of measurable quantities. 

The discussion of the previous paragraph was intended only 

to show that, in principle, the infonnation on the background beneath 

the eta peak is contained in the measured background away from the 

peak. To obtain the value of B .. for all bins requires a more elaborate 
lJ 

treatment. 

We divide the i-j plane into two regions -- the "eta region," 

analogous to region 4 of the above discussion, and the "background 

region." In order to define the "eta region," we combine the results 

of a Monte Carlo program (which, as a byproduct, generates artificial 

eta events for each setting at various incoming photon energies) with 

some reasonably assumed eta photoproduction cross section and an 

assumed energy resolution of our counters (as independently measured 

in a positron beam --see Appendix A). We obtain an expected dis-

tribution of etas in the E
1

- E
2 

plane. Then a contour about the eta 

peak can be drawn such that approximately Boa/a of the etas are expected 

to fall inside the contour. 

Because this definition of the "eta region" is so arbitrary, 

we will have to show later that our method of estimating the yield is 

not very sensitive to the location of the boundary of the eta region. 
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Figure 11 shows the above described division of the i-j plane. The 

"low mass cut" shown in the figure has been already discussed. The 

"low E
1 

cutoff" and the "low E
2 

cutoff" are set slightly above the 

pulse heights at which the fast electronic logic begins to exclude 

events. 

The same Monte Carlo results that were used to define the boundary 

of the eta region can be used to estimate the leakage of etas into 

the background region. Here the errors in some of the assumptions 

involved can hurt. We do not accurately know the energy calibration 

of the pulse heights, we don't know very well the resolution of the 

counters, and we don't know the cross section for eta photoproduction 

from deuterium. At this point, it should be pointed out that we are 

about to describe an iterative procedure for obtaining the yields. 

The initial assumptions may be inaccurate, but part of the output of 

each iteration will be improved estimates of the unknown energy 

calibration, resolution, and cross section. 

Taking expectation values in equation III C.l gives 

III C.3 

We have used the results of the previous section, along with equation 

III C.2 of this section. 

As in section III B, we use the maximum likelihood method to find 

equations for b
1 

and b 2 • The sums over i, j are restricted to the 

background region and the equations are complicated by the presence 

of Y .. = the estimated eta leakage into the background region, and 
lJ 
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by the existence of the accidentals. As a consequence of these 

complications, the equations resulting from the maximum likelihood 

condition are not trivially soluble. An iterative procedure for 

solving the equations is discussed in the thesis of W. A. McNeely. C27 ) 

Although we solve for b
1 

and b
2 

using only information in 

the background region, the resulting solution applies to the eta 

region. The above-described method for obtaining B .. really a.mounts 
lJ 

to an extrapolation technique. The next step in the iterative 

procedure is to apply equation III C.3 to the eta region with Y .. 
lJ 

now considered to be a function of a few unknown parameters. These 

parameters are none other than the ones assumed as input to this 

iterative procedure. We have as unknowns: 

1) the scale factors (the proportionality constants relating 

the pulse-heights to the expectation value of the shower energy), 

2) the resolution, and 

3) the size of the cross section. 

The resolution is parameterized by a in the equation 

= aE 

E is the shower energy, µ is the expectation of the pulse-height from 

showers of energy E, and cr is the standard deviation of the pulse-

heights from such showers. This equation is an approximation to the 

results obtained in a monoenergetic positron beam (see Figure 

It is expected to hold exactly if the resolution is caused entirely 

by statistical fluctuations of the number of photoelectrons produced 
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in the cathodes and initial dynodes of the phototubes. 

The shape of the cross section used for generating Y .. is 
l J 

not critical; our geometry allows photoproduction to be observed only 

within a restricted kinematical range. It can furthermore be antic-

ipated that when fitting the eta region the freedom of the scale 

factors and the resolution to vary would compensate for any reasonably 

small error in the shape of the cross section. We use a cross section 

with the shape of the cross section for photoproduction from protons 

and with an unknown proportionality constant to be determined for 

each run by the data of that run. 

In terms of the above-described parameters, the final step 

in the iterative procedure involves maximizing the likelihood for 

the fit of N . . in equation III C.3 to the observ~d N. .. Details of the 
lJ lJ 

fitting are given by McNeely. (27 ) 

When fitting the eta peak, we increase the size of the "eta 

region." To see why, let us consider the effect on the background 

fit of errors in the estimated eta leakage. The maximum likelihood 

solution will try to adjust b
1 

and b 2 so as to include this leakage, 

but background data far from the eta peak will carry enough weight 

to force a compromise. Some information about the shape of the eta 

peak will therefore be available in the background region after the 

background fit is made; so it makes sense to widen the eta region in 

order to better determine the parameters of the eta peak. 

We have completed the description of one pass through the 

iterative procedure. The next step would be to go back to equation 

III C.3 as applied to the background region and again evaluate b1 and 
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b
2

• The end result of the procedure is a fit to both regions of the 

E
1

- E
2 

plane. For this fit we can compute the value of chi-squared 

per degree of freedom fo r each of the two regions of the plane (the 

number o:l' degrees of freedom in a r eg ion is the number of i, j bins 

in that region minus the number of parameters which can be varied in 

the fitting to that region). Chi-squared per degree of freedom is 

expected to come out about one if our assumptions do not contradict 

the data. In practice, when we were deciding whether or not the fits 

obtained by the above described method were reasonable, we did not use 

chi-squared as calculated from all the bins in a region. Instead, we 

restricted the bins to ones with an expected number of counts greater 

than .5. As is explained in Appendix E, this restriction allows a 

stronger test of the goodness of fit than the unmodified chi-squared. 

Figure 12 shows the computed background, Bij + A ..• 
lJ 

Figure 13 displays the estimated foreground= N .. - the computer back
lJ 

ground, and Figure 14 displays the calculated Y ..• Figure 15 shows 
lJ 

the difference between the estimated foreground and the calculated 

Yij" The spike at low E1, E2 in Figures 13 and 15 occurs below the 

low mass cutoff of 240 MeV. All these figures are for the run whose 

pulse-height distribution, N .. , is shown in Figure 10. 
lJ 

For a set of about fi~y runs with especially prominent eta 

peaks we examined the scale factors and resolution (for this purpose 
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we used runs with hydrogen targets as well as ones with deuterium 

targets). We found that the scale factors could be usually predicted 

from the radioactive source peaks (see section II D) to within ± 'C1/o, 

and the value of a defined above could be generally predicted to within 

15%. We observed a puzzling phenomenon; a appeared to depend on the 

half angle of the Cherenkov counters. For angles greater than eighty 

degrees a was typically .255, for angles less than fifty degrees it 

was typically .l65, and for angles between fi~y and eighty degrees 

it was typically .215 (with a standard deviation in a of about .03). 

One cause of the broadening of the Cherenkov counter resolution was 

the possibility of low energy electrons, positrons, or photons entering 

the counter so close in time to the triggering event that the low 

energy events contribute to the measured pulse-height. This contri

bution to the broadening could explain the decrease in energy reso

lution with decreasing counter angle, for the background rate increases 

with decreasing angle. But so great is the uncertainty in the spectrum 

of low energy particles that we cannot tell whether or not this cause 

could produce as large an effect as was observed. In any case, when 

we say that a was predictable to within l5%, we mean that given the 

angle of the counters, the error in the prediction of a had a standard 

deviation of about 15% of the value of a. 

We conclude this section with one final comment about the 

usage of the above-described fitting method. Many runs had eta peaks 

so small that a, and sometimes also the scale factors, could be far 

better determined by analogy with the runs with prominent eta peaks 

than by the data of the run itself. In such cases, we used the 
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maximum likelihood method with a priori probability distributions of 

a and the scale factors. The a priori distributions were assumed to 

be gaussian with mean value equal to the value we would expect from 

the runs with prominent eta peaks. The standard deviation of the 

a priori distribution of a was taken to be .08 and the standard 

deviation of the scale factors was chosen to be about 4%. Quali

tatively, such a priori distributions amount to a weak clamping of 

the corresponding parameters. For runs with very obscure eta peaks, 

the maximum likelihood solution must settle near the maxima of the 

a priori distributions. For runs with prominent eta peaks, the 

solution must be almost unaffected by the presence of an a priori 

distribution (because in such cases the standard deviations of the 

a priori distributions are well above the standard deviations of the 

parameters as determined by the data alone). In Appendix E we explain 

how the maximum likelihood equations are modified by the assumption 

of a priori knowledge. 

D. Corrections to the Yield 

The yields as obtained in section III C were corrected for the 

effects of the empty target contribution, contaminants in the deuterium, 

dead time in the electronic circuitry, and the bias in our method of 

fitting the data. We now discuss those corrections. 

In addition to passing through the deuterium, the beam had to 

pass through a total of sixteen mils of mylar. Making the approximation 

that the cross section for photoproduction of etas from mylar is about 
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the same per nucleon as that for photoproduction from deuterium 

(mylar = c
5

H4o2 resembles deuterium in that it contains approximately 

equal numbers of protons and neutrons) we can predict that typically 

three percent of the yield will come from the mylar when we use the 

relatively long targets (about Gt inches) and about six percent from the 

mylar for the shorter 3. 311 target. The size of this contribution was 

often non-negligible compared to the statistical error, and the effect 

was systematic. To correct for the empty target contribution, suppose 

we pick some reasonable cross section and use it with a Monte Carlo 

program to estimate the yield from the deuterium and the yield from 

the mylar, using the fact that the mylar was spacially concentrated 

somewhat differently from the deuterium. While the individual yields 

so calculated depend strongly on the size of the cross section used, 

the ratio between the expected yields depends only on the shape of the 

cross section. Because restrictions are imposed on the kinematics by 

the synchrotron end-point energy and by the counter geometry, the ratio 

of the yields cannot be sensitive to the shape of the cross section 

used (so long as the shape is realistic). We used a cross section 

approximately equal to that for photoproduction of etas from hydrogen, 

found the expected ratio between the contribution from the mylar and 

that from the deuterium, and corrected the yieids by subtracting the 

appropriate fraction for each run. 

Nitrogen and oxygen were the major impurities in the deuterium, 

comprising a total of 2.3% by weight of the contents of the target. 

Since nitrogen and oxygen each have about the same number of protons 

as neutrons, we can approximate their contribution to the yield in the 
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same way we approximated the effect of the mylar. The densities of 

liquid oxygen and nitrogen are so much larger than that of deuterium 

that we can approximately say that the amount of deuterium in the 

target is not appreciably decreased by the presence of those impurities. 

To correct for the effect of the impurities, then, we can simply de

crease each yield by 2.3%. Instead, and equivalently, we decreased the 

cross section finally obtained by 2.3%. 

Turning to the correction for dead time, in the logic which 

decided whether to accept an event, we consider two different sources. 

The veto counters, while intended to veto charged particles entering 

the counters, could accidentally veto photons. While we did not monitor 

the veto rates, we did monitor the rates of the Cherenkov counters, and 

tests showed that at settings for which those rates were high the veto 

rates were about thirty times higher. A simple estimate of the expected 

·dead time showed that less than 3% of the photons were vetoed at all 

settings used (when the dead time from the veto counters was estimated 

at greater than 3%, the run was rejected). Our failure to monitor the 

veto rate constituted an error in our method, for the above mentioned 

estimate of the veto-induced dead time cannot be relied upon to within 

better than a factor of three. We did not correct for this source of 

dead time, but instead considered it to be a contribution to the error 

in our results. 

Another source of dead time in our detection system 'NaS the time 

required for analogue -to-digital conversion of the signals whose pulse 

heights constituted the data of this experiment. Because a "master" 

scaler counted the total number of coincidences regardless of whether 
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or not there was time to digitize them, we could easily measure and 

correct for this source of dead time. This correction typically was 

between one and three percent. But for some empty target runs, runs 

with especially low counting rates, we noticed that the apparent dead 

time was far larger than the amount we would estimate from the time it 

took to pulse-height analyze signals. We believe that the "master" 

scaler was occasionally double counting or firing from electronic noise 

in the laboratory. For this reason, we looked with suspicion on runs 

with over five percent apparent dead time, and ultimately decided to 

reject one with 13% apparent dead time. 

Lastly we mention the bias of our fitting procedure for the 

yields. When finding parameters through the maximum likelihood method, 

a systematic error is introduced. In Appendix E a formula for the 

approximate correction of this error is derived. This correction was 

applied to each of the yields, but because we excluded runs of less 

than eighty bips, the correction, which is inversely proportional to 

the statistics available, was small (generally less than two percent). 

E. Extracting the Cross Section from the Yields 

As is discussed in Appendix G, in the framework of the impulse 

approximation, (44, 4G, 47 ) the yield can be considered to come partly 

from photoproduction from single nucleons in the deuteron and partly 

from an interference term. In the interference term, the eta must be 

considered to be photoproduced from both the nucleons at once. For 

now, we consider only the non-interference contribution to the yield. 
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The total cross section from non-interference tenns is the sum of the 

cross sections from the individual nucleons. 

The resolution in ~ depends heavily on the setting, and is 

typically worse at higher energies, For example, for a setting with 

synchrotron nominal end-point of 725 MeV and counter half angle of 

65 degrees, the range over which the cross section is measured is 

about 25 MeV. Such a setting corresponds to a near threshold measure

ment of photoproduction of eta mesons from a single nucleon. For a 

setting at 875 MeV, 40 degrees, the kinematic uncertainty is about 

80 MeV; for 90 degrees, 975 MeV, the uncertainty is about 175 MeV. 

These uncertainties are typically five to ten percent worse than the 

corresponding ones for photoproduction from hydrogen because nucleons 

in the deuteron have Fermi motion. 

The angular resolution is best at high energies. For the setting 

at 65 degrees, 725 MeV, the detection efficiency is almost independent 

of 9*. But for 40 degrees, 875 MeV, the production is detected almost 

exclusively for cos 9* less than .1 from the value it takes for 

directly forward photoproduction (where cos 9*· = 1). For 90 degrees, 

975 MeV, eta photoproduction is detected almost exclusively with cos 9* 

a distance less than .1 from its value for directly backward eta 

photoproduction, where cos 9* is -1. 

We were not, in this experiment, attempting to determine the 

cross section as a detailed function of cos 9*. Our main problem 

involved unfolding the cross section as a function of K while using 

yields measured with poor ~ resolution. The situation facing us can 



86 

be dcccribcd ns follows (neglecting for now the interference tenn of 

the cross section): From Appendix G, and especially equations G.7 

and G.8, the eta yield from deuterium for a particular kinematical 

setting can be expressed as 

da (K, cos 9*) p-
+ 

00 

da (K, cos G*) n-
~~~~~~~ = 

®* 
q* 
K* 

00 

III E.l 

da (K, cos 9*) 
~ - represents the differential cross section at center-

of-mass angle G* for photoproduction of eta mesons from protons at 

rest using photons of laboratory energy ~· 
da n represents the 
®* 

corresponding differential cross section from neutrons. gJ is defined 

in G.9. It is a different function for each setting, and it includes 

such effects as the probability of detecting the eta given that it 

decays into two photons, the probability of the two-photon decay mode, 

the smearing of the kinematics caused by the nucleon Fermi motion, 

and the effect of folding in the synchrotron bremsstrahlung spectrum. 

From a set of yields known to within certain experimental errors, and 

from a corresponding set of known gJ(~) (computed by means of a Monte 

Carlo program), we wish to approximately unfold from III E.l the 

unknown fJ for at least the lowest values of J. 

We used two unconventional methods for extracting the cross 

sections from the yieldse The first is discussed in Appendix C, and 
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is a generalization of the familiar technique in which a synchrotron 

end-point subtraction is performed -- i.e., in which an experiment 

is performed using bremsstrahlung from two slightly different end-point 

energies and the appropriately normalized results are subtracted. If 

the yields are appropriately normalized, then the difference between 

the two yields will receive contributions from the cross section 

primarily between the two different energies at which they were taken. 

Such a subtraction increases the statistical uncertainties in the 

value of the cross section determined, but decreases the energy range 

over which the cross section is being measured. Rather than simply 

making a single subtraction of yields, we found a method for choosing 

more general linear combinations of the yields such that the resolution 

is in some sense optimized. We considered only J = o, and classified 

the settings into those corresponding to forward photoproduction and 

those corresponding to backward photoproduction. Then III E.l 

becomes something of the form 

Yield' = J ~ g' (~) f(~) 

where Yield' is a linear combination of the yields, g'(~) is the same 

linear combination of the g0 (~) for all forward (backward) settings, 

and q* 
K* f 

dcr 
n 

an in the forward (backward) direction. With 

carefully chosen linear combinations, the g'(~) can be chosen to be 

non-negligeable only for ~ within a narrow range. 

All things considered, the above described methods lose in-

formation. Consider, for example, the method of end-point subtraction. 
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The information contained in the values of a pair of yields is also 

contained in the pair of numbers Y = the sum of the two yields and 
+ 

Y = the difference of the two yields. But when making a synchrotron 

end-point subtraction, Y is thrown out because it corresponds to poor 
+ 

energy resolution. Thus information obtained during the experiment is 

lost during the analysis. Such a method does, nonetheless, allow one 

to describe the results of the experiment in terms of a set of cross 

section values with error bars, rather than as a set of yields with 

errors and with given resolution functions g(!, cos g*). We will say 

no more about this method because the details are in Appendix c, and 

the results from using it are in part IV. 

The second method we used involved finding a function that 

(1) on a priori grounds is a plausible looking cross section, and (2) 

-would lead to approximately the observed yields if it were in fact 

the true cross section. A well-known method of obtaining such a 

function, f(!, cos g*), is to pick a function of both Kand several 

unknown parameters such that for a wide range of the parameters the 

function satisfies condition (l); then vary the parameters until 

condition (2) is satisfied. A common criterion for best satisfying 

condition (2) is that of minimum x2 
• For a given set of parameters, 

computes the expected yields, then computes the value 2 
one of X for 

the comparison between the observed and computed yields, and finally 

varies the parameters until x2 is minimized. An advantage of methods 

based on criteria (1) and (2) is that such methods, unlike synchrotron 

end-point subtraction and its generalization, do not give up experi-
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mental information. It is possible, to be sure, that for a given 

experiment there are two or more completely different functions that 

satisfy criteria (1) and (2). But with care in choosing the experi-

mental settings, such problems need not arise. One defect of such 

methods is that the resulting functions do not indicate clearly at 

what energies the function is determined by data and at what energies 

the function is only constrained by the a priori assumptions. For 

this reason, such methods should be used in conjunction with some 

method, such as end-point subtraction, for which the location of the 

data is clearly displayed. 

A drawback to the use of minimum x 2 
can be seen by the following 

example. Suppose the a priori condition one had in mind was that the 

desired function should change slowly. In that case a parameterization 

would be chosen that would result in a slowly changing function when 

x2 
is minimized. But then it could happen that a~er minimizing x2 

' 

2 
there would be for the same X a function that varies more slowly 

than the one found. If there is such a function, and if slowly 

varying functions are indeed more plausible on a priori grounds, then 

minimum x2 
would have not found the function that best satisfies 

criteria (1) and (2). There are two reasons such a more plausible 

solution can, and almost certainly will, exist. In the first place, 

as soon as one begins minimizing x2 , the a priori preferences are no 

longer being taken into account. Functions with better a priori 

plausibility are not given special weight. In the second place, even 

if one has a particular set of a priori criteria in mind when choosing 
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the form of the function to be found, the form chosen may not be the 

best form for satisfying the a priori criteria. An a priori preference 

such as slow variation cannot be easily translated into a particular 

functional form. As soon as one has chosen a particular form for the 

function, the solution has been distorted in an unknown manner from 

the most plausible one. 

The reader should understand that the above mentioned draWbacks 

are not fatal ones. If the data are good, then any fit that reasonably 

well satisfies criteria (1) and (2) will probably be pretty close to 

truth. But it is desirable to find some method that is able to avoid 

some of the disadvantages of minimum x2 
• For this reason (and also 

because doing things in a different way is more fun) the objections 

to minimum x2 were met for a certain class of a priori criteria by a 

method described in Appendix D. In part IV, we try several a priori 

criteria in order to see how sensitive our results are to the initial 

assumptions. For example, one criterion we tried was that the function 

purporting to be the cross section must be smooth i.e., the 

derivative of the function must not change rapidly with !· A reason-

able measure of the smoothness of a function is 

y = ~2f( G*) ]2 ff dK dcos (G*)[ 0 ~' cos III E.2 
oK 

When this quantity is small, f is smooth in !S_; otherwise it is not. 

Because we only took data near extreme forward and backward settings 

(except near threshold), it is reasonable to express this fact by 

taking f(~ cos g*) ~ f
0

(!S_) + f 1 (!S_) cos (g*) and considering this form 
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to be valid only at cos (Q*) = ±1 (again except near threshold, where 

this form for f is valid at all Q*). In order to avoid the possibility 

of there being a function which is smoother than the one we find, but 

which fits the data equally well, we set ourselves the mathematical 

problem of finding the smoothest function that fits the data to within 

2 
a given value of X • This problem is solved in Appendix D. Which 

value of x2 is chosen is somewhat arbitrary; so it is wise to try 

several in order to see if any conclusions depend on how strongly one 

demands that the assumed function fit the data. In III E.2, the 

second derivative with respect to! can be replaced by the n'th 

derivative for any n ~ 1, thereby providing alternative measures of 

"smoothness.ti 

Before we go on to display the results, we point out that f J 

as defined in III E.l is the J 1 th Legendre moment of the cross section 

with the threshold factor, q*/K*, removed. We remove the threshold 

factor because our a priori assumption of smoothness is unreasonable 

if fJ has such a factor. It is easy, however, to write down an equa

tion analogous to III E.l but with the threshold factor remaining in 

the function assumed to be smooth. In this way we give ourselves a 

test of the effect of false assumptions on our method of unfolding 

the cross section. 

Finally, we mention the effect of the interference term on the 

cross section (remember that until now we have been neglecting it). 

Equation G.11 gives a way of computing the contribution to the yield 

of the interference term given the amplitudes for photoproduction from 
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protons and neutrons individually. This contribution turns out to 

be generally less than ten percent for reasonable amplitudes, and it 

is not too terrible to simply neglect the effect. The cross section 

that results from neglecting the interference term can be used to 

estimate the photoproduction amplitude from neutrons. Then taking 

the amplitudes from say, the Sll resonance as it appears in photo

production from protons and from neutrons, one may estimate the 

interference contribution to the yield and see how this contribution 

can affect the results for our estimate of the non-interference term. 
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IV. RESULTS 

Figure 16 shows the cross section for eta photoproduction from 

deuterium. In this figure, there are two sets of three curves. The 

cross section is of the form 

dcr (K, cos g*) 
p-

<ill* + 
dcr (K, cos g*) n-

<ill* 

where subscripts "p" and "n" refer to the proton and neutron respec-

tively, where ~ is the photon energy in the rest frame of a nucleon, 

and where g* is the center-of-mass angle of eta photoproduction. The 

set of three curves that start up from threshold and reach a peak of 

about two microbarns per steradian represent the f term. The center 
0 

curve represents the value of f , while the two outer curves represent 
0 

f ± estimated error in f • Similarly, the other three curves represent 
0 0 

f
1

, and f
1

± error in f
1

• This set of six curves was generated from 

the data and detection efficiencies by Blackbox, a method and computer 

program described in III E and Appendix D. The criterion for "smooth-

ness" used for generating Figure 16 was that of small 

1350 MeV [- d2
( f 

f dK d cos G* o 
Threshold 

f
0 

and f 1 were not assumed to have the threshold factors q*/K* (from 

phase space) removed. Although forty-two settings were included in 

the data for Figure 16, only the twenty most important linear combina-
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tions were used with a x2 
of twenty (see Appendix D in order to under-

stand how we separate out the "most important" linear combinations). 

Figure 16, then, represents the smoothest fit to the data with a x2 

of twenty, with twenty settings, and with no threshold factor assumed 

to be present in the cross section. Notice that at energies above 

about 1125 MeV the errors increase sharply. Such large errors indicate 

a lack of data so severe that any cross sections displayed should not 

be taken seriously above 1125 MeV. The true cross section must go 

to zero at threshold. f 1 is consistent with zero at threshold -- the 

observed small deviation from zero is consistent with the statistical 

errors we know to be present. But the deviation of f from zero at 
0 

threshold appears to be inconsistent with the errors we display. At 

this point we must examine more closely what the errors given mean. 

The "error" represents the effect of statistical fluctuations in the 

data on the computed cross section when x2 is held fixed. The failure 

of f to go all the way to zero at threshold in Figure 16 is primarily 
0 

a conse~uence of the fact that the assumption of a small second 

derivative of f is especially bad near threshold, where the second 
0 

derivative with respect to ~of the true cross section is infinite. 

Statistical fluctuations in the data are not sufficient to overcome 

the a priori prejudice against an infinite second derivative of the 

cross section. 

Another point that should be made about the errors is that they 

are optimistic. They include only the effects of statistical un-

certainties in the number of etas observed during each run. Not 
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included are such difficult to estimate errors as those from veto-

induced dead time (III D) and errors in the assumptions made during 

extraction of the yield (section III C and Appendix I). One way of 

detecting the fact that the errors are too small is by making various 

consistency checks. For example, frequently more than one run was 

taken at the same setting with the same length target, counter 

position, and synchrotron end-point. We could, therefore, check to 

see whether to within the statistical errors assumed for the runs, 

there was agreement between different runs. In fact, there almost 

always was such agreement. The few inconsistencies that were observed 

would be understandable if we were underestimating our random errors 

by a factor of about 1.5. If we increase all the errors by a factor 

of 1.5, then by finding the smoothest function for x2 = 20/(1.5) 2 = 8.9 

we would obtain Figure 16 with 1.5 times as large an error. But in 

the limit of a large number of settings, a reasonable fit would be 

2 
such that X the number of settings (if we knew the true cross 

section, our data should be consistent with it to within that value 

2 
of X ) • When unfolding the cross section with smaller fixed x2 

, f 
0 

and f
1 

can be expected to exhibit greater fluctuations corresponding 

to statistical errors in the data. 

In Figure 17 we have displayed the effect of making several 

changes in the method of extracting the cross section from the yield. 

Instead of having the cross section smooth, we have made the squared 

amplitude smooth. We have done this by taking 
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0 

= 

= 

q*; 
K* 

q*; 
K* 
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h 
0 

(where q* = eta center-of-mass momentum, K* = photon center-of-mass 

momentum) and requiring that h
0 

and h
1 

be smooth. The result of this 

change, alone, is not shown in Figure 17. Instead we also change the 

definition of smoothness by requiring that the first derivative, rather 

than the second, is small. Also displayed in Figure 17 is the cross 

section as calculated by the generalization of synchrotron end-point 

subtraction as discussed in III E and Appendix C. The backward cross 

section (G* = 180 degrees) is shown as points with both horizontal 

and vertical error bars, with the understanding that the horizontal 

errors (the energy range over which the cross section was being 

measured for a given point) are about the same for forward cross sec-

tions at a given energy as they are for backward ones at about the 

same energy. While the cross section represented as points with 

error bars ignores most of the information obtained by this experiment 

(see section III E) such a representation does serve to show where our 

data were taken, and it serves as a check on the results as displayed 

by the smooth curves. 

With the exception of immediately above threshold, f
0 

and f
1 

of Figure 16 agree (to within the optimistic errors given) with f 
0 

and fl of Figure 17. This agreement does not mean that the errors 

given are correct; it means that the results are insensitive to the 

a priori assumptions made about the cross section. 
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Although Figure 16 and 17 agree to within statistical errors 

except at threshold, there are some disagreements that are not large 

compared to the statistical errors but deserve comment. At about 

900 MeV, Figure 16 exhibits a bump in the error of f
0 

and f 1 , but no 

significant structure in f itself. In Figure 17, there is not only 
0 

a bump in the error, there is a shoulder in f • Other variations of 
0 

our fitting procedure show that this shoulder is weakly indicated by 

the data. But in the case of Figure 17, the shoulder is especially 

pronounced. This enhancement of the shoulder is spurious, because 

when the expected statistical errors on the data are large, the 

requirement of a small first derivative of f can be expected to show 
0 

up as a temporarily constant cross section in the region of large 

statistical errors. Another disagreement between Figures 16 and 17 

lies in the large difference between the errors given in the region 

above which we claim to have no reliable results (above about 1125 MeV). 

But it is reasonable that a computed cross section constrained to have 

a small second derivative is more sensitive to statistical variations 

in the data than one constrained to have a small first derivative. 

The demand of a small second derivative allows an arbitrarily steep 

cross section in the region for which little data are available. 

In Figure 18 we display the results of placing unreasonable 

stress on the demand for smoothness by setting x2 
to 60 (using the 

optimistic statistical errors). There is an a priori threshold factor 

in the cross section and "smooth" means "small second derivative." 

As can be seen, the displayed errors are small, indicating that by 

placing such great stress on smoothness we become insensitive to 
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statistical fluctuations in the data. Most of the details formerly 

seen in Figures 16 and 17 are smoothed out by allowing such a high 

2 
value of X . 

Table IV.l shows the differential cross section in microbarns 

per steradian. The "energy resolution" is an eyeball estimate of the 

full-width at half-maximum of the corresponding linear combination 

of efficiency functions. The "angular resolution" is 1- I (cos 9*) I , 
where (cos 9*) is estimated from the angular resolution of the detec-

tion efficiency for settings taken near the energy of the linear 

combination involved. The errors given in the cross section do not 

include the systematic errors from our method of determining the 

yields (errors estimated from the results of Appendix I to be of the 

order of the stnt:Lsticnl crrorc -- about .1 1ib/stcr). Th:i.s table io 

not considered to be as informative as Figures 16, 17, and 18 . It 

is placed here (1) because it presents the data in a conventional, 

hence easily used, form; (2) because it gives the reader an opportunity 

to decide for himself which method of unfolding the cross section to 

trust; and (3) because it helps one decide which features of Figures 16, 

17, and 18 are most firmly established by the data. 
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TABLE IV.l 

Cross Section from Optimi zing Resol ution 

Energy Resol ution Cross Secti on Error in 

Energy (MeV ) Angle (cos 9*) Forward Backward Cr oss Secti on 

725 15 .7 1.10 . 0 7 

728 20 .7 1.25 .09 

749 50 . 4 1.33 .10 

761 60 • 35 1.40 .13 

794 60 • 25 1. 95 .15 

806 60 .3 2 . 01 . 1 2 

839 70 . 17 1. 70 . 16 

890 80 . 12 1. 21 . 1 2 

9ll 100 .10 1.28 .24 

986 180 . 09 1. 1 3 .12 

1095 1 40 .06 .42 .06 

1154 220 .07 .46 . 1 3 
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V. CONCLUSIONS 

In order of most firmly established conclusions first, we have: 

1) The s11 (1535) is about as prominent in photoproduction from 

neutrons as it is in photoproduction from protons. This conclusion 

is based on a comparison of Figures 16, 17, and 18 with corresponding 

results from a similar experiment performed at the same time but using 

a hydrogen target( 27
). 805 MeV is within about 10 MeV of the maximum 

cross section for both hydrogen and for the cross sections as displayed 

in Figures 16, 17, and 18. At this energy, the isotropic term in the 

hydrogen differential cross section was found to be about .98 ± .06 

µb/ster. as compared with between 1.85 and 2.05 µb/ster. for deuterium 

(depending on how the unfolding was done). We estimate that the ratio 

of the eta cross section from neutrons to that from protons is 

.99 ± .10 at 805 MeV. To within our experimental errors, the Sll is 

photoproduced by either an almost pure isoscalar interaction or by an 

almost pure isovector interaction (we ignore the possibility of 

isotensor electromagnetic interactions). 

2) Up to 900 MeV there is no detectable angular as~rmmetry in eta 

photoproduction from deuterium. If one somewhat discounts the 

probably statistical oscillations in the asymmetry term of Figures 16 

and 17, then below 900 MeV we can be reasonably sure that the 

forward cross section - backward cross section 
asymmetry = 

forward cross section + backward cross section 

is zero to within .1 for energies below 900 MeV, with an indication 
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of a slightly positive asymmetry over most of this range. Recall 

from the introduction that the absence of the Roper resonance 

(P11 (1470)) in photoproduction from protons could be explained if 

that resonance were in an SU(3) 10*. But if that explanation were 
"' 

valid, the Roper resonance could be visible in photoproduction from 

neutrons. By ex8Jllining eta photoproduction, we isolate the I = 1/2 

from the I = 3/2 intermediate states which also are produced in 

photon-nucleon interactions. The effect of the I = 1/2 Roper reso-

nance should then be seen as an angular asymmetry in the region 

between 750 MeV and 900 MeV, with strong energy dependence. Since 

such an asymmetry is as hard to see in photoproduction from neutrons 

as it is in photoproduction from protons, there is no longer any 

reason to suspect that the P ll (14 70) is in a lO* irreducible repre

sentation of SU(3). 

3) From 975 MeV to 1100 MeV there is a negative asymmetry. This 

asymmetry also appears in photoproduction of eta mesons from protons, 

where it is consistent with an interference between the sl
1

(1535) and 

the Pil_(l780). 

4) Somewhere between 1000 MeV and 1100 MeV, the isotropic part of 

the cross section seems to reach a minimum at about .5 µb/ster. and 

startsto turn up. Such a minimum has been observed in eta photo

production from hydrogen ( 42 ' 5 4l where the minimum is about • 2 µb / ster. 

In the case of hydrogen, this minimum is followed by a broad peak, 

which again is attributed to the PiJ_(l780). In the case of deuterium, 

our experiment did not extend high enough to explore such a peak, but 
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it appears that the Pl1 (1780) is at least as strong in photoproduction 

from neutrons as it is in photoproduction from protons. 

5) In the range -.4 < cos G* < +.6, a Frascati groupC 23 ) found the 

deuterium cross section to be 1.82 ± .25 (estimated from Figure 2 in 

their paper) at a photon energy of 835 ± 35 MeV. Our value at this 

energy is about l.UI ± .10 for cos G* near ±1. But it is known that 

there is no significant cos
2

G* term in eta photoproduction at 835 MeV off 

protons. ( 2 J.) Thus the experiments conducted here and at Frasca ti when 

compared show no cos
2
9* term in the differential cross section for 

eta photoproduction from neutrons. There seems to be much less of 

such a term in our reaction than there is at similar energy in 

- (20) 
1( p -'-7 11n. 

and the phase shift 

We therefore confirm the prediction of Bietti( 3o) 

analysis of Walker(l3 ) which have small IJ I = 1/2 
z 

components of the Di3(1520) in photoproduction from neutrons (see part 

I B if you don't understand this sentence). 

We wished to detect the sign of the neutron-proton interference 

term, but the effect turns out to be small compared with the errors 

of this experiment and compared with other sources of asymmetry. 

To summarize our results, we see that it looks as if si1 and 

Pll can be invoked to explain y + d -7 T) + p over the entire energy 

range and to within the errors of our experiment. The absence of any 

effect from the Pl
1

(1470) eliminates the Roper resonance as a plausible 

candidate for a member of an exotic multiplet. Its absence in photo-

production from protons is no longer a valid reason for suspecting it 

is a member of a 10*. Furthermore, from equation I A.3, we see that 
"' 

our experimental results require both the si1 (1535) and the Pi1 (1780) 



106 

to be members of octet irreducible representations of SU(3). They 

cannot be members of an SU(3) lO* because both are seen in photo

production from protons. They cannot be members of an SU(3) ~7 because 

their contribution from photoproduction off neutrons is comparable to 

that from photoproduction off protons. In the notation of Table I.l, 

the Sll has ay either very large in magnitude or approximately equal 

to 3/4. 

A more quantative examination of the contribution of the states 

discussed here is in progress, and will hopefully soon give us a 

firmer handle in establishing the points touched on here; however we 

are confident that a more detailed discussion will have little effect 

on the prominent features of the conclusions presented here. 
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VI. APPENDICES 

APPENDIX A Gain Matching 

Certain assumptions must be made in order to conclude that 

phototube gains on a Cherenkov counter should be matched for best 

resolution. 

Suppose we neglect statistical variations of the position 

and development of showers and consider only variations due to random 

fluctuations in the pulse height in each phototube for a given shower 

energy and development. Then it is plausible to assume that there 

is essentially no correlation between pulse height fluctuations in 

different phototubes. This assumption is the first one we shall use. 

For the second of our assumptions, we say that if M. and cr. 
l l 

are the mean and standard deviation of the pulse height from tube i, 
cri 

then ~ is independent of the phototube voltage. To see why this 
l 

assumption is reasonable, suppose cr. comes primarily from random 
l 

fluctuations in the number of photons that convert. If the expected 

number of photoelectrons at the cathode of tube i is ni' then the 

probability of n. photoelectrons is given by the Poisson distribution: 
l 

n. 
Cni) 

l n. 
P(n.) 

l 
= I e 

l n. . 
l 

Because the phototube voltages were such that output pulse 

heights were at most a few tenths of a volt, and because we had 

capacitor banks on the last dynodes, saturation effects were 

eliminated. Hence the total pulse height can be taken proportional 
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to the number of photoelectrons, and we can speak of the gain of a 

phototube, G. = pulse height per photoelectron. The Poisson dis-. l 

tribution leads to 

M. = G. n. 
l l l 

When the phototube dynodes are operating in their proper 

voltage range, the number of photoelectrons should not change much 

with changing gain, for the voltage on a given dynode does not change 

much when the overall gain is changed substantially. 
0 i 1 

Mi = ~ 
should be independent of voltage over a large range of gain. 

This interpretation of the cause of the fluctuations is 

M2 
confirmed by Figure 19, which shows that was approximately 

02 

proportional to shower energy. 

Even if the phototube pulse heights do not follow Poisson 

distributions, we can define G. and n. by the above equations for 
l l 

M. and a., and similarly we can define overall G and n in terms of 
l l 

the overall M and a. When we speak of numbers of photoelectrons, 

we are referring to n. and n even though these numbers may not 
l 

really be physically the number of photoelectrons produced at the 

photocathode. For example, statistical fluctuations in phototube 

stages after the cathode can decrease these measured quantities and 
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our analysis will still be correct. 

With pulse height nearly proportional to shower energy, 

maximum resolution means minimum er M. We use the above explained 

assumptions to show that 
er 
M 

is minimized when the voltages are such 

that the 
er. 2 

l 

M. 
l 

are all equal. This minimum value of ~ satisfies 

-2 
(~) 
M 

" a. -2 
w (2.) 
i M. 

l 

In other words, we get best resolution when the G. are all equal, 
l 

in which case n takes on its maximum value, N = l. n. • A simple 
i l 

proof follows: 

Independence of fluctuations in different phototubes implies 

2 er 2 
a = ?.: i· and M 

i 
= I.. M. 

i l 

M. 
l Let the vector A be such that A. = and the vector B be such that 

i er. 
l 

B. = a. • By the Schwartz inequality, IA·BI S IA\ \Bj with equality 
l l 

when A and B are parallel. Because A·B = M, A•A = l: n . , and 
. l 

2 l 
B•B = er , the above stated conclusions follow trivially. 

The gains of the phototubes need not be matched especially 

closely. To make this statement quantitative, define G' so that 

I: n. (G' - G.) = 0 and define E. so that G. = G'(l + E.). Then 
i l l l l l 

2: Ei n. = 0 . 
i l 

We can interpret G' as a typical gain and the El as frac-
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tional fluctuations about that gain. For nearly matched gains, the 

E. are small. Note that G' = Gn/N is slightly below the overall 
J. 

gain as defined from the overall a and M. If we define a measure 

of the effect of unmatched gains to be 

M 2. 2 - (~) ( -cr) ideal actual N - n f = 2 = 

(~) actual n 

then 

f = 

can be easily shown. 

Putting in numbers, if the gains are matched to within 20%, 

then f will be below .05. For the energies involved in this experi-

ment, 0 

M 
for ideal gain ~atching is around 10%. Then a .05 value 

off will only increase 0/M from 10% to lof;:-%. As a check, using 

the light emitting diodes we calculated N to be 160 when n was 154. 
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APPENDIX B Monte Carlo Method 

The Monte Carlo method is so well known and so obvious that 

people can use it successfully without worrying about the mathematics 

behind it. To ease my mind, however, I built up a small personal 

store of Monte Carlo verities which I herewith present. 

Suppose we can express an integral as 

'Where f, G, and the range of integration are known and where G(xJ 

is every'Where positive. If we define 

then G(x7)/H is a probability distribution such that the expectation 

value of f for 1 chosen according to the density function G/H is 

<f> = G(xJ f(;t) 
H 

If = <f2> <f>
2 is finite, then a consistent, unbiased 

estimate of <f> is 

~ 

(5 2) 

f 
m = 

1 m 
L: m j=l 

~ 

f(x . ) 
J 

'Where the x. are chosen independently according to the density 
J 

function G/H. 

B.l 

· i·s 1 a2(f). The variance of f m m If f 2 has a finite variance, 
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then a consistent, unbiased estimate of cr 2(f) isC52 ) 

m (1 2 ) + - L. f (x. 
m-1 m . J 

J 

1 2 (- ~ f(x.)) ) 
m j J 

From what has been said above, 11 I 11 and its variance, 

estimated from 

H m ~ 
I ~ - L. f(x.) 

m . 1 J J== 

B.2 

2 11 a 11 can be 

B.3 

In the simplest use of the Monte Carlo method, f is either 

-7 
one (a success) or zero (a failure) depending on the value of x. 

In such a case, B.3 becomes 

I 
H 

successes 
attempts 

£il2. ~ 1 H ~ _a_t_t-em_p_t_s_ 
successes X failures 

attempts-1 

-7 

B.4 

It remains to find a way of picking x. according to a given 
J.. 

density function G/H. 



Define 

Gn = H 

~(XJ = 

M2(XJ = 

--7 
M (X) = 

n 

Cll Cll Cll' 

... ' 

xl 

J 
- 00 

x2 

J 
- 00 

x 
n 

J 
- 00 
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X ) = G(t) 
n 

00 

X ) = f a.x G n _
00 

1 o 

G (t, x2, • • •' Xn) 0 dt 
Gl (X2' ... ' XJ 

B.5 

G1 (t, x3, ... ' x ) n 
G2(X3, ••• ' x ) dt n 

dt 

The M. are all between zero and one, and the coordinate transfor-
1 

mation X BM has a Jacobian 11 ~I I = G/H. If we pick n random 

variables M. independently and uniformly from the interval (0,1), 
l 

then the corresponding X will have density function G/H. 
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APPENDIX C Optimizing Resolution 

We wish to determine a function, f(x), using an experiment 

whose i ' th setting results in a yield, Di. The yields have 

expectation values 

D. = fdx f(x) g . (x) 
1 1 

with known efficiency functions g. (x). 
1 

C.l 

Suppose g.(x) is large over only a small range of x (centered 
1 

about some value, x.). Then we can approximately take f to be a 
1 

constant over that small range and get 

C.2 

The smaller the range over which gi is large, the better the 

"resolution" at the experimental setting, and the more accurate is 

Equation C.2. If the resolution is good enough, the approximation 

f(x.) ~ 
1 

D. 
1 

Jg. (x) 
1 

dx C.3 

is almost correct to within the experimental error in the measurement 

of D . • Even if the resolution is poor, we may be able to use 
1 

approximation C.3 if we define better efficiencies by linear com-

binations of the original efficiencies. 
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Let 

where a is a set of as yet undetermined numbers. Then 

density: 

Dh = f dx f(x) h(x) = L: a. D. 
l l 

Define a function with the properties of a probability 

p(x) 

Then in terms of that probability density, the variance of x is 

2 2 
r; = Jx p (x) 

2 (fx p (x)) 

C.4 

C.5 

C.6 

C.7 

We choose to use a2 as a measure of the resolution. That 

is, the smaller the value of a2 
, the better the resolution. The 

reader should note that if h(x) were used in place of h
2

(x) in 

Equation C.6, p(x) could not be considered a probability density 

when h(x) goes negative. If in place of h
2

(x) we used the absolute 

value of h(x), the author would not know how to optimize the 

resolution. 

Using Equations C.6 and C.7, we will show how to minimize 

a
2 

with respect to the a .• 
l 
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Let 

P .. = fg.(x) g .( x) 
lJ l J 

Qij = Jx g.(x) g.(x) 
l J 

2 
R .. = f x g. (x) g. (x) 
lJ l l 

T 

/\1 
a Ra = T a Pa 

T 

/\2 = 
a Qa 

T a Pa 

Where aT is the transpose of a•M (we consider a to be a column 

vector and aT to be a row vector). Then 

cr
2 

= /\ - /\ 
2 

1 2 

and minimization of cr
2 

with respect to fi gives the equation 

C.8a 

C.8b 

C.8c 

C.8d 

C.8e 

C.9 

To facilitate the solution of Equation C.9, we use a notation 

that is familiar from elementary quantum mechanics by defining 

j'Y) = 'Y(x) 

(ej'Y) = fdx G*(x) 'Y(x) 

Where the complex conjugate of e(x), G*(x), is equal to e(x) for all 

functions to be considered here. In this notation 
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Dh = (fih) 

Qij = (il x lj) 

"1 = « 1 12~h) 
hh etc. 

Suppose the functions g . (x) formed a complete set (i.e., 
1. 

suppose all functions could be expressed as linear combinations 

of the g.(x)). Then we could find eigenfunctions of the operator, 
1. 

x. Those eigenfunctions would correspond to eigenvectors of matrix 

Q, R would equal Q2 , and a
2 

would be minimized to zero. Because 

the g. do not form a complete set, all these statements are only 
1. 

approximations to the truth. For example, to see why we expect R 

to be approximately Q
2 

for an approximately complete set of functions, 

transform to an orthonormal basis (one for which P is the identity 

matrix) and use 

(with equality only for a complete orthonormal set of Ii) ). 

R .. 
1.J 

= (ilx
2

ij) ~ (ilx(~ik)(ki)xlj) 
k 

2 (Q ) .. 
1.J 

= 

= 

If a problem in quantum mechanics can be solved approximately, 

then perturbation theory makes it possible to get more exact solu-

tions. We are therefore motivated to find the eigenfunctions of Q. 
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Let us begin the solution of Equation C.9 by transforming 

to an orthonormal basis of £'unctions, ji) • In other words, we 

define a new experiment in which the new data and g.(x) are linear 
l 

combinations of the original data and the original g., and such 
l 

that matrix P is the identity. There are several ways of finding 

such linear combinations. Later we will make an especially 

judicious choice, but for now we assume the transformation has 

been made. 

Computer programs are available for the diagonalization of 

any reasonably small real symmetric matrix Q. The eigenfunctions 

of Q are of the form 

I e. > 
l 

= C.10 

where BTQB is diagonal and B is an orthogonal matrix. In this new 

basis of eigenfunctions, je.), Pis still the identity. By the 
l 

above arguments concerning approximate completeness, the eigenf'unc-

tions of Q are expected to be approximate solutions to Equation C.9. 

We wish to find the eigenfunctions, 

of R-2/\
2
Q. 

In the basis of the states je.) , define matrices H, H0
, 

l 

and H' by 

0 H = H + H' 
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0 where H is diagonal and H' has only off-diagonal elements. Then 

because 

('¥.jxj '¥.) 
l l 

('¥. j 1'.) = + second-order correction, 
l l 

we can use second-order perturbation theory:(4B) 

To second order, 

I 

IL. 
Jl 

H .. -H .. 
11 JJ 

H'.k H'k. 
1e .) + I: (H

1

J H )(H ~) je .) J "k/· ...... - J J, rl 11- JJ ll 

= I: C .• je.) 
j Jl J 

= I: (BC) . . I j) 
Jl j 

= 

C.11 

If higher order corrections are desired, it is necessary to first 

correct 1'
2 

( i). 

We have completed the description of our method of maximizing 

resolution. But the above described method is much more useful when 

we make a modification, which we motivate as follows: 

Starting from our original functions, g.(x), we restrict 
l 

ourselves to transformations, a, that are normalized to unity. If 

a. is the standard deviation of D. and if the errors of the different 
l l 

2 2 2 
Di are independent, then crh = (variance of Dh) = I: a1 cri > (mini-

mum of the cr.
2

) =a 2
• But 

l ID 
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-2 
(fhf)

2 :s. J f 2 
fh

2 
Dh = 

So 

2 2 
(jh (j 

> m 
C.12 - 2 Jf2 }h2 

Dh 

2 
fh may be so small that the above inequality forces to be 

of order one. In such a case, the corresponding linear combination 

of the data contains almost no experimental information, and that 

combination can be neglected with little loss to the accuracy of the 

determination of f. 

~ 

Express the transformation , a, as 

~ _., 
a= L:b. a(j) 

j J 

~ 

where a(j) is the j'th eigenvector of P and has eigenvalue A . • Then 
J 

~ 

the requirement that a be normalized to unity is equivalent to the 

~ 

requirement that b be normalized to unity, and 

= 
T 

a Pa = 2 
L: b . "A. 
j J J 

It is clear, then that the smallest values of fh2 with i normalized 

to unity will all be linear combinations of those eigenvectors of P 

with smallest eigenvalues. To make the method described in this 

appendix more useful, one should exclude from consideration those 

transformed settings corresponding to especially small eigenvalues 

of P. The smaller the size of the minimum eigenvalue allowed, the 
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better will be the resolution ultimately attained, but the worse will 

be the statistical errors on the f(xJ obtained through Equation C.3. 

Too many eigenvalues may lead to statistical errors so large that 

the results are useless. 

Once P is diagonalized and the less important linear com

binations are excluded, the remaining submatrix of P can be trans

formed into the identity matrix by renormalizing the functions. 

These renormalized linear combinations are the functions Jj) to 

which we refer in Equation C.10. 

As a final point, it should be noted that if s(x) = f(x)/r(x) 

for known r(x) is expected to behave more smoothly than f(x), then 

Equation C.3 is more reliable for s(x) than f(x) • In such a case 

it is best to use the method of this appendix on s(x) and at the end 

evaluate f(x) = r(x)s(x) • 
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APPENDIX D Inside the Black Box 

Suppose we wish to measure a function that can be expressed 

in the form 

MU 
f(x,y) = ~ rJ(y)fJ(x) 

J=l 
D.l 

where the rJ(y) are an orthonormal set of functions, and MU is some 

finite integer. For example, y can be cos e with rJ(y)=J2J;l PJ(cos e). 

Another special case is MU= 1, with r
1

(y) = 1, in which case 

we really are talking about determining a function of x alone. In 

general, y can be a set of variables. 

An experiment is performed at NSETS settings and data are 

obtained in the form of yields, with the yield at setting i equal 

to D .• The efficiency function for setting i, g.(x,y), is defined 
l l 

so that the expected value of the yield is 

D. = ff dxdy f ( x, y) g . ( x, y) • 
l l 

We assume the efficiency functions are zero outside the range 

Then 

Define g. _(x) 
lt.J 

g. (x,y) 
l 

= 

so that 

00 

MU 
dx ~ g.J(x)fJ(x) 

J=l l 
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Define the matrix of covariance to be COV .. = expectation value 
lJ 

of (D.- D.)(D.- D.), so that chi squared= x2 
= (D - D)Tcov-1 (D - D) 

l l J J 

(superscript "T" means "transpose"). 

For some integer N we define a measure of smoothness of f: 

= 
x 

0 

2 
I:[f (N)(x)] 

J 
D.2 

If f is now assumed to be the smoothest function such that x2 

is fixed to be x2 
, we can find f by minimizing the quantity x2 + vY 

0 

with respect to variations of f with fixed Lagrange multiplier, v. 

2 2 
v can be chosen such that X = X at the minimum. To carry out the 

0 

minimization, first we find the minimum with D fixed, then we vary 

D so as to get an absolute minimum. But if D is fixed, minimizing 

x2 + vY is the same thing as minimizing Y. 

From the calculus of variations with Lagrange multipliers A. 
l 

(one for each constraint D.) we get 
l 

xl 
+ (-l)N f dx 

x 
0 

NSETS 
[f (2N) - I: 

J i =l 
A. g .. 

l lJ 
D. 3 

where our notation is such that of(n-l) = arbitrary infinitesimal 

variation of the (N-1) derivative of f, etc. 

Since the fJ are varied independently for each J, the in

dividual terms of the sum over J are independently zero. Since 

+ 
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Equation D.3 holds for arbitrary variations, in particular it holds 

for variations that leave the boundary values fixed. Then we must 

have 

f (2N) 
J 

NSETS 
= L: 

i=l 
D.4 

In order to satisfy D.3 with variations taken at the boundaries, 

at x
0 

and ~ we must have 

0 = f (N) = f (N+l) = 
J J 

= f (2N-l) 
J 

Now define 

G. (L + l,J,x) = 
l 

x 
f G. (L,J,t) dt 

x l 
0 

x 
f G. (L,J,t) dt x l 
1 

O<L<N 

N<L<2N 

In practice, these integrals can be obtained by first 

approximating the efficiency f'unctions by piecewise quadratic 

D.5 

f'unctions, then performing all integrals exactly on the approximate 

functions. This method is an obvious generalization of Simpson's 

rule. 

In order to use notation consistent with that of the Fortran 

program that was written to implement the mathematics described here, 

we define 
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TT.(J,x) = G. (N,J,x ) 
J_ J_ 

TL.(J,x) = G. (2N,J,x) 
J_ J_ 

ST(i,J,k) = Gi(k,J,X1 ) 

Integrating Equation D.4 N times and inserting boundary 

conditions, D.5, at X gives 
0 

so that 

f (N) (x) = A•TT(J ,x) 
J 

y = AT S A , where S .. = 
1J 

Xl MU 
f dX I: TT.(J,X) TT.(j,X) 

x J=l J_ J 
0 

computed by Simpson's rule. 

Integrating N more times, 

N 
fJ(x) = A·Tl(J,x)+ I: 13(NU) (x - x

0
)L-l 

L=l 

can be 

D. 6 

where NU= J + (L-l)•MU and where the 13(NU) are constants chosen to 

satisfy the boundary conditions at x
1

• Then by repeated application 

of integration by parts it can be shown that 

- N NUMAX 
D = (-1) S•A + I: 13(NU) P(NU) D. 7 

NU=l 

where NUM.A..X = N•MU, and we define 
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P. (J +(L-1) •MU = P. (NU) 
l l 

xl 
J (x -X )L-1 ( ) x 0 giJ x = 

0 

L 
~ (-l)k-l(X - X )L-K (L-1)~ ST(' J k) 
LJ 1 ( )' i, ' k=l o L-k • 

Notice that 11 S11 is a real, symmetric matrix, hence is 

diagonalizable. That is, there exists a matrix, A, such that AT = 

transpose of A is also its inverse, and AT·S·A is diagonal. Suppose 

we define D' = AT•D, and similarly redefine the efficiencies. Then 

T T COV' = A ·COV•A and S' = A •S·A, so S' is diagonal. But the diagonal 

elements of S' are integrals of the form 

= f L: [TT'.. J2 
ll 

so the eigenvalues are non-negative. The only way an eigenvalue can 

be zero (or almost zero) is if the corresponding TT' is zero (almost), 

i.e., if one efficiency function is a linear combination of others 

(almost). Assume for now that this doesn't happen. Then we can 

define 

and we can define 

Ci = Vi th eigenvalue 

D'. = 
l 

1 
C. 

l 

L: A .. D. 
ij Jl J 

D.8 

(similarly for the efficiencies and covariance matrix). Herea~er, 

when we speak of D, D, COV, P, etc., we assume this linear transfor-

mation has already been made. Then S is the identity matrix, I. 
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Solving D.7 for A we get 

A= (-l)N [D - 2: ~ (NU) P (NU)] D.9 
NU 

From the boundary conditions D.5, evaluated at x
1

, we get 

for K = 1 to N 

0 - A•ST(J,K) 

Let 

R. (J + (L-l)*MU) = R. (NU) = ST(i,J,L); B(NU,NU') = R(NU)•P(NU') 
l l 

Then 

0 = A·ST 

implies that 

~(NU) = 2: B-1 (NU,NU') D·R(NU') = D·TAU(NU) D.10 
NU' 

where 

NUMAX 
TAU.(NU) = 2: B-1 (NU,NU') R.(NU') 

l NU'=l i 

Define 

Q
1
. J. = 2: TAU. (NU) P. (NU); Q = I - Q 

NU i J 

Then (using D.9 and D.10) so that D.6 becomes 
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N 
) ( 

L-1 -
L: t3(NU X-X) = D·T(J,X); 

L=l o 

N 
T = (-l)n Q•Tl + L: TAU(J+(L-l)•MU)(X-X )L-l 

L=l o 
D.ll 

From the definition of TAU, 

L: B(NU,NU') TAU(NU') = R(NU) => Q•R(NU) = R(NU) => Q·P(NU) = P(NU) => 
NU' 

rv rvT rvT rv 2 
=> Q•Q = Q => Q and Q are symmetric and Q = Q so that 

We have minimized x2 + vY for fixed D. It is easy, now, to 

perform the minimization with respect to D of 

The result is 

D = (1 + V•COV·Q)-l D 

x2 = v2 J)I: Q•COV·Q i5 = v J)I: Q(D-D) D.12 

2 
~ - ~ -) dV = 2 W•D ; w = Q(l + V•COV•Q) (D-D 

To find the v appropriate to a given value of x2 
, i.e., to 

0 

find v(X2), we iterate using Newton's method: 
0 

2 2 v(X ) ~ v(X ) 
0 
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In order to use this iterative procedure successfully, it is 

necessary to find a good initial choice of v. To do this we try to 

2 
find a function of v that resembles X (v), but can be solved for 

2 
v(X ) • From the easily seen fact that both Q and COV have all 

positive eigenvalues, it can be shown that for non-negative v, both 

2 a.x.2 
X and dv are non-negative. A little thought convinces one that 

2 
corresponds to X for the best fit with a N-1 degree polynomial, 

a fit that is easy to find. Finally, x2
(v) a v 2 for small v. Then 

a function with the above described properties of x2 is 

where 

T 2 a = D Q • cov. Q D, cx/y = x ( oo) , 

and ~ is chosen to give the correct value of 
d3x.2 

at v = O: 
dv3 

With this approximate relationship, we get a reasonably good initial 

2 approximation to v(X ); then we can apply Newton 1 s method. 

There are statistical fluctuations in our answer. If we keep 

x2 
fixed and vary the input data, D, our answer varies. The a.mount 

by which the answer tends to vary is characterized by the s~uare of 

the standard deviation of .fJ(x): 
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ij 
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((6D. T.) (6D . T.)) 
l l J J = 

(on. on.) If 6D SS(5D), T 
where M . . = = then M = SS COV SS 

lJ l J 
dD. 2 l v(D) We wish to find SS . . ~ dD. ' where v = is such that X is 

lJ 
J 

fixed as D is varied . 

Us i ng 

dD an I aii I dv dD + ~ dD and 0 = 
v f i xed D fixed 

- = dD 

we get after some a l gebra 

SS . . = (l+v COV .Q) ~~ 
lJ lJ 

u.w. 
+ -2:_J_ 

D.W 
u = (l+v cov.Q) -1 (D-D). 

kept 

We have completed the description of the method for finding 

the smoothest function for a given x2 . Now we return to a point 

glossed over earlier in thi s appendix. 

The above described method does not depend crucially on 

making a linear transformation that sends S into the identity. It 

might seem that the transformation is made in order to simplify the 

algebra later on, but in fact there is a more important motivation, 

. 

wit h the simplification coming as a bonus. The linear transformation 

is intended to deal with two difficulties of the method. 

The first problem i nvolves those linear combinations of 

efficiency functions that are essentiall y zero (i.e., comb i nations 

g such t hat Di = I: ffJ giJ ~ 0 for all smooth f ) . Because r andom 
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errors prevent D. from being zero, there is no smooth function such 
l 

that D = D (such that x2 = 0). Since fJ(x) = D·T(J, x) , the non-

existence of a smooth solution with x2 = 0 means that T must be a 

very jagged function, and is hard to calculate and manipulate well. 

The second problem concerns the limitation imposed by this 

method on the number of experimental settings. We must, for example, 

invert the matrix (1 + v COV Q), and if there are NSETS settings, then 

the matrix is dimensioned NSETS X NSETS. We are limited to around 50 

settings. 

The first problem is partially cured by making the above 

described linear transformation, for then certain linear combinations 

of the input data can be very large in magnitude (notice the l/C. in 
l 

the definition D.8) so that D T can be jagged with T reasonably smooth. 

More important, diagonalization of S tells us which linear combinations 

of efficiency functions are especially small, so that the corresponding 

combinations of the yields will be theoretically about zero. Since we 

know that the experimental deviations from zero are, for these combi-

nations, almost entirely caused by statistical errors, these combi-

nations contain no information about f, and can therefore be ignored. 

When there are too many settings for available computers to 

handle via Black Box, we can use the above method for deciding which 

linear combinations of the original, non-transformed data can be most 

safely ignored. 
-7 -7 -7 

Suppose hJ(x) = a•gJ(x) for some vector, a, and suppose 

Dh is the corresponding linear combination of the data. 2 
Call crh the 

variance of Dh. Then with COV .. = the original, non-transformed 
lJ 

covariance matrix, the relation 
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T a COV a 

allows one to decide semi-quantitatively how much is lost by neglecting 

certain linear combinations (see equation C.12 and the associated 

reasoning). 
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APPENDIX E Maximum Likelihood Method 

We used the maximum likelihood method to find the number of 

etas in each run (see Section III c). Associated with this method 

is a systematic error (a "bias") for which we would like to correct. 

The purpose of this appendix is primarily to discuss this error and 

to derive a correction to the maximum likelihood method. On the way 

to the derivation, we will also obtain a formula for the random error 

of the method. 

Suppose we perform an experiment = a set of N measurements, 

with the i'th measurement giving result Z .• Z. may be a number, a 
l l 

set of numbers, or even a non-numerical result such as "true," or 

"false," or "she became pregnant." Assume the measurements are 

independent and assume that the probability (or probability density) 

that the i' th measurement gives Z is P. (z;i). The 11;2• consists of 
l 

M real, continuous valued parameters which are to be varied to give 

a good fit to the experiment. 

We have in mind two cases, though our results are more general. 

Case I: We assume the P. are all the same function, and we let "n" 
l 

be the number of measurements. 

Case II: The experiment is performed by taking a sequence of events 

and binning them according to some property. At the end of the 

experiment the set of measurements consists of the numbers of events 

in each bin. We assume that the probability of an event entering a 

given bin in a given instant during the experiment is independent of 
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the past history of the experiment. We also assume that there is 

some parameter, n, (characterizing the amount of statistics gathered) 

such that the expectation value of the number of events in a bin is 

of the form 

where qi does not depend on 11 n 11
• 

~ 

P. (Z;x) = 
l 

nq. (XJ' 
l 

Then Z. is Poisson distributed: 
l 

Z = integer > O. 

Although 11 n 11 is an integer for Case I, it need not be one for Case II. 

For Case I, if the result of a measurement can only take on 

a finite number of values, then Case I is identical to Case II. If, 

on the other hand, Z can take on a continuum of values, then we can 

break up the range of Z into a large number of small regions and 

bin the measurements. Bin number 11 i 11 is centered about Z. and has 
l 

volume dZ .• We can define 
l 

dZ. P(Z. ;XJ 
l l 

Instead of treating Zi as the result of a measurement, Zi is con

sidered to be the property describing a bin, and the result of a 

measurement is the number of events in a bin. In the limit of 

infinitesimal bin size, Case I is then a specialization of Case II. 

Suppose we define 



136 

x2 = 

where N is the number of bins. Then it is straightforward to show 

t hat i f .x is fixed and known , then x2 will sat i sfy 

2 
N 

(Cr amer( 5l) pr oves a simil ar resul t subject to the constraint that 

= constant ) . It is clear, then, that if nqk is very small 

fo r some k, x2/N will have a large variance and will therefore be a 

poor measur e of the goodness of fit. One way of avoidi ng this 

probl em is to combine bins (as r ecommended by Cr amer ) . More simply, 

one may use the restricted sum 

where the sum runs 

mi nimum val ue. By 

is i ncl uded i n the 

= 
1 

N 
r 

N 
r 

over all k for which nqk 

seeing what happens to 

is larger 
2 

a2(~) when 
r 

we find that a 2 will decrease sum, 

~ 

than some 

another bin 

if the new bin 

1 has nq ~ 2 • There is another complication . x is not known a priori , 

but is f i t t ed by the data. I n that case, i t i s well known (
5
l) that 

i n t he limit of very l arge n, x2/N can be expe cted to have mean 
d 
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1 and standard deviation 2/Nd, where Nd is the number of degrees of 

freedom. Although we haven ' t proved it, we expect that if there are 

parameters to be fitted, if there is finite n , and if the sums are 

restrict ed to nqk ~ !, then 

(x;/Nd ) ~ 1, 

N 

cr
2

(x;/Nd) 
1 

r 1 
~ 2/Nd + 

Nd2 
I: 

k= l nqk 

with Nd = Nr - M (M = dimension of x). In our data analys i s we use this 

rel ation to see how good our fits really are (see Section III C). 

We now return to a more general discussion. For a particular 

~ -7 
set of parameters, x, and set of experimental results, z, we define 

L(Z;XJ to be t he probability that t he outcome of the set of experiments 

~ ~ 
will be Z given that the parameters were x. Suppose that before the 

~ 
experiment is performed, one has an a priori opinion about what x can 

be, and suppose the opinion is expressed as a probability distribution 

of 1, Q(XJ . 
~ 

Then the a priori probability that the parameters are x 

and the experiment will give resul t Z is L(Z;XJQ(XJ . Summing this 

~ 

formula over all x gives the a priori probability distribution of 

Z, R(Z). Let w(°1;Z) be the probability that the set of par ameter s 

~ ~ 

is x, gi ven that we know the experimental result to be Z: 

~ ~ L (Z; XJQ (°1) 
w(x ; Z) = - -R(Z) 

~ -7 
Given the result , z, t here i s then a most pr obabl e val ue for x. This 
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value is found by maximizing W, which can be done by maximizing Log(W), 

or equivalently by setting for each parameter 

0 ::: 
1 c log (w) 
n CJ x. 

J 

::: 
1 CJ Log (LR) 
n d x. 

J 

"n" characterizes the amount of experimental data gathered, and the 

factor "l/n" is included for convenience later on. For the previously 

discussed independent P.(z.;X), 
l l 

LQ = 
N 

Q(XJ n' 
i=l 

p. (Z. ;XJ 
l l 

In its conventional form, the maximum likelihood method assumes that 

Q(xJ varies slowly with -::J, so that 

0 ::: 1 I: 
n 

i 

CJ Log (P.) 
d x. i

J 

E.l 

If Q(XJ is rapidly varying, Equation E.l can still be used, provided 

Q is considered to be one of the Pi's (say, Q(i) = PN+l(~+1 ;XJ). 

define 

-7 -7 
If x is the true (though unknown) value of x, then we can 

0 

::: 1 I: 
n 

i 
-7 -7 
x::: x 

0 

and expand Equation E.l about x • 
0 
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0 = E.2 

where yk = ~ - x0 and ~ is the maximum likelihood solution. This 

simple trick was used by Cramer(5l) in a proof that the maximum 

likelihood estimator is asymptotically unbiased and efficient (which 

means roughly that when the statistics are good, there is no method 

for finding parameters that is more accurate). 

Define 

= 

-7-7 
One can easily show that for any differentiable function f(Z;x ) 

0 

we have 

d ( f) ( df ) (f B~l)) 
~ = + n ~ J 

Jo Jo 

It follows (taking f=l) that c (1) = o. Taking f = B ~ £) 
j .e 

gives 
J J 1 ••• 

E.3 

where we use the notation cov(r,s) = "covariance of rands"= (rs )-(r)(s). 
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For Cnsc II , 

j!, 

B~p, ) 
zj_ - nq1 

() Log(q.) 
c~ p,) I: J. 

== dx . d jj!, J 1 ·· · j j!, i 
n J 1 ••• J . • • • x . ~~ 

l J j!, X= X 
0 

where C(,e) is independent of n. The mean of B(p,) is constant for 

all n and i t s standard deviation is a constant divi ded by the square 

r oot of n. Simil ar results on the mean and standard deviation are 

t rue for Case I . In what foll ows , we assume that B( ,e) and .fn x 

(s t andard dev i ation of B( ,e)) both tend to constants in the limit of 

large n . We also assume that for large n the maximum l ikelihood 

solution for yk is typi cally of order l f[n . For Case I , Cramer(5l) 

gives a suf ficient, reasonable condition for the validity of this 

l ast assumption. 
1 

When we say "8'(- )" or "of order l /nci' we mean ncx 

"goes to zero with increasing n at least as fast as l/ncx . 11 Then if 

we t ake f == (B(,e) . - ( B~ ,e ) . )) (Bk(m) k - (B(m) k )) we 
j 1 · · · J £ J 1 · · · J £ 1 · · · m kl • • • m 

find that 

is of order 

== 

l [ d (f) - ( Clf >] 
n~ ~ 

0. 0. 
J J 

1 
2 

n 
Fur thermore, since EquationE . 2 gives 
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we have (y. (B (,e) - (B(,e))) (B(m) - (B(m) )) ) ( (B(m) ) ) d J , yjyk an 

(yjyky£) all of order 1
2 The following r esults nr e valid only 

n 2 
in the approximation that we can neglect terms of order l/n , and 

we use the above facts repeatedly in order to decide which terms 

are to be excluded. We have and will continue to make other unstated 

assumptions involving convergence of sums, exchanging order of 

differentiation, and probably several other things that only a 

mathematician would worry about. Since this is not a mathematical 

thesis, we will cross our fingers and plunge forward oblivious to 

such technicalities. 

Take the covariance of EQuation E.2 with B~t) 
J1 ... j t 

_ ( 1) Ct ) _ r Ct ) ( 2) i !) 0 - cov (B. ' B. . ) L: cov ( yk, B. . ) ck . J + e ( 
J Jl • .. J £ k L Jl • 00 J £ J n 

Using E.3 we see that C~~) = n cov (B~ 1 ), ~l)) is non-singular 

unless one of the B~l) is some linear combination of the others. 
J 

In other words, the matrix c( 2 ) is singular only if there is some w (a 

linear combination of the x.) such that the likelihood is stationery for 
J 

small variations of w. If this problem does not occur, we get 

If t = 1, EQuation E.4 reduces (using EQuation E.3) to 

= 
1 
n °kJ. 

1 

E.4 
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If we take the cova riance of Equation E.2 with Yp, and use 

the above equation, we conclude that 

This covariance is a measure of the random error of the maximum 

likelihood method. 

E.5 

Finally we take the expectation value of Equation E.2. With 

the help of Equations E.3, E.4, and E.5 we get 

E.6 

The above equation is an approximation to the systematic error of 

the maximum likelihood method. To correct for this error, {yk) 

should be subtracted from the maximum likelihood solution, ~· 

{yk) is called the "bias" of the method. In Equations E.5 and E.6 

-7 . (£) 
it is necessary to know x in order to compute the C • If one 

0 

-7 -7 -3/2 uses x in place of the unknown x , a random error of order n 
0 

is added to the bias and covariance on top of the systematic error 

that came from dropping terms of order 

Specializing to Case II, 

1 
2 

n 

E. 7 
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For CoGc I, with 7-, . n real nurnber (or vector) taking on a 
l 

continuum of values , we use the results for Case II with infinitely 

fi ne bins . Then sums over m become integrals and we get 

J dZ 
~ 

P( Z;x ) 
0 

E. 8 

(Jp l 
ex. JI 

Jo 

Fi nall y we obtain the bias of any function f(xJ, and t he 

covar iance of any functions f(1) and g (i ). 

it is easily seen that t he bias off is 

By expanding f about x 
0 

( f (1) ) - f (i ) L: (yk ) 
cf 1 c

2
f b ias == ~ I + 2 L: cov (~,x£ ) (J~(Jx£ 'i ==i 0 k ~~ k£ 

X == X 
0 0 

I n t he above e~uation we can replace f everywhere by g or by fg. 

Then it i s a matter of algebra to show that the covariance of f and g 

is 

cov (f,g ) == (fg)-( f )( g) == L: cov ( ~,x£ ) 
k£ 

Example: 

For an experiment that measures t he polar ization of a particl e 

by scattering it in a substance, l et x be the polarization, e be t he 

angl e of t he scatter of a given event, and Z be parameters needed to 

+ 
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specify the analyzing power (such as the energy and inelasticity of 

of the scatter). Take Q(Z) =probability distribution of z, and 

A(Z) = analyzing power. Then 

P(e, Z; x) = 2~ (1 + xA(Z) cos(e))Q(Z) • 

Since P is linear in x, from Equation E.8 we see irrrrnediately that 

to lowest order the maximum likelihood method is unbiased for this 

example. 

Also from E.8 we find that the standard deviation of a 

polarization measurement with n events is 

(J 
x 

(compared with 

x 

1 
(A(Z)) 

2 2 
x A (Z) small> 

~n--.(-A 2,..,..,( ...... z,,_,) ) -1) 

used in Reference 22). 
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APPENDIX F Synchrotron End Point Correction 

The synchrotron's beam energy meter measured the magnetic field 

in which the electrons circulated. For a given radius of circulating 

electrons, the end point energy was proportional to the magnetic field 

at the time the beam struck the radiator. The proportionality constant 

used by the operators for setting the synchrotron end point was in

accurate, with the calibration by Thiessen( 3 ) giving a correction factor 

of 1.021 ± .003. This factor was determined by accurately measuring 

the integrated voltage output from a coil (of known size) as the synchro-

tron's magnetic field increased from zero to its end point value. The 

uncertainties in the result arise mainly from the uncertainty in the 

area of the coil and possibly from non-circularity in the shape of the 

orbit and drifts in the electronics. 

An experiment using the same apparatus and methods as ours gave 

an independent measurement of the correction factor. The cross section 

for photoproduction of etas from protons rises very rapidly at threshold. 

Using the known location of the threshold, we were able to take advan-

tage of this behavior to measure the true synchrotron end point at the 

eta threshold, and thereby get the correction factor. For this purpose 

we considered only those settings with nominal end point of 750 MeV or 

less, and we used Blackbox (see Appendix D) to fit the data with various 

assumed correction factors. We used only the six most informative 

linear combinations of the data, where our criterion for "informative" 

is given in Appendix D. 
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2 One of the results given by Bla ckbox was the value of X for 

the best straight line fit to the magnitude of the squared amplitude 

for photoproduction (for conventions relating amplitudes to cross 

sections, see Appendix G). 2 
The lowest value of X for the straight 

line fit occurred at a correction factor of 1.0210 ± .0005. This 

factor is the one used in our data analysis, although "±.0005" repre-

sents the uncertainty in the location of the best straight line fit to 

the squared amplitude; it is far smaller than the uncertainty of our 

result for the factor. 

We also used Blackbox to give the smoothest curves of amplitude 

squared that fitted the six linear combinations with x 2 
= 6. These 

smoothest f'unctions are shown in Figure 20 for correction factors of 

l.021 and l.02l ±.003 (the range of error in Thiessen 1 s measurement). 

If the correction factor is especially low we can qualitatively reason 

that the cross section must have been high near threshold to give the 

observed data for / + p ~ ~ + p. Quantitatively, this feature is 

shown as the squared amplitude curves upward on approaching threshold 

for factor = 1.018. Conversely, if the correction factor is high the 

squared amplitude must curve down as threshold is approached (as for 

factor= 1.024). Assuming an S-wave dominates near threshold, we 

expect the amplitude to move smoothly to a non-zero value at threshold. 

From Figure 20, we see that a value of the correction factor outside 

the error bars given by Thiessen would give unreasonable threshold 

behavior. We can turn this argument around to see whether the eta 

appears to be photoproduced in an S-wave or in a P-wave (either of 
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which by itself would give the spherically symmetric cross section 

observed near threshold( 2l)). As s uming the validity of Thiessen's 

measurement and his expected e rror, we s ee from Figure 20 that 1.018 

and 1.021 are both incompatible withP-wave, but that a P-wave dominance 

is possible if the true correction factor is at the upper end of the 

range of error of Thiessen's measurement. 
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APPENDIX G Kinematics 

IP> be a state of 
~ 

Let a system with three-momentum P. We 

<r' IP> = 
3 ~ ~ 

normalize such states so that G Ep 5 (P' -P) where G is some 

Lorentz invariant and Ep is the energy of the system. This form of 

the normalization is chosen so that Lorentz invariant operators will 

have Lorentz invariant matrix elements. Gasiorowicz( 37
) takes Q = 2 

for bosons and G = l/M for fermions. 

all particles. 

From the relationship 

IX> d3P 
= J .(2rr)3 

we get 
G E 

p 

(2~)3 

(49) 3 Barut takes Q = (2~) for 

(11 = c = 1) 

~~ 

i P·X e 

Q E 
so that our normalization corresponds to p 

(2~)3 
particles per unit 

volume. We use the words "particle" and "system" interchangeably. 

We use S and T matrices related according to 

where Pi is the total four-momentum of the initial state and Pf is that 

of the final state. Then the differential cross section for two initial 

systems colliding to form a set of final systems is 
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= 
K* W .1ff . G. 

JE , l J 

G.l 

K* is the magnitude of the momentum of either of the initial systems 

in the center-of-mass, W is the total energy in the center-of-mass, 

T( G means the product of the G's for all particles, and the Kf 
jEf,i j 

are the momenta of the final particles. 

In the special case of two particles in the final state, 

(2rr)l0 
= 1T G. 

jE f, i J 

q* 

K* W
2 

where an is the differential solid angle in the center-of-mass, and q* 

is the magnitude of the center-of-mass momentum of one of the final 

particles. 

Consider the case of photoproduction of scalar mesons from 

nucleons and specialize to G = (2rr) 3 
(E particles per unit volume). 

A 

Let K be the unit vector along the photon direction, E be the polari-

zation of the photon, and q be the vector along the meson direction. 

Then 

dcr 
fi q* 
~ = K* G.2 

where 

= 
• ~ -:-? 

L + l cr•K G.3 
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is the set of Pauli spin matrices (acting on the initiial and final 

nucleons). In terms of the CGLN amplitudes(50) 

G.4 

For relations between the above defined amplitudes and helicity ampli-

tudes, helicity coefficients, helicity elements, and CGLN multipole 

coefficients, see reference 18. A resonance contributes to the electric 

dipole, E
0
+ if and only if it is s11• A resonance contributes to the 

magnetic dipole, M1 _, if and only if it is a P11 . 

to F
1 

and M
1

_ contributes only to F
2

• 

E contribute only 
o+ 

Note that in equation G.3, Afi is a 2X2 matrix, while in 

equation G.2 Afi is considered to be one of the matrix elements of 

that 2X2 matrix. In what follows, when I ignore nucleon spins it is 

because I am considering quantities such as A to be matrices which are 

tb be placed between spinors only when it is time to sum over final 

and average over initial spins. 

In our experiment, instead of a photon-nucleon initial state, 

we have a photon-deuteron initial state. We can approximately describe 

the deuteron as a linear combination of proton-neutron pairs: 

G.5 

where jd'>d is the state vector for a deuteron at rest, j:El> is the state 
. p 
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vector for a proton of momentum P, and 1-P> is the state ve ctor for 
n 

-? 
a neutron of momentum -P. Our normalization convention requires that 

where for small Pd we can obtain IPd)d by making a small Lorentz boost 

on equation G.5. It follows eas ily that 

E 2 ! 1¢CP} I 1 

Following Chew and Lewisf 44) we assume the validity of the 

impulse approximation and say that 

T = T + T p n 

where T is the amplitude for photoproduction off protons, while T is 
p n 

that for photoproduction off neutrons . Our r eaction begins with a 

-? 
photon of momentum K colliding with a linear combination of proton-

-? -? -? -:;::? 
neutron pairs with proton momentum P = P and neutron momentum P = -Y. 

p n 
-? 

AB a consequence of the collision we form an eta of momentum q, a proton 

-? -? 
of momentum P ', and a neutron of momentum P '. Then T is more pre-

p n p 

cisely described by the equation 

<~ 1 -? I -? I I -? -:;::? ~ P , P , q T P , Y , KJ = 
p n p p n 

<i? I ,q IT I p7 ,K> (P I I p ) 
p p p n n 

and similarly for T . Figure 21 shows the i mpulse approximation in 
n 

terms of diagrams. Md is the mass of the deuteron. 

From this diagram, it is intuitively clear that the impulse 

approximation is valid insofar as the proton and neutron of the deuteron 
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are so loosely bound that they have little effect on each other during 

the short time in which photoproduction takes place. We neglect 

multiple scattering and the effect of one nucleon shading the other. 

References 44 and 46 give a more complete ju9tification of the method. 

From what has been said above, one finds that 

= E I 

n + E I 

p 

where T
1 

is the matrix element for photon +proton of momentum -Pn' 

forming Pp' + q, T
2 

is the Tn matrix el ement for photon + neutron of 

momentum -Pp' forming Pn' + q, and Tfi is the matrix element for 

photon +deuteron ~Pp'+ Pn' + q. 

For convenience, define u(P) = ¢(P)~ • Then u(P)is a 

conventionally normalized wave function. 

Recall that A= T/
2

nW for photoproduction from either protons 

alone or neutrons alone. Let A1 , w
1

, and other quantities with sub

script 11 1 11 refer to photoproduction from protons, while quantities 

with subscript 11 2 11 refer to photoproduction from neutrons. The absence 

of a numerical subscript indicates corresponding quantities for photo-

production from deuterons. Equation G.l becomes 

dcr fi = 

2 o4
(Pf-Pi ) 

(2n) 3 K*W 
E I 

n + 

G.6 
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w is obviously the eta energy. 

Before discussing G.6, we consider the question of spins. With 

A. (j == 1 or 2) in the form A. == L. + i cl. · K. it is easy to sum 
J J J J J 

over final, and average over initial, spins. We use the fact that the 

two nucleons of the deuteron have a combined spin of one to find that 

we must make the replacement 

+ 

+ 

Notice the factor of three suppression of the 8
11 

interference term 

(from G.4 and the sentences following shortly a~er G.4, it is seen 

~ 
that the 8

11 
resonance affects K but not L). 

Now we consider the term of G.6 proportional to 1~1 2 • Because 

o4
(Pf-Pi) is an invariant, we can integrate out the delta function 

in the center-of-mass frame of the outgoing proton and eta. 

d3q == 
w 

where q
1
* is the momentum of the eta in the final proton-eta center 

of mass, and n
1 

is the eta direction relative to the incoming photon 

in the same frame. 

2 
The contribution from the IA1 1 term is 
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== 

-7 --7 
where P == momentum of initial proton == -P '. 

n 
~-7) -7-7 

K*W == (K·Pdc.m.= (K·Pd)lab == KMd (K evaluated in the lab; K* 

evaluated in the center-of-mass). 

If we define ~l to be the photon energy in the rest frame of the initial 

proton, then K1*W1 == ~1M with M ==mass of proton== mass of neutron, so 

that 

At this point we modify our equations to approximately include 

the kinematic effect of the final state interaction. We approximate 

the situation by saying that the eta is unaffected by the spectator 

nucleon, but that the two nucleons attract each other sufficiently 

to slow them down enough to conserve overall energy. For the term 

in G.6 involving 1~1 2, then, we act as if there were no final state 

interaction. Then we find the factor by which the phase space de-

creases when the final nucleons are slowed down and correct our results 

by that factor. 

We define the yield to be the number of etas detected per unit 

beam energy at a given synchrotron endpoint and at a given counter 

setting. The unit of beam energy is the "bip" as standardized for 

this experiment in section II.B (1 bip == 1. 2132 x 1013 MeV). 
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We would like to express the proton's contribution to the 

yield as 

so that we can use Blackbox to unfol d the cross section (see Appendix 

D). Take the z axis along the direction on the photon beam. Then 

!S.1 
K 

= J _P_2_+_M_2 ___ P_z 

M 

~ ~I Keeping P = -P constant, we get 
n 

= 

For a given counter setting, let the probability of detecting 

~ ~ 

the eta be called ~(q). q, the laboratory momentum of the eta, is 

to be considered a function of S' J?, and n l • Suppose there are Nd 

deuterons per unit area of the incoming photon beam and let "D" be 

the number of MeV per bip. E is the synchrotron endpoint energy and 
0 

B(K/E
0

; E
0

) is the bremsstrahlung function normalized so that the 

number of photons per MeV is 

Then 

3 B(K/E ; Eo) 
I A 12 J d p I u(:?) 12 q * o r G=>(q) ' 

1 ( 2~)3 1 K 
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where r is the factor by which phase space is corrected for the final 

state interaction. 

then 

where 

If we define functions f (p) by 
J 

00 

1~1 2 
= I: PJ(cos G

1
) fJ(p)(K

1
) 

J=O 

00 
dY1 I gJ(~l) fJ (p) (!S_l) 
~l 

= 

J=O 

*D N 3 B(K/E ; E ) 
ql d d p 2 ° 

= K * E f --3 lu(PJ I ell 1 PJ(cosG1 ) Ko r ~ (<l) 
1 o ( 2rc) 

2 
The effect of the contribution from the IA21 term is to 

replace fJ(p) with fJ(p) + fJ(n) • 

Applying the operator TP (time reversal times parity) to 

G. 7 

G.8 

G.9 

equation G.5 leads to the conclusion that if the deuteron Hamiltonian 

is TP invariant then u(PJ can be taken real. To be sure, G.5 ignores 

spin, but including spin explicitly doesn't change this conclusion. 

A common approximation to u(PJ is the Hulthen wave function:( 44 ) 

u(PJ 

c = 

1 
= c ( 2 2 

P + ex 

1 ---) 
p2 + f32 

1 /8rc ex f3 (ex + f3) f3 - ex V ' 
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with a and ~ chosen empirically to make the Hulthen wave function a 

good approximation to the actual wave function. a is about 45.4 MeV, 

and ~ is about 276 MeV. 

The deuteron form factor is defined by 

F(Q) 
""'.:"?~ 

iQ·r e 

~ 
where ~(r) is the Hulthen wave function in terms of positional 

coordinates. Equivalently, 

F(Q) = J d3P u(P) u(Q-P) 
(21()3 

= 

The relevance of this form factor to our experiment will be seen 

shortly. F(Q) is graphed in Figure 22 and u(P) is displayed in 

Figure 23. 

We used the Hulthen wave function to evaluate gJ by a Monte 

Carlo method (see Appendix B). We chose random n
1 

with uniform 

density over a 41( solid angle and chose Pat random with density 

u
2(P) The computation of ~(Cl} can also be done by the Monte Carlo 

( 21( )3 • 

method, but to do so consumes several hours of IBM 360 -75 computer 

~ 

time. In one of two programs for computing gJ' @(q) was taken from 

the results of a program for computing the detection efficiency for 

photoproduction from hydrogen. In the other program, the Monte Carlo 

program for computing the quantities corresponding to gJ for hydrogen 

was modified to include the effect of the deuteron fermi motion. 

While much slower, the second program was helpful as a check on the 

first. 
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For simplicity, we will evaluate the interference term of G.6 

with more drastic approximations than those hitherto used. To exhibit 

more clearly the nature of the other terms in dcrfi' we will temporar

ily apply those same approximations to the terms proportional to IA
1

1
2 

and JA2 1
2

, although when analyzing this experiment we really handled 

those terms with equations G.7 through G.9. 

From the graph of u(P), it can be seen that the contribution 

from P greater than 200 MeV is strongly suppressed. In fact, the 

probability of a nucleon in a deuteron having more than 200 MeV Fermi 

momentum is only about 6%. To within a few percent we can approximate 

Jp2 2· 
Ep = + M ~ M. 

2 2 w
1 

= M + 2K(E - P )(where the z axis is along the direction of 
p z 

~ 
photon motion) varies more rapidly with P than does E , but even so 

p 

is typically within a few percent of its value for P = 0 when u(P) 

is large. We would like to be able to say that A. is nearly constant 
l 

as a function of W. over the range in which the Hulthen wave function 
l 

is large. But the strong enhancement of the cross section near thresh-

old (attributed to the Si1 (1535)) indicates an amplitude that at least 

for photoproduction of etas from protons varies rapidly with w1 • 

Nonetheless, we neglect the variation of the amplitudes with P 1 and 
p 

P 1
• We also neglect final state interactions. 

n 

With a given counter setting, the probability of detecting a 

photoproduced eta depends only on the laboratory momentum of the eta. 

Since we don't detect the final nucleons, it is appropriate to 



integrate 

described 

dcrfi = 

equation G.6 over p l 

p 

approximations 

2d3q o(Ef- E) f w 2 
w K*W 

+ w 2 
0 

L o 

IA2j21 
E ' 

n 

1 60 

and p l , obtaining with the above 
n 

2 
2W

1
W2 F(Q) I~ + Re(A

1
* A2) + 

E ' J Ep' E' p n 

I Al I 2 ~ I A2 I 2 ~ 
where ~ is evaluated at P ' = O, ~ is evaluated at P ' = O, 

p n n P 

and W
0 

is the same as w
1 

(or w2) evaluated at Pn' (or Pp') = o. With 

~, ~ ~ ~ ~ 
Pn = o, K

1
*W0 = KM, while with P ' = o, K *W = KM. Q = p ' + p 1 

• 
p 2 0 p n 

"(/equals Pp' for the jA
1

1
2 

term and Fn' for the jA2 j2 term. For 

the term proportional to Re(A
1

* A2), we notice that u(-Pn') u(-Pp 1
) 

tends to be large when either P ' or P ' is zero. Following an 
n p 

argument of Hadjioannou( 45 ) we consider the interference term (includ-

ing its delta function over energy) to be averaged over the situation 

~ ~ 
in which P ' is zero and the situation in which P ' = n p 

(i_p l = o. 
n Then 

dcrfi = 

where K* is evaluated in the center-of-mass of the photon with a 

nucleon at rest in the lab, EQ is the energy of a nucleon of momentum 

~ 

Q, Ef = final energy= w + M + EQ' and Ei = initial energy= K +Md. 

We neglect the difference between M and ~Md and the difference between 

1 and~ • Then it can be shown that 
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dafi q* [IA112 + IA212 + 2F(Q) Re~* A2] an = = K* 

da da G.10 
___:£ n 2q* 

= an + an + K*" F(Q) Re (~ * A2) 

where q* is in the same frame as K* • 

The contributions to the yield of the first two terms of G.10 have 

already been discussed to a better approximation than G.10. The 

third term, the interference term, contributes to the yield 

dYint 
(]}( = 

B(K/E 
0 

KE 
0 

E ) 
0 

fan (}>( q) F(Q), G.11 

where except for~* A2 all quantities are evaluated with kinematics 

corresponding to photoproduction from a single nucleon at rest. 

A
1

* A
2 

is evaluated half with the proton at rest and half with the 

neutron at rest, and we neglect angular variation of A1 and A2 

because s
11 

is expected to dominate near threshold. Strictly speaking, 

Re(A
1

* A2) depends on D through the variation with D of the energy at 

Which the A. corresponding to the moving nucleon is evaluated. But for 
l 

backward photoproduction, the small F(Q) prevents the interference 

term from contributing significantly; so we don't have to worry about 

errors from evaluating one of the A. at an incorrect energy. For 
l 

forward photoproduction, both ~(q) and F (Q) are largest when the 

direction of D is along the beam line. So the major contribution of 

Re(~*A2 ) occurs when n is along the beam line, and we evaluate 

Re(A
1

*A2) for such D. 
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The detectors of the photons from eta decay were placed 

symmetrically about the beam line at half angle 8. Such a setting 

is optimal for detecting etas moving along the beam line with velocity 

such that ~ = cos(8). An eta of this velocity can be photoproduced 

by a photon striking a nucleon at rest if the photon has energy K(~). 

A typical momentum transfer for a given detector setting is then 

Q(8) = K(~) - q(~) 

M 
T = -i1" tan 8/2 

= 
MT (2 - T) 

2(1 - T) 

(M = mass of the eta) • 
~ 

F(Q(8)) is then a measure of the importance of the interference term 

at a given setting, and is displayed in Figure 24. For backward 

photoproduction (8 greater than 65%) the interference term is negli-

gible. 
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APPENDIX H Details of the Cherenkov Counters 

Figure 25 is a diagram of one of the two totally absorbing 

Cherenkov counters. In each counter there were two lead glass blocks 

optically joined together. The properties of the glass are summarized 

in TableVI.l,taken from reference 14. Seven XP1040 phototubes •~re 

optically joined to the back of the blocks with RTV compound in a 

pattern shown in Figure 26. Each phototube was wrapped with several 

layers of Netic and Conetic magnetic shielding. The lead glass blocks 

and their phototubes were placed in at inch thick steel box, which 

was surrounded by about forty windings of Ml9 26 gauge hot rolled, 

non-oriented silicon steel for further shielding against the magnetic 

field of the synchrotron. All this material surrounding the Cherenkov 

counters served as radiation shielding as well as magnetic shielding. 

Each counter with its shielding was placed upon a trolly which rolled 

with two wheels on a circular track and two wheels on the platform 

holding the track. Also on the trolley were mounted a veto counter 

(made from one half inch of scintillator shielded with one half inch 

of lucite) and a it inch thick lead wall with an aperture eight inches 

high. The veto counter was between the lead wall and the Cherenkov 

counter, and the lead wall was, of course, between the deuterium 

target and the veto counter. Most of the experiment was performed 

with the aperture in the wall about seven inches wide, but when the 

target length was decreased from about 6.5 inches to 3.3 inches in 

order to improve our kinematic resolution, the aperture was reduced 

to 3.5 inches width. The distance between the counter and the nearest 
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side of the lead wall was about five inches, give or take a couple 

of inches. This distance was not critical because it did not determine 

the geometrical acceptance of the counter. The acceptance was deter

mined by the size of the aperture in the lead wall and by the distance 

from the lead wall to the target (27.6 inches from the center of the 

deuterium target to the side of the lead wall nearest the lead glass). 
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TABLE VI.l 

Summary of Lead Glass Characteristics 

Glass Type DF-4 

Density 3 3.88 gm/cm 

Index of refraction 

Code 649 -339 

n = 1. 649 
D 

Radiation length 2.5 cm 

Dispersion 

Energy loss for a 500-MeV electron 4.5 MeV/cm 

Composition K20 6 percent 

Si0
2 

41 percent 

PbO 52 percent 

= .019 

Manufactured by Hayward Scientific Glass Corporation, Whittier, 

California. 
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APPENDIX I Error Analysis 

Frequently when discussing the extraction of the yield from the 

background, we ignored or postponed discussion of errors and ambi

guities. The statistical error was calculated by the method derived 

in Appendix E, but other errors require more discussion. In order 

to check the effect of the errors and ambiguities, we made a series 

of tests of our fitting method, the results of which are shown in 

Table VI.2. This table requires a great deal of explanation. We chose 

three typical runs -- one corresponding to photoproduction of etas in 

a forward direction (counter half angle = 40 degrees, synchrotron end

point energy= 925 MeV), one corresponding to photoproduction near 

threshold (60 degrees, 750 MeV), and one corresponding to photopro

duction in a backward direction (85 degrees, 825 MeV). For each test 

performed we show the number of etas that resulted from the fitting 

method (the columns labeled 11 ETAS 11
), the number of standard deviations 

by which the fit deviated from the background (the columns labeled 

"BG"), and the number of standard deviations by which the fit deviated 

from the foreground ( 11 FG11
). By 11background 11 I mean the background 

region as defined in Section III C, and by 11 foreground 11 I mean the 

eta region as defined in the same section. Since these definitions 

of Section III C were somewhat arbitrary and ambiguous, some of the 

tests were designed to see the effect of varying the definitions of 

the eta and background regions. To understand how we calculated the 

number of standard deviations by which the fit to a particular region 

deviated from perfection, see Appendix E. 
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In test number one we applied our normal fitting procedure to 

the three typical runs. The results of all other tests are to be 

compared with test one. To put the effect of the tests in proper 

perspective, we now give the statistical errors that we expect from 

our fitting procedure: ±42 etas for 40 degrees, 925 MeV; ±66 etas 

for 60 degrees, 750 MeV; ±39 etas for 85 degrees, 825 MeV. These 

errors are the standard deviations of the number of etas as calculated 

by the methods of Appendix E. 

Test number two was designed to see what effect we could expect 

from errors in our estimate of the number of accidental coincidences. 

Recall that in Section III C we tried to correct for the presence of 

accidentals in the background. For this test we took the extreme 

case of one hundred percent error in the estimate of the accidentals; 

we assumed there were no accidentals. As can be seen from the table, 

the effect of errors in the estimate of the accidentals was negligible. 

Test number three was designed to see if we might have made 

our timing cuts so tight that we lost some etas. We expanded the 

timing cuts to include all events over a range of about twenty 

nanoseconds centered at the coincidence peak (which had about three 

nanoseconds f'ull width at half maximum). This expanded timing cut 

is to be compared with the approximately eight nanosecond range used 

normally. The fits showed essentially no change in the number of 

etas. This result is not surprising, for by breaking up the data 

into rather narrow timing bins we found that the time width of the 

eta events was distinctly narrower than the three nanoseconds of the 
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whole coincidence peak. The eta events, after all, tended to occur 

with higher photon energies than most of the background, and it is 

not surprising that higher pulse-heights could be timed more accurately. 

The next five tests checked the effect of various ambiguities 

in our selection of the foreground and background regions. Test 

number four showed what happened when we expanded the background region 

to include all of what formerly was in the eta region. As described 

in Section III C, we corrected for the 11 leakage" of etas into the 

background region. In other words, we estimated the number of etas 

in each bin of the background and corrected for this number before 

computing the best uncorrelated fit to the background. 

With test number five we examined the effect of expanding the 

foreground region to include what was formerly the entire background 

region. We subtracted the calculated background from the distribution 

of events, then found the maximum like lihood fit to the eta peak in 

the combined eta and background regions. The background was not 

reiterated; so the column labeled 11 BG,. is left blank for test number 

five. 

Test number six verified that raising the mass cut from 240 MeV 

to 280 MeV has no appreciable effect (recall that we excluded all 

events with measured invariant mass below 240 MeV in order to prevent 

the correlation at low masses from upsetting our fit ). 

With test number seven we examined the effect of changing the 

low energy cutoffs. While the discriminators in the electronic logic 

rejected all events with pulse-height corresponding to photon energy 
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below about 100 MeV, for analyzing the data we raised the cutoff to 

about 140 MeV in order to make the cutoff sharp . But for this te s t 

we left the cutoffs at the values determined by the dj_scriminators. 

The eighth test was the last of the tests involving modification 

of the regions used in our fitting procedure. Normally the background 

region included events whose invariant mass fell above the eta region. 

But we feared that the small background in that region of the distri 

bution of events might have a significant effect on the fits. Yet 

this part of the background is highly subject to errors caused by 

inaccurate assumptions involving the computation of eta leakage into 

the background. The shaded area in the below diagram shows the region 

excluded from the background region by the eighth test. 

To summarize the effect of changing the background or fore

ground regions, we see from Table VI. 2 that all tests left the number 

of etas unchanged to within a standard deviation. The worst change 

occurred with test number five, in which we expanded the eta region. 

We turn, now, to other tests of the fitting procedure. Recall 

that we used a Monte Carlo program to generate an eta peak that was 

fitted to the observed data. In this Monte Carlo program, statistics 

were limited by financial considerations. To test the effect of the 

finite statistics we f l uctuated the Monte Carlo results by their 
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expected error and fitted the slightly modified eta peak to the data. 

This test, test number nine, showed that our Monte Carlo statistics 

were quite adequate. As a matter of fact, a programming error led 

us to use the same background region in this test as for test number 

eight. So the effect of the Monte Carlo statistics is to be seen in 

the comparison between tests eight and nine. 

Another input to the generation of the Monte Carlo eta peak 

was the shape of the cross section used. Normally we tried to use a 

realistic cross section, but for this test we used a cross section 

that turned on instantly at threshold and thereafter was flat. No 

significant effect on the number of etas was observed for this tenth 

test. Note, however, that for the run taken near threshold the fore

ground fit was too poor to be consistent with chance. This large 

value of "FG" would have led us to reject this run as unreliable if 

we had found such a poor fit with a reasonable cross section (we 

rejected runs with either "FG" or "BG" greater than 2.5). At this 

point we make a confession. For many of the runs near threshold, the 

overall fit was rather poor, with "FG" or "BG" often greater than 2.5. 

We attributed this poor fit to the fact that the cross section used 

went to zero at the threshold for eta photoproduction from hydrogen, 

while in reality the threshold for the deuterium case is well below 

that for hyd~ogen. To test this explanation of the poor fit, for all 

runs taken at 725 MeV nominal synchrotron end-point we used for the 

foreground fit a Monte Carlo eta peak characteristic of an end-point 

of 750 MeV. Since the maximum likelihood fit was allowed to vary the 
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energy vs. the pulse-height calibration in each counter, we can expect 

this change to show some of the effect of the lower deuteriurn threshold. 

The fits did indeed improve considerably, but the number of etas 

calculated changed typically by less than one standard deviation. We 

used in our data analysis the eta yields corresponding to the improved 

fits whenever those improved fits had both "FG" and "BG" less than 2.5, 

as they generally did. 

For the eleventh test, we doubled the dimensions of each bin 

in the background region, but not in the eta region (i.e., each new 

bin in the background had the area of four old bins). B. G. is not 

included for this test because an error was made in its calculation. 

Test eleven showed no significant difference from test one. 

The resolution was, in section III C, considered to be charac

terized by 

= aE 

where µ is the average pulse-height for showers of energy E (µ is 

proportional to E) and cr is the standard deviation of the pulse-height 

for showers of energy E. a is proportionality constant which was 

varied in order to obtain a good fit. For the twel~h test, E was 

replaced by E + 300 MeV, and no significant change was seen. 

The most unfortunate test was test number thirteen. We computed 

f(E
1

, E
2

) = yX calculated background X (E1 - E
1

) (E2- E2). y was chosen 

so that calculated background + f had a coefficient of correlation 

between E
1 

and E
2 

of .1. The thirteenth test consisted of adding f 
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to the E
1 

- E
2 

distribution (thereby causing the background to have a 

ten percent correlation) and extracting the eta yield while assuming 

in our usual manner that there is no corr elation . The result of this 

test showed l arge deviations from test number one. For two of the 

three settings, BG is unreasonably large. But since we did not know 

how Lo :i nclwlc Ui c cJ.'J'ect on the ctu:Li:.:tical fluctuu.t:i.om; :i.n tl1 c KL - J~: 2 
distribution from adding correlation, BG is unreliabl e f or test 

thirteen. 

The large effect correlation had in test number thirteen led 

us to study this effect more closely. We generated artificial runs 

with no correlation in the background (test number fourteen), then 

generated similar artificial runs with a correlation term such that 

there was a .1 coefficient of correlation between the energies measured 

by the two Cherenkov counters (test number fifteen). Notice how much 

larger BG became when correlation was added. BG averaged over all 

the runs of our experiment was about .5. This positive value in

dicates that our assumption of no correlation was inaccurate, but 

this indication of a correlation i s about one-fourth that which we 

would expect from a .1 correlation. The effect of correlation is 

expected to lead to a moderately systematic error of about the same 

size as the standard deviation resulting from limited statistics. 

There were sever a l other sources of error in our r esults. For 

example, our quantameter calibration was known to within three percent 

(see section II B). A three percent error in this constant would 

contribute a three percent error to the cross section at all energies. 
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A s imila r syctematic error comes from the uncertain b r anchi ne; r at io 

T) - ) 2y 
• 375 

T) -> anything 

taken from the world average as compiled by the Particle Data Group. C25 ) 

This ratio i s b elieved to be known to vdthin about four percent. 

Geometrical errors were surprisingly serious. We failed to 

correct for distortion of the transit's close up lenses when surveying, 

and we failed to hold the counters in place as rigidly as we should 

have. As the trolleys holding the counters were pushed along their 

rails) they could distort. We estimate that our counter positions 

relative to the target were known to Ydthin an error of ±.1", leading 

to a partially systematic error of about ±5% in the yields. 

We next discuss a source of error that was expected to be large, 

but turned out to be small. I n Appendix G we showed that within t he 

framework of the impulse approximation, there is an interference term 

contributing to each yield a term proportional to F(Q)(see equation 

G.10). But from Figure 24, for a counter setting Ydth a half-angle 

of forty degrees or less, F(Q) could exceed .2. In order to see 

whether the interference term could be expected to contribute signif-

icantly, we evaluated G.11 with the approximations discussed in 

Appendix G and using a Breit-Wigner s
11 

resonance for A
1 

and A2• As 

was pointed out in Appendix G, summation over spins leads to a factor 

of three decrease in the contribution of s11 resonances to the inter

ference term. Furthermore, in equation G.10, the term 2Re(~*A2 ) has 

2 2 
to b e smnller thnn \A1 j + jA2 \ • Finally, F(Q) as shown in 
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Figure 24 is generally larger than the average F(Q) that appears 

in G.11. It is therefore not surprising that the calculated con

tribution to each yield from the interference term was always less 

than the statistical errors, and was usually far l ess than those 

errors. 
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