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1. Overview of the Proposed Experiments in Nonlinear
Quantum Electrodynamics.

We propose to undertake a series of experiments to study the behavior of free
electrons and photons in very strong electromagnetic fields of macroscopic extent.
The recent development of intense ‘table-top’ lasers permits short pulses of light
to achieve fields strengths of ∼ 1011 V/cm over a focal spot of a few optical wave-
lengths, for a relatively modest cost. In the rest frame of a 50-GeV electron, the
field strength is then ∼ 1016 V/cm. This is similar to the QED critical field strength

Ecrit = m2c3/eh̄ = 1.32× 1016 V/cm (= 4.41× 1013 gauss),

for which the voltage drop across a Compton wavelength is the electron rest energy.
Fields of this strength are unstable against breakdown via electron-positron pair
production, and will manifest various other nonlinear aspects we wish to study.

The experiments all are based on bringing a high-energy electron or photon
beam into collision with a high-intensity laser beam. The present proposal is for a
demonstration experiment with a 25-MeV electron beam and a moderately intense
laser. This experiment is introduced in section 1-1. The next set of experiments will
use a 50-GeV electron beam and an upgraded laser system to study various effects
including true light-by-light scattering, as mentioned in sections 1-2. In section
1-3 we speculate as to how the program could evolve to explore novel nonlinear
processes as the technology of high-intensity lasers improves. Section 2 then reviews
the understanding of these nonlinear effects in the absence of any experimental
studies. Details of the 25-MeV experiment are presented in section 3, followed
by a discussion of the laser system in section 4. Some features of the proposed
experimental program have been published elsewhere.1

Nonlinear QED effects can also be explored, for example, by probing the electric
field of a heavy nucleus, with interesting and controversial results.2,3 In the present
approach the strong electromagnetic field is a collection of photons in nearly the
same state–a laser beam, and the probe is a single electron, or photon. Although the
center-of-mass energies will be low, the spirit of investigation is that of high-energy
physics. That is, we seek to extend our laboratory knowledge of fundamental pro-
cesses by examining relatively simple situations compatible with detailed theoretical
interpretation.
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1-1. Nonlinear Thomson Scattering.

The first experiment is designed to demonstrate that an ultrashort laser pulse
can be brought into collision with a single rf bunch of a linear electron accelerator,
while also investigating the simplest nonlinear effect of a free electron in a strong
electromagnetic field. This latter effect is a correction to Thomson scattering in
which several photons may be absorbed by the electron before a single (higher
energy) photon is radiated. This only becomes probable when the electron is placed
in a field so strong that sizable ‘transverse mass’ corrections apply, which affect the
kinematics of the scattering in a noticeable manner. As discussed in section 2
below, these effects have a semiclassical origin, and are not dependent on vacuum
polarization.

The experiment will be conducted at the Accelerator Test Facility4 which is
to be built at Brookhaven Lab. This is a 50-MeV electron linac with extremely
small emittance (∼ 1.5 × 10−10 m-rad when driven by a photocathode gun). We
plan to operate the linac at 25 Mev for reasons discussed in section 3. A Nd:glass
laser, operating at 1.05-µm wavelength, will produce pulses 1-2 ps wide of energy
100 mJoule at a repetition rate of a few Hertz. Part of each pulse will be used to
trigger the photocathode gun of the linac so as to maintain precise synchronization
between the laser and the linac. The main laser pulse will be brought into head-on
collision with the linac beam. Photons which backscatter out of the laser beam will
be Doppler-shifted to about 10 keV, where they can be well analyzed in an x-ray
spectrometer. As this experiment will require close interaction between the laser
and the linac, the author is also a member of the collaboration to construct the
Accelerator Test Facility.

As a technical byproduct, we note that the x-ray beam resulting from this
experiment will have a peak brightness greater than that recently obtained at the
Novette facilty of LLNL,5 and comparable to that of the proposed Advanced Pho-
ton Research Facility6 (a synchrotron light source). Although the duty factor will
be low, this x-ray capability may be of some interest to the materials physics com-
munity.

An exciting aspect of the Accelerator Test Facility is the experiment to demon-
strate the laser-driven grating accelerator.7 For this a CO2 laser, with 10-µm wave-
length, is being constructed. The maximum energy gradient achievable with this
approach will be limited by the onset of surface damage (i.e., plasma formation)
induced by the laser. The 1-µm laser of the present proposal may well lead to a
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different damage limit than that for the CO2 laser. In addition, it is relatively
straightforward to produce laser beams of the 2nd, 3rd, and 4th harmonics of the
Nd:glass laser using techniques of nonlinear optics, while no such harmonic genera-
tion is feasible for the CO2 laser. Hence the grating accelerator could be explored at
four additional frequencies using the present laser, which may prove more favorable
because of materials limitations, despite the greater difficulty of making the grating
structures at shorter wavelengths.

1-2. Second Round Experiments.

Following the success of the first experiment, an upgraded version of the laser
could be transferred to the C line at SLAC, which has been the scene of past laser
backscattering experiments. The program would greatly benefit if the C line could
be upgraded to transport the 50-GeV beam which will available as a result of the
SLC project.

The second experiment is essentially the same as the first, but now conducted
with 30–50-GeV electrons. In this case Thomson scattering is better descibed via
quantum mechanics as Compton scattering, as the multiphoton effects mentioned
above are now also subject to quantum corrections.

For the third and fourth experiments, a beam of backscattered photons is
brought into collision with a laser beam, resulting in a light-by-light scattering
configuration. The simplest effect is e+e− pair creation by light. Even with a
50-GeV electron beam we are below energy threshold for this, if only one laser
photon is involved. But if the laser beam is intense enough it becomes probable for
pair creation to occur in the collision of several laser photons with a high-energy
backscattered photon. The signal for this will be quite clean.

The fourth experiment is true light-by-light scattering into a two-photon final
state. At the projected laser intensity, it is 3 times more probable that three laser
photons rather than one be involved in the scattering process. This experiment
is difficult in that the rates are somewhat low, and most of the scattered photons
emerge at small angles to the incident high-energy photon beam.

Speculative interest in the above set of experiments has been stimulated by the
possible production of an axion-like object in heavy-ion collisions.2 The possbility
of producing axions in the reaction γ + e → a + e, followed by the decay a →
e+e− (or a → γγ), has recently been raised by Brodsky et al.8 Note that in the
case of a multiphoton interaction with the electron, a higher-mass axion could be
produced than with a single photon, so the kinematic limits mentioned in ref. 8 can
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be substantially modified, depending on the laser intensity. Also note that a neutral
axion of mass less than 2mc2 might be observed as a resonance in a light-by-light
scattering experiment.

The proposed experiments are conceptually related to the possibility of spon-
taneous pair creation in strong magnetic fields, such as should exist at the surface
of neutron stars. Considerations of the ‘applied’ effects of nonlinear QED have been
made by several astrophysicists.9−12

1-3. Future Experiments.

As more intense lasers and higher energy electron beams become available one
can explore more dramatic nonlinear effects. Only semiclassical theories exist for
these effects, which have not been greatly pursued in the literature. An active
experimental program would be a source of revitalization to the theoretical study
of strong-field electrodynamics.

One effect which will become accessible is vacuum Čerenkov radiation.13 Be-
cause of vacuum polarization in an intense electromagnetic field, the vacuum takes
on an index of refraction. Hence the interaction of a fast electron with such a field
should include a component of radiation with an angular distribution peaked at the
Čerenkov angle. A similar effect may be observable when the strong field is probed
by a high-energy photon: the traveling pulse of vacuum polarization which follows
the probe photon which might lead to Čerenkov-like corrections to light-by-light
scattering.

A more speculative effect is Unruh radiation, the non-gravitational equivalent
of the Hawking radiation of a black hole.1 The interaction of a highly accelerated
electron with the vacuum fluctuations of the electromagnetic field may lead to a
new type of radiation. This effect might become observable for 50-GeV electrons
passing through a laser beam of 30 times the field strength of the proposed laser.
(Coincidentally this is also the approximate condition for the onset of the vacuum
Čerenkov effect.)

An experiment to study the anomalous magnetic moment of the W boson
is also possible.14−16 For this the 37-GeV backscattered photon beam is brought
into collision with a 50-GeV electron beam (at the SLC intersect). In the reaction
γe → Wν the angular distribution of the W is quite sensitive to its magnetic
moment. The rate for this process is somewhat low (∼ one event per month, but ∼
one in three days if 60-GeV beams were available).

It has been suggested that some of the broken symmetries of the weak interac-
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tion might be restored for particles in a strong electromagnetic field.17−19 Certainly
if field strengths

E = m2
W c3/eh̄ ∼ 6× 1026 V/cm

could be achieved quite novel physics would become accessible. For more modest
field strengths, people have also speculated as to observable changes in the rates for
weak-interaction processes.20−22

Studies of nonlinear behavior of single particles in a strong background field
have been enormously fruitful in condensed-matter physics, but are little pursued
in experimental high-energy physics. The Higgs mechanism is a theoretical example
of such behavior relevant to elementary-particle physics. While there are numer-
ous efforts to locate a Higgs particle, there is no experimental effort devoted to
exploration of effects of an extended Higgs field. The proposed program does not
directly remedy this glaring oversight, but it will establish experimental methods to
probe fundamental properties of macroscopic volumes of space-time under extreme
conditions.
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2. The Phenomenology of Nonlinear QED.

As remarked in section 1, nonlinear effects due to vacuum polarization arise
when an electromagnetic field attains the critical strength†

Ecrit = m2/e = 1.32× 1016 V/cm,

in the frame of some relevant observer. When such a field strength is to be provided
by a focused laser beam, another type of nonlinearity is also prominent: multiphoton
effects. Indeed, that latter must be understood experimentally before studies of
vacuum polarization in strong laser beams can be interpreted. Sections 2-1 through
2-3 review the present understanding of multiphoton effects in the interaction of a
free electron in an intense wave field. Then sections 2-4 through 2-8 discuss various
effects of vacuum polarization which will be accessible to experiment. Section 2-9
speculates on the use of laser techniques to produce W bosons.

2-1. A Free Electron in an Intense Laser Beam.

2-1a. Classical Analysis.

The steady-state motion of an electron in a plane electromagnetic wave is a
well-known problem in classical physics.23 (The steady-state solution ignores the
radiation reaction due to the scattering of the incident light by the electron.) The
motion is especially simple in a frame in which the electron is at rest on the average.
(This is not typically the lab frame, as discussed further below.) The case of a
circularly polarized wave is also simpler than that of linear polarization. For circular
polarization, the electromagnetic field vectors E and B have constant magnitude
and, in a fixed plane perpendicular to the direction of wave propagation, rotate at
the angular frequency ω of the wave. The motion of the electron is then simply in
a circle at anglular velocity ω, with the electron velocity v always parallel to B.
Allowing for the possibility of relativistic velocities, F = ma implies

γ⊥mω2r = γ⊥mωv = eE where γ⊥ = 1/
√

1− β⊥2 and β⊥ = v/c.

Hence we may write‡
γ⊥β⊥ =

eE

mωc
≡ η,

† We will occasionally use units in which h̄ = c = 1.

‡ In plasma physics the quantity eE/mωc is often called vosc/c. As we are particularly

interested in the regime where the value of this quantity exceeds 1, we adopt the new

notation, η.
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leading to
γ⊥ =

√
1 + η2 and β⊥ = η/

√
1 + η2.

The radius of the electron’s orbit is

r =
eE

γ⊥mω2
=

η√
1 + η2

λ

2π
≤ λ

2π
,

where λ is the wavelength of the electromagnetic wave.
For waves with other than circular polarization it is convenient to define

η2 ≡ e2〈E2〉
m2ω2c2

,

where the average is with respect to time. Then (most) expressions involving η

deduced for the case of circular polarization will hold for all types of polarization.

For linearly polarized waves the path of the electron is a ‘figure 8,’ with the

plane of the orbit containing E and the wave vector k. The transverse oscillation

of the electron is at frequency ω and has r.m.s. amplitude equal to r as stated

above in terms of η. The longitudinal oscillation of the electron is at frequency

2ω, and has amplitude η/(4
√

2
√

1 + η2) times the transverse amplitude.

It is interesting to note that for a plane wave, the dimensionless parameter η

is a relativistic invariant of the electromagnetic field:†

η =
e

mc2

√
−AµAµ,

where Aµ is the 4-vector potential of the wave.
We will find that multiphoton interactions between the electron and the electro-

magnetic wave become important once η >∼ 1, i.e., once the motion of the electron in
the wave field is relativistic. It is useful to record some numerical relations between
η, the electric field strength E, and the wave intensity I. First note that

I [watts/cm2] =
〈E2〉

377 [ohms]
for E in V/cm.

Hence
Er.m.s. [V/cm] = 19.4

√
I [watts/cm2].

Then we find

η2 = 3.7× 10−19Iλ2 for I in watts/cm2 and λ in µm.

† We use a metric such that AµAµ = A2
0 −A2.
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For example, with λ = 1.05 µm (h̄ω = 1.17 eV), as in the proposed experiment,
η = 1 corresponds to intensity I = 2.4× 1018 watts/cm2, and in turn to an electric
field strength of E = 3 × 1010 V/cm. At the focus of a diffraction-limited laser
beam the intensity is related to the beam power by I ∼ P/(2πλ2), so we have the
approximate result

η2 ∼ 5× 10−12P [watts],

independent of the laser wavelength.

The expression for the radius r of the electron’s orbit allows us to deter-

mine the range of applicability of the classical picture, namely that r be much

greater than the Compton wavelength of the electron, h̄/mc. This implies that

η/
√

1 + η2 À h̄ω/mc2 must hold in the frame in which the electron is at rest

on the average. Anticipating the case when the wave field is probed by an elec-

tron with Lorentz factor γ‖ before it meets the wave, the restriction becomes

η/
√

1 + η2 À γ‖h̄ω/mc2 in terms of lab quantities. We see that strictly speak-

ing there is no weak-field (η ¿ 1) classical limit because r is too small.† Happily

this does not invalidate the textbook derivations of Thomson scattering (because

the ‘classical’ electron radius is actually the quantum mechanical parameter α/m

in units where h̄ = c = 1). For example, a wave of 1 eV photons incident on an

electron at rest must have η >∼ 10−5 for the classical path to have meaning. This

corresponds to a wave intensity of >∼ 108 watts/cm2, which was hard to achieve

before the development of the laser.

We also note that there is no classical limit when γ‖h̄ω >∼ mc2; then the

wavelength of the light appears shorter than a Compton wavelength in the elec-

tron’s rest frame. This is of course the condition which led to the distinction

between Thomson scattering and Compton scattering. We pursue the case of

strong fields with short wavelengths in section 2-3.

2-1b. The Mass Shift Effect.

For an electron executing the relativistic, classical motion found above, we

† Note another paradox: The oscillatory motion of the electron requires continuous

change in its momentum components transverse to the momentum of the wave. Hence

there must be continuous emission and absorption of virtual photons (which carry

momentum but not energy) which interact with a distant boundary. The physical

significance of the distant boundary is much less clear for a wave field than for, say,

a d.c. magnetic field which has trapped an electron in a cyclotron orbit.
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readily see that the mass of the electron is increased to m where

m = γ⊥m = m
√

1 + η2.

The mass increase is due to the transverse oscillation of the electron at frequency
ω, and the amplitude of the oscillation is always less than the wavelength λ. Thus
when considering scattering of the incident light by the electron, the light cannot
resolve the details of the oscillatory motion; the scattering process can be affected
by this motion in only an average way. In effect, the electron doesn’t appear to
oscillate, but simply has the shifted mass m found above. For example, in the
kinematics of a scattering process, we must use an effective 4-vector for the electron
with invariant mass m rather than m, as described in the next section.

Although we have motivated the mass shift classically, it was first noted in
solutions to the Dirac equation for electrons in a plane electromagnetic wave.24−26

It has never been observed experimentally.

2-1c. The Drift Velocity.

Thus far we have considered only the oscillatory motion of the electron due to
a plane wave in the frame in which the electron is at rest on the average. However
if an electromagnetic wave is incident on an electron initially at rest the subsequent
motion is not purely oscillatory. The electron also takes on a ‘drift’ velocity along
the direction of wave propagation, which can be large when η >∼ 1.27 The drift
velocity is the result of transient effects when the electron first encounters the field.
During this time the electron’s motion is not perfectly in phase with the wave and
the v ×B force has a component in the direction of the wave propagation.

We can avoid detailed consideration of the transient behavior and calculate
the drift velocity of the electron once steady motion is established by thinking
of the reaction in terms of photons. The argument which led to the relation m =
m

√
1 + η2 was made in the frame in which the drift velocity of the electron vanishes.

However this frame is not necessarily the lab frame. In the general case suppose pµ

is the 4-momentum vector of the electron in the lab frame before entering the wave,
and ωµ is the 4-vector of a wave photon in the lab. Then pµ, the effective 4-vector
of the electron in the wave, must have the form

pµ = pµ + εωµ,

where the value of ε is to be determined. We know that

p2 = m2 = m2 + η2m2

9



Hence
ε =

η2m2

2pµωµ
.

For example, if the electron is initially at rest,

pµ = (m, 0, 0, 0), ωµ = (ω, 0, 0, ω),

so that
pµωµ = mω and hence ε =

η2m

2ω
.

Then
pµ =

(
m(1 + η2/2), 0, 0, η2m/2

)
.

The drift velocity is thus
β‖ = η2/(2 + η2).

It is tempting to interpret the paramter ε as the number of wave photons

absorbed (without re-emission) by the electron as it enters the wave. This can-

not be strictly correct, as seen from a consideration of angular momentum. In

a circularly polarized wave, the circular motion of an electron, found above,

corresponds to angular momentum

L = γ⊥mvr =
η2mc2

ω
√

1 + η2
.

However, if the electron had simply absorbed ε wave photons, its angular mo-

mentum would then be ε = η2mc2/(2ω). For η ¿ 1 the electron appears to

absorb 2 units of angular momentum for each quantum of energy taken from the

wave. We surmise that the electron actually absorbs a larger number of wave

photons than ε and then radiates away energy (and some angular momentum) in

the form of soft photons during the transient phase. Indeed, this must happen if

the properties of an electron in a wave (m, β‖, L, etc.) can take on continuous

values, as suggested by the classical arguments.†

† An analogous situation occurs in the a.c. Stark effect–the shift of atomic energy levels

in a wave field. The size of the level shift is not restricted to integer multiples of the

wave photon energy. Again this is only possible if the atoms absorb wave photons,

and then radiate away the energy difference between the absorbed energy and the

eventual energy shift. This low frequency radiation occurs only during the transient

phase, and would be undetected in ordinary atomic physics experiments.
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It may be amusing to note the field intensity for which the electron mass

shift is equal to the energy of a wave photon, namely η2 = 2ω/m. For the

proposed laser, λ = 1.05 µm corresponds to ω = 1.17 eV, which leads to η2 ∼
5 × 10−6, I ∼ 1013 watts/cm2, and E ∼ 6 × 107 V/cm. It is perhaps no

coincidence that nonlinear ionization processes become important when atoms

are placed in even such ‘low-strength’ waves.28

2-1d. The Need for Relativistic Electrons.

In practice it is doubtful that a free electron which is initially at rest can occupy
the focus of an intense laser beam. The electron will be expelled from the strong
field region by the ‘ponderomotive’ or ‘field-gradient’ force.29,30 This force arises
during the transient phase when the electron absorbs energy and momentum from
the wave, while shifting its mass from m to m.

A sense of the field-gradient force can be gotten from a non-relativistic argu-
ment. The effective mass m can be thought of as describing an effective potential
for the electron inside the wave field:

Ueff = mc2 = mc2
√

1 + η2 ∼ mc2 + 1
2mc2η2.

Hence
F = −∇U ∼ − 1

2mc2∇η2 = − 2πe2

mω2c
∇I

where I is the intensity of the wave. In a focused laser beam the intensity has a
strong transverse gradient which will push an electron away from the optical axis.
In a pulsed beam the field-gradient force will also push an electron away from the
leading and trailing edges of the pulse.

Another view of this effect is obtained by analogy to the reflection of low
frequency light off of an electron plasma. From the dispersion relation for light in
a plasma,

ω2 = k2c2 + ω2
p where ωp = plasma frequency,

we infer that a photon inside the plasma has an effective mass given by

m2
eff =

(
h̄ωp/c2

)2
.

For an electron in an intense photon beam we found a mass shift of ∆m2 = η2m2.
If we consider the laser beam as a kind of ‘plasma’ of photons then we see that
the quantity which plays the role of the plasma frequency is ηmc2/h̄. Just as
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photons with ω < ωp can’t penetrate an electron plasma, we infer that electrons
with momentum less that ηmc can’t penetrate a photon beam. Thus electrons with
initial velocities such that γβ < η will be expelled from the strong field region of
the laser beam.

The conclusion is that intense laser beams can only be probed by relativistic
electrons.

2-2. Nonlinear Thomson Scattering.

2-2a. Classical Analysis.

If an electron is placed in a wave of field-strength η = eE/mωc >∼ 1, it achieves
relativistic velocities during its transverse oscillation. This oscillation generates
all orders of multipole moments, but the radiation due to the nth order moment
is smaller than dipole radiation by a factor of order (v/c)2n−2.31 Recall that the
frequency of the nth order multipole radiation is at the nth harmonic of the driving
wave frequency (in the frame in which the electron is at rest on average). Thus when
η ∼ 1 multipole radiation at higher harmonic frequencies becomes comparable to
that of dipole radiation.

If we divide that radiated intensity by the energy flux of the incident wave we
obtain the scattering cross section. For scattering into the fundamental frequency,
the cross section is of course

σThomson = 8π
3 r2

o,

where ro is the classical electron radius. Then the cross section for scattering into
frequency nω varies approximately as

σnω ∼ σThomsonη2n−2 ∼ r2
oη2n−2 for η <∼ 1.

These arguments can be expressed in terms of photons by noting that radiation
at frequency nω corresponds to absorption of n photons by the electron followed
by emission of one photon at frequency nω. A simple QED estimate of the cross
section would be

σnω ∼ αn+1

m2
= αn−1r2

o

counting one power of α for each external photon, and noting ro = α/m. On com-
parison with our classical argument we reach an important conclusion. In strong
fields where a QED approach is necessary (E > m2/e), there is a second dimen-
sionless expansion parameter which depends on e2 besides α, namely η2. Thus we

12



anticipate that a detailed QED analysis of higher harmonic radiation in the regime
η À 1, E > m2/e cannot be done via (a finite number of) Feynman diagrams, but
must involve nonperturbative techniques.

Detailed classical considerations of higher harmonic radiation were first

made by Schott.32 If his equation (157), p. 125, for the radiated intensity is

converted to a cross section, we find

dσnω

d cos θ
=

4πnr2
o

η2

(
cot2 θ J2

n(nβ sin θ) + β2J
′2
n (nβ sin θ)

)
,

where θ is the scattering angle. In this we have divided the usual expression

by n so the cross section is a measure of the number of photons produced at

frequency nω, rather than of scattered energy. In making rate estimates for

the proposed experiment we will use a more general expression, applicable to

nonlinear Compton scattering, presented in section 2-3 below.

In the extreme relativisitic limit, η À 1, Schott’s result is equivalent to the

standard expression for synchrotron radiation. We discuss this limit in section

2-2d. In the weak field limit, η ¿ 1, we note that η ∼ β and that Jn(nβ sin θ) ∼
(1
2nβ sin θ)n, which leads to σnω ∼ r2

oη2n−2 as claimed above.

2-2b. The Frequency of the Scattered Light.

In the multiphoton scattering process

nω + e → ω′ + e′,

the frequency of the scattered light, ω′, is modified by the mass-shift effect for
incident waves with η >∼ 1, as well as usual kinematic considerations. To quantify
this change we write energy-momentum conservation for the reaction in terms of
4-vectors:

nωµ + pµ = ω′µ + p′µ.

Noting that p′2 = m2 we find

nω′µωµ + ω′µpµ = nωµpµ.

For example, if the electron is initially at rest† and we write

ω′µ = (ω′, ω′ sin θ, 0, ω′ cos θ)

† Although we found in section 2-1d that an electron initially at rest is not a suitable

probe of a strong wave, it serves to introduce the frequency shift due to the mass-shift

effect.
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then we find

ω′ =
nω

1 +
(

nω
m + η2

2

)
(1− cos θ)

.

This is the appropriate form of the Compton-scattering relation for high field
strengths.

If we scatter optical photons off electrons then ω/m <∼ 10−5 which is negligible
as usual. But η2 is large when there is significant probability for higher harmonic
radiation. In this case there is substantial variation of the frequency ω′ with scat-
tering angle. This effect occurs for the fundamental harmonic (n = 1) as well.
Measurement of the frequency shift with angle allows a direct determination of the
parameter η2, independent of the intensities of the various higher harmonics. This
feature will aid greatly in the interpretation of experimental results.

In the mid 1960’s a small controversy arose as to the observability of the

electron mass shift and of the frequency shift of the scattered photon. Although

these are essentially classical effects, there is some difficulty in demonstrating

them in a QED approach. This arises because QED calculations for strong fields

can only be made at present for plane waves of infinite extent and duration.

Reasonably convincing arguments show that the QED calculations indeed have

the proper classical limit in the case of pulsed fields.30,33,34 The conclusion

remains that the photon frequency shift should be detectable, even if its value

is not exactly that given by arguments based on plane waves.

2-2c. The Possibility for Experiment.

The program of a possible experiment is now reasonably clear. The key is the
production of a laser beam for which the field strength satisfies η = eE/mωc >∼ 1.
We anticipate that in practice this can be obtained only by focusing the beam,
and that for a diffraction-limited focus the condition η ∼ ηmax can be maintained
only over a volume ∼ λ3. The beam then scatters off any electrons in this volume
leading to a discrete spectrum of radiation at any fixed angle. For fields with
strength η ∼ 1 the target electrons must have relativistic velocities, which leads to
substantial Doppler shifts in the scattered light. In addition, the observed frequency
of each harmonic will be lower than that expected for weak fields, due to the mass-
shift effect. The experiment should detect this frequency shift, as well as measure
the intensity of the various harmonics of the scattered light.

A rate estimate for the nonlinear-Thomson-scattering experiment can be made
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by recalling the Larmor formula,†

dU

dt
∼ e4E2

m2
.

Because of the small focal volume any one electron will experience the strong field
only for a few optical cycles. The energy radiated in one cycle of the wave is

dU ∼ e4E2

m2ω
per cycle,

and the number of photons radiated is

dN =
dU

ω
∼ e4E2

m2ω2
∼ αη2 photons/cycle.

This rate is of course to be multiplied by the number of electrons in volume λ3. Thus
once fields with η ∼ 1 have been achieved the scattering rate is quite substantial.

Nonlinear effects have been observed in the scattering of light from a CO2

laser or a Nd:glass laser off an electron plasma, where up to the 46th harmonic

has been observed.35−37 In these experiments the laser beam induces a sharp

density gradient on the plasma which then supports nonlinear plasma oscillations

leading to higher harmonic radiation. This effect is to be distinguished from

present concerns of scattering off a single electron. In particular the electron

mass shift and attendant frequency shift of the scattered photon have not been

observed in the plasma experiments.

There appears to be only one previous study of higher harmonic radiation

in the interaction of a free electron with a laser beam.38 In this experiment

laser pulses of 1.05-µm wavelength and intensity ∼ 2 × 1014 watts/cm2 were

brought into collision with a beam of electrons whose energy could be varied

from 0.5 to 1.6 keV. The electron density in the beam was about 1010/cm3. The

field-strength parameter η was about 0.01, while the electron velocities ranged

from 0.04 to 0.08 of c; hence the electron beam was not greatly perturbed by the

field-gradient effect of the laser pulse. A small, but significant amount of second-

harmonic radiation was observed, although η was too small for the η-dependent

frequency shift to be detected, compared to the Doppler shift due to the moving

target of electrons.

† While the follwing argument is made in the frame in which the electron is at rest on

the average, the conclusion is clearly invariant under the choice of frame.
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2-2d. Very Strong Fields.

This section is an aside on the case when the wave field is so strong that

η À 1, which should become relevant in the near future.

Consider a circularly polarised wave of frequency ω incident head on with

an electron with Lorentz factor γ. If the electron is not to be badly deflected by

the wave then we need γ À η according to section 2-1d. Following an analysis

like that of section 2-1c we find that the energy of the electron once inside

the wave remains γm to first order in η/γ. Of course much of this energy is

in the transverse motion of the electron, so its longitudinal velocity has been

decreased. This is described by the effective mass according to γm = γ‖m.

Since m = m
√

1 + η2 ∼ mη we have that γ‖ ∼ γ/η. On transforming to the

average rest frame of the electron the wave has frequency ω? ∼ 2γ‖ω ∼ 2γω/η.

In this frame the electron is not at rest but moves in a circle at relativistic

velocities, described by the Lorentz factor γ⊥ = m/m ∼ η. The radiation

of the circling electron can be thought of as synchrotron radiation. From a

classical analysis of the latter we know that the spectrum peaks at frequency

ω?′ ∼ γ3
⊥ω? ∼ η3ω?, corresponding to maximum strength for the harmonic with

n ∼ η3. This radiation is strong only in the plane of the circular motion (in the

average rest frame of the electron). On transforming back to the lab frame, the

radiation has characteristic frequency ω′ = γ‖ω
?′ ∼ γη2ω, and lies in a narrow

cone of half angle ∼ η/γ.

For strong enough wave fields the resulting radiation will include e+e− pairs

and a classical analysis no longer suffices. The threshold for this QED correction

is that the energy of the radiated photon as viewed in the average rest frame

of the electron is equal to 2m. The critical energy is m and not m as any

pairs produced must have the energy of the transverse oscillations of electrons

in the strong field. The condition ω?′ >∼ m transforms to lab frame quantities

as γηω >∼ m or γE >∼ m2/e recalling that η = eE/mω. Not surprisingly, this is

just the condition that the electric field in the true rest frame of the electron be

stronger than the critical field introduced in section 1. Then the electron probes

the wave field so as to stimulate pair creation as discussed in section 2-4 below.

2-2e. Comparison with Radiation in an Undulator.

This section is another aside to help place nonlinear Thomson scattering in

the broader context of contemporary electrodynamic studies.

The phenomenon of nonlinear Thomson scattering is closely related to the
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production of higher harmonic radiation in the passage of an electron through a

static but spatially oscillating magnetic field.39 In the analysis of an ‘undulator’

or ‘wiggler’ magnet of periodicity λo one introduces the dimensionless param-

eter η = eBλo/2πmc2, where B is the r.m.s.-spatial-average magnetic field.

For example, the radiation emitted in the forward direction has wavelength

λ ∼ 2λo/γ2
‖ = 2λo(1 + η2)/γ2 where γ is the Lorentz factor of the incident

electron. Although the total velocity of the electron is unaffected by the undu-

lator, its longitudinal component is reduced to compensate for the transverse

oscillations. This leads to the appearance of η in the expression for λ. For η >∼ 1

the oscillations are strong enough that higher harmonic radiation is probable.

The higher radiation has been observed,40 and is considered a background to

the operation of undulators as free-electron lasers, where it is desired to amplify

only one frequency. Coherent production of higher harmonic radiation has been

observed from a bunched electron beam obtained in an optical klystron.41

The magnetic field of the undulator can be thought of as consisting of

virtual photons. In the lab frame these carry momentum h/λo but no energy.

However in the average rest frame of a relativistic electron inside the undulator

the virtual photons appear very much like real photons. If we wish to describe

the radiation process as a kind of Thomson scattering off the virtual photons we

must note that the electron takes on an effective mass m = m
√

1 + η2 inside

the undulator, so that γm = γ‖m. As for the case of an electron in a laser

beam, the ‘mass-shift’ effect is an artifice of a description which emphasizes the

longitudinal motion of the electron and averages over the transverse oscillations.
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2-3. Nonlinear Compton Scattering.

When a beam of electrons of energy γm is brought into head-on collison with
a laser beam of frequency ω, in the average rest frame of the electron the incident
light has frequency 2γω (if γ is large compared to the field-strength parameter η).
Then if γω >∼ m quantum corrections become important in the scattering process,
and the nonlinear Thomson scattering is better described as nonlinear Compton
scattering. Several authors have considered the quantum corrections to strong-field
electron-photon scattering.20,21,25,27,42−45 We find the work of Narozhny, Nikishov
and Ritus21 especially useful for computations.

Consider the absorption by an electron of n photons of frequency ω with the
emission of a single photon of frequency ω′ in the reaction

nω + e → ω′ + e′.

We write energy-momentum conservation in terms of 4-vectors as

nωµ + pµ = ω′µ + p′µ,

where pµ is the effective 4-vector of an electron in a wave of strength η, as discussed
in section 2-1c. Note that the final state electron has effective mass m corresponding
to the continuum states of an electron in a strong wave field. The cross section for
circularly polarized wave photons is21

σnω =
2πr2

o

u1η2

∫ un

0

du

(1 + u)2

{
− 4J2

n(z)+

+ η2

(
2 +

u2

1 + u

) (
J2

n−1(z) + J2
n+1(z)− 2J2

n(z)
)}

,

where

u =
ωµω′µ

ωµp′µ
, u1 =

2ωµpµ

m2 , un = nu1, and z =
2η

√
u(un − u)

u1

√
1 + η2

.

Narozhny et al. show that in the weak-field, high-frequency limit this expression
reduces to the Klein-Nishina formula, while in the strong-field, low-frequency limit
this becomes the Schott formula given in section 2-2a. The physical content of the
full expression is simply to combine the quantum effects of Compton scattering with
the semiclassical strong-field effects discussed in section 2-2.
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Figure 1. The differential cross section for nonlinear Compton scattering of 50-MeV

electrons against a laser beam of 1.05-µm wavelength and field-strength parameter η = 0.4.

The contribution due to the absorption of 1 through 4 laser photons is labeled. The dashed

curve is the ordinary Compton cross section. Note the shift in the end point of the one-

photon cross section.

In an experiment with highly relativistic electrons, the scattered photons of
interest emerge with angles ∼ 1/γ with respect to the direction of the electron
beam but with a broad range of energies. It is useful to express the differential
scattering cross section as a function of the scattered photon energy, rather than
the scattering angle. For this we relate the invariant u used above to the photon
energy ω′, and find†

du

(1 + u)2
∼ dω′

γm
if γ À η.

Thus we may write

dσnω

dω′
=

2πr2
o

u1η2γm

{
−4J2

n(z) + η2

(
2 +

u2

1 + u

) (
J2

n−1(z) + J2
n+1(z)− 2J2

n(z)
)}

.

† It is helpful to evaluate the invariants in the center-of-mass frame, where u is a simple

function of the scattering angle.
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Figure 1 shows this cross section evaluated for electrons of 50 MeV and light of
1.05-µm wavelength with field-strength parameter η = 0.4, summed over the various
numbers of absorbed photons. The contributions from 1 to 4 photon absorption can
be resolved in the figure. The dashed curve is the Klein-Nishina cross section for
comparison. In this example γω/m ∼ 2×10−4 so we are really dealing with Schott’s
classical result in comparison with Thomson scattering. Note however the shift in
the ‘Compton edge’ from 44 keV down to 38 keV for scattering in the strong-field
case.

The dependence of the scattered photon energy ω′ on the laboratory scattering
angle θ (defined with respect to the direction of the electron beam) may derived in
a manner similar to that of section 2-2b. The result is

ω′ =
4nγ2ω

1 + 2γ2(1− cos θ) +
(

2nγω
m + η2

2

)
(1 + cos θ)

.

The maximum scattered photon energy occurs for θ = 0◦ (which is 180◦ backscat-
tering from the point of view of the laser beam) and is

ω′max =
4nγ2ω

1 + η2 + 4nγω
m

.

These results exhibit the η-dependent frequency shift discussed in section 2-2b. For
the example in Figure 1, 1 + η2 = 1.16, which leads to the shift of the Compton
edge noted above.

Expressions for nonlinear Compton scattering with linearly polarized pho-

tons have been given by several authors,27,42 but these are not as compact as

for the case of circularly polarized light. The integrals needed for comparison

with experiment could of course be performed on a computer.

2-4. Electron-Positron Pair Creation by Light.

Sections 2-4 through 2-8 discuss various phenomena would could be explored
in extensions of the presently proposed experiment. Details of the latter appear in
section 3.

2-4a. The Backscattered Photon Beam.

If the high-energy photons obtained from the backscatter of a laser beam off
an electron beam are then brought into collision with a second laser beam we have
a light-by-light scattering configuration. As the photon fluxes in a laser beam are
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quite high there will be observable rates of light-by-light scattering, which has eluded
direct experimental detection up to the present.†

While this proposal is primarily for the nonlinear-Thomson-scattering experi-
ment, we digress here to discuss some features of the backscattered photon beam
which would be used in the second-round experiments. This will be an upgraded
version of the backscattered beam now in the C line at SLAC.47−49

It will be very advantageous to use a 50-GeV SLC beam, which could be

transported in the C line if the field integrals of the momentum-selection dipoles

and the permanent dump magnets are suitably increased. The instrumentation

of the beam line would be upgraded to the standard of the SLC project.

The laser for the second-round experiments will operate at 0.308-µm wave-

length (4.03 eV), as discussed in section 4. The endpoint energy of the backscat-

tered photon beam is given by an expression such as that just mentioned in

section 2-3:

ω′max =
4γ2ω

1 + 4γω
m

=
Ee

1 + m2

4Eeω

,

where Ee = γm is the electron beam energy. Figure 2 sketches ω′max as a

function of Ee for laser photons of wavelength 0.308 µm. For Ee = 50 GeV we

have ω′max = 37.75 GeV.

The backscattered photon beam then propagates some distance, taken here

to be 20 m, and is brought into collision with another laser beam of 0.308-µm

wavelength. To obtain the strongest nonlinear effects the latter laser beam will

be focused to a spot of radius ∼ 1 µm, close to the diffraction limit. Only those

photons of the backscattered beam that pass through this rather small spot are

of interest, and we refer to them as the backscattered beam in the following.

There are three measures of quality for the backscattered photon beam:

- high flux;

- nearly monochromatic energy spectrum;

- angular divergence <∼ m/ω′, which latter is characteristic of the light-by-

light scattering of photons ω′.

† The production of electron-positron pairs by a photon in the field of a nucleus may

be considered as a kind of light-by-light scattering, especially when one regards the

nuclear Coulomb field as consisting of virtual photons.46 Likewise, particle production

via the collision of two virtual photons is now a common technique at electron-positron

storage rings.

21



Figure 2. The maximum energy of the backscattered photon beam obtain-

able by colliding a laser beam of 0.308-µm wavelength against an electron beam

of various energies.

Figure 3. The energy spectrum of the backscattered photon beam obtained

by colliding a laser beam of 0.308-µm wavelength against a 37-GeV electron

beam.
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All of these features depend on the radius of the electron beam at the pro-

duction point of the backscattered beam. (We suppose the laser-beam size can

always be adjusted to match that of the electron beam.) The angular divergence

of the electron beam is related to the beam radius via the emittance, taken to

be 3× 10−8 cm-rad for an SLC beam. Then the flux of the backscattered beam

(i.e., that which passes through the 1-µm light-by-light scattering spot) is a slow

function of the electron-beam radius, favoring a smaller radius. The backscat-

tered beam is more monochromatic when the electron-beam divergence is small,

favoring a large electron-beam radius. The divergence of the backscattered beam

varies linearly with the electron-beam radius, favoring a small radius.

A reasonable compromise is an electron-beam radius of ∼ 50 µm. Then

we estimate the flux of backscattered photons (as always, through the 1-µm

light-by-light scattering spot) as about 3 per 1010 electrons for a laser pulse of

0.01 Joule energy. This supposes that the entire laser pulse passes through the

∼ 10-ps electron pulse, which is possible as a 50-µm-radius laser beam is well

collimated. The calculated energy spectrum of the backscattered beam is shown

in Figure 3, while the mean angular divergence of the beam is 3 × 10−6 rad.

2-4b. The Breit-Wheeler Process.

Light-by-light scattering becomes significant when the effects of vacuum po-
larization are large. This is often considered to occur in two different limits: low-
intensity but high-frequency light; and for low-frequency but very intense light.
In the proposed second-round experiments we would approach the high-frequency
and high-intensity limits simultaneously, which requires a unified understanding of
vacuum polarization processes.

Halpern50 was the first to note that low-intensity light beams would scatter if
the center-of-mass energy of a pair of colliding photons were similar to the electron
mass. If ω1 and ω2 are the laboratory energies of the two photons which meet head
on, this requires ω1ω2 ∼ m2. Breit and Wheeler51 made the first calculation of
a light-by-light scattering process, namely electron-positron pair creation by light,
and found the cross section (near threshold) to be

σω1+ω2→e+e− ∼ πr2
oβcm,

where βcm is the velocity of the electron or positron in the center-of-mass frame.
Although this is actually a rather large cross section, the process has not been
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observed due to lack of photon flux.†
Considerations of nonlinear electrodynamics in the strong-field limit arose fol-

lowing the statement of Klein’s paradox52 regarding the surprising behavior of the
transmission coefficient when a Dirac electron encounters a steep potential bar-
rier. Sauter53 noted that an electric field is unstable against spontaneous electron-
positron pair production if the potential gradient is greater than mc2 across a Comp-
ton wavelength. This led to the critical field strength E = m2c3/eh̄, introduced in
section 1. Strictly speaking, an electromagnetic plane wave of arbitrary strength is
stable against pair production, because a pair of massive particles can never have
the same total 4-momentum as a photon.‡ Reiss54 appears to have been the first to
note the interesting possibility that if a strong electromagnetic wave is probed by
a photon (or electron, etc.) pair creation may be likely, even though the center-of-
mass energy of the probe photon plus a single wave photon is much less than the
mass of the electron. Other treatments include refs. 21, 42, 44, and 55. Again we
find ref. 21 especially useful for computations.

Pair creation in a strong wave field is described in terms of photons as

nω1 + ω2 → e+e−,

wherein n wave photons, ω1, annihilate with the probe photon, ω2, to produce the
pair. This can of course also be considered as a multiphoton version of the Breit-
Wheeler process. Following the argument of Sauter, this process becomes probable
when the wave field strength approaches the critical field strength m2/e in the rest
frame of the e+e− pair. In this frame the probe photon has energy m (at threshold),
so the Lorentz boost from the lab frame is γ ∼ ω2/2m, assuming ω2 À m in the
lab frame. Hence the electric field strength of the wave in the e+e− rest frame is
ω2E/m, where E is the laboratory strength of the wave, and the wave and probe
photons meet head on. The appropriate measure of field strength is then

χ =
ω2E/m

m2/e
=

ω1ω2

m2

eE

mω1
=

ω1µωµ
2

2m2
η,

† Breit and Wheeler commented on the possible significance of their process to astro-

physics. In present terms, cosmic ray photons of energies greater than ∼ 1016 eV will

be attenuated due to scattering off the 3 ◦K microwave background radiation.

‡ A photon is stable against decay into an even number of photons according to charge-

conjugation invariance, and stable against decay into an odd number of photons due

to lack of phase space.
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where η is the invariant eE/mωc of a wave field introduced in section 2-1a. Param-
eter χ is a Lorentz invariant of the scattering process. Sauter showed that in weak
fields the rate of pair production varies as exp−π/χ. Even when ω1ω2 ¿ m2, pair
production is likely, provided η >∼ m2/ω1ω2.

For the detailed calculation of the cross section for the multiphoton Breit-
Wheeler process, we express the reaction in terms of 4-momenta as

nω1µ + ω2µ = pµ + p′µ.

Here p labels the electron and p′ the positron. The use of p rather than p signifies
that the electron and positron will be created as free-particle states in the strong
wave field, and so have the shifted invariant mass m found in section 2-1b. Figure 4a
sketches the classical paths of an electron and positron created with the threshold
energy in a circularly polarized wave field. Because the particles must immediately
assume the circular orbits discussed in section 2-1a, their effective mass is m. For
a pair created above threshold, the circular orbits become trochoids as sketched in
Figure 4b. The cross section, for the case of circular polarization of both wave and
probe photons, is found to be21

σnω1+ω2→e+e− =
πr2

o m2

η2ω1µωµ
2

∫ un

1

du

u
√

u(u− 1)
×

{
2J2

n(z) + η2(2u− 1)
(
J2

n−1(z) + J2
n+1(z)− 2J2

n(z)
)}

,

where

u =
ω1µωµ

2

4 ω1νpν ω1τp′τ
, uo =

ω1µωµ
2

2m2 , un = nuo, and z =
4ηmm

ω1µωµ
2

√
u(un − u).

Conservation of energy requires that the number n of wave photons be greater than
1/uo (= m2/ω1ω2 for head-on collisions). The field-strength parameter χ can be
seen to enter the above by rewriting

z =
2η2

√
1 + η2

χ

√
u(un − u).

For weak fields (η ¿ 1) the cross section for pair creation via one wave photon
reduces to the Breit-Wheeler result.
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Figure 4. a) The trajectories of an electron-positron pair created with threshold

energy in a strong wave field. The orbits are the circles discussed in section 2-1a; b) The

trajectories for pair creation above threshold. The orbits are trochoids.

Figure 5. The cross section, normalized to πr2
o , for the multiphoton Breit-Wheeler

effect. The backscattered photon beam has energy 37 GeV. The laser beam has wavelength

0.308 µm and field-strength parameter η = 0.25. The reaction is energetically forbidden to

proceed with only one laser photon. The contributions to the cross section from 2 through

5 laser photons are labeled.
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As in section 2-3, it is useful to note that the invariant u is a simple function
of the cosine of the scattering angle in the center-of-mass frame. This allows us to
write†

du

u
√

u(u− 1)
∼ 2dEe

ω2
when ω2 À nω1,

where Ee is the laboratory energy of the final-state electron. Hence we find the
differential cross section for a head-on collision to be

dσnω1+ω2→e+e−

dEe
=

πr2
o m2

η2ω1ω2
2

{
2J2

n(z) + η2(2u− 1)
(
J2

n−1(z) + J2
n+1(z)− 2J2

n(z)
)}

.

Figure 5 shows a plot of this cross section for beam parameters suitable for
the second-round experiments. The backscattered photon beam (section 2-4a) of
endpoint energy 37 GeV is brought into collsion with a second laser beam, also of
wavelength 0.308 µm, and field-strength parameters η = 0.25, and χ = 0.29. It
is not energetically possible to produce electron-positron pairs with a single such
laser photon,‡ but with two laser photons the process is allowed. In Figure 5 the
contributions to pair production from 2, 3, 4 and 5 laser photons are sketched. Thus
if any e+e− pairs are observed they will be the result of two simultaneous nonlinear
effects: vacuum polarization and multiphoton interactions.

Figure 6 shows how the total pair-production cross section varies with the
energy ω2 of the backscattered photon beam, always supposing that it collides with
a laser beam of 0.308-µm wavelength and field-strength parameter η = 0.25. Figure
7 illustrates how the total pair-production cross section varies with field-strength
parameter η for a fixed beam energy ω2 = 37 GeV and a fixed laser wavelength of
0.308 µm. In this case the invariant χ is simply related by χ = 1.14η. Once χ >∼ 1
the cross section ceases to rise, but then pair production has become a high-rate
process. It is amusing to note that for the case of η = 4 in Figure 7 the mean
number of laser photons annihilated in the pair creation is predicted to be 60.

In the second-round experiment, the rate of multiphoton pair creation would be
about one event per 300 pulses of 3× 1010 electrons (∼ 10 backscattered photons).
For this, Figure 6 indicates that the total cross section at ω2 = 37 GeV is about

† We use a factor 2 rather than 4, as we wish to consider Ee varying from Ee,min to

Ee,max, instead of from ω2/2 to Ee,max which latter corresponds to 1 ≤ u ≤ un.

‡ The threshold energy of the probe photon is ω2 = 65 GeV, which could be produced

in the backscatter of a 78-GeV electron beam against the 0.308-µm-wavelength laser

beam.
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Figure 6. The cross section for the multiphoton Breit-Wheeler process as a function of

the energy of the backscattered photon beam, for collisions with a laser beam of wavelength

0.308 µm and field-strength parameter η = 0.25.

Figure 7. The cross section for the multiphoton Breit-Wheeler process as a function

of the field-strength parameter η of a laser beam of 0.308-µm wavelength, in collision with

a 37-GeV backscattered photon beam.
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0.01πr2
o ∼ 3 × 10−27 cm2. We take the energy of the second laser pulse to be 0.2

Joule, corresponding to 3 × 1017 photons. When this beam is focused to a spot of
1-µm radius the depth of focus is only about ±20 µm, so the strong-field region is
only about 1% of the length of the backscattered photon bunch (10 ps ⇒ 3 mm).
Then for one pulse,

No. of events =
σ ·Nω1 ·Nω2 · overlap

beam area
∼ 3× 10−27 · 3× 1017 · 10 · 10−2

3× 10−8
∼ 0.003.

The cross section for pair production by linearly polarized photons has

also been calculated,42,54 but again the result is not as compact as for the

case of circular polarization. When η À 1, there is a threshold suppression

of pair creation via circularly polarized photons compared to that by linearly

polarized photons, because in the former case the leptons are created in states

of high angular momentum.55 Asymptotic forms for the cross sections for pair

production by both circularly and linearly polarized photons are available in

the limit η À 1.54,55 Other suggestions to study pair creation with laser light

include refs. 56-58.

2-5. Light-by-Light Scattering.

The first calculation of elastic light-by-light scattering,

ω1 + ω2 → ω3 + ω4,

was made in the low-frequency limit by Euler and Kockel,59 followed by the work
of Achieser60 in the high-frequency limit. Karplus and Neuman61 gave the first
treatment applicable to all frequencies, but still in the low-intensity limit. There
appears to be nothing in the literature concerning light-by-light scattering for strong
fields (such that field-strength parameter η >∼ 1), although the work of Becker and
Mitter62 may provide a starting point. As remarked earlier, light-by-light scattering
of real photons has never been observed experimentally.

For low frequencies the light-by-light scattering cross section rises as ≈
0.13(ω1ω2/m2)3 µb, while at high frequencies it falls as ≈ 20m2/(ω1ω2) µb. The
peak cross section occurs for ω1ω2 ≈ 2.25m2, and is about 1.6 × 10−30 cm2. The
behavior of the cross section is sketched in Figure 8, reproduced from a paper
by de Tollis.63 The low-frequency approximation is seen to be quite good up to
k ≡ √

ω1ω2/m ∼ 0.7, while at k = 1 the actual cross section is about 10 times the
extrapolation of the low-frequency result.

29



Figure 8. Total cross section of light-by-light scattering for unpolarized photons as a

function of the energy k of each photon in the center-of-mass system, in units of mc2.63

In the proposed second-round experiments, ω1 = 4 eV, while ω2 = 37 GeV, so
that k = 0.75, and the light-by-light scattering cross section is about 2×10−32 cm2.
We suppose that for the light-by-light scattering experiment, the laser will have
field-strength parameter η = 0.8, for which multiphoton effects become probable.
According to charge-conjugation invariance (Furry’s theorem), in the reaction

nω1 + ω2 → ω3 + ω4,

the number of laser photons n can only be odd. For the case of initial-state photons
of definite helicity, there is an additional restriction that n be only 1 or 3.64† For the
scattering of three 4-eV laser photons, we have k = 0.75

√
3 = 1.3,‡ which is very

close to the value at which the cross section for ordinary light-by-light scattering
takes on its maximum.

† An oversimplified argument is that for forward scattering, |Jz | must always be ≤ 2,

while for n > 3 we would have |Jz | > 2 in the case of photons with definite helicity.

‡ In the case of a strong field it may be more proper to define k ≡ (1/m)
√

nω1ω2 =

(1/m)
√

nω1ω2/(1 + η2), noting that k = 1 has the physical significance of being the

threshold for pair creation. With η = 0.8, this would reduce our value of k to 1.0,

with little effect on the light-by-light scattering cross section.
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The cross section for the scattering of three laser photons against another
photon has been recently derived by Affleck64 in the limit k ¿ 1:

σ3 ∼ 0.2 σ1η
4
(ω1ω2

m2

)2

.

The η4 dependence parallels the behavior in nonlinear Thomson scattering where
the cross section for the absorption of n laser photons varied as η2n−2. Near k = 1
we suppose the above expression is valid if we replace the low frequency estimate
for σ1 by the actual cross section shown in Figure 8. Then for ω1 and ω2 as stated
above and η = 0.8 we estimate that σ3 ∼ 7 × 10−32 cm2. This is about 3 times
the cross section for the scattering of one laser photon! As for the Breit-Wheeler
effect, the first observation of true light-by-light scattering will be in the presence
of multiphoton nonlinearities.

Following the rate analysis given at the end of section 2-4b, a cross section of
10−30 cm2 would yield one event in 106 pulses. We suppose that a factor of 10
improvement in the intensity of the backscattered photon beam would be made for
the light-by-light scattering experiment. Also, a laser beam with η = 0.8 is 10 times
as intense as that assumed in section 2-4b. If these factors are available, we would
obtain one light-by-light scattering event per 150,000 pulses, which is not beyond
experimental detection. The laboratory energies, ω3 and ω4, of the final-state pho-
tons are little different for the case of scattering of one or three laser photons, as
ω1 ¿ ω2. Indeed, our light-by-light scattering configuration is conceptually rather
similar to the ‘splitting’ of a GeV photon in an external field.65,66 The best signal for
a light-by-light scattering event would be the detection of both photons ω3 and ω4

when the each has energy ∼ ω2/2. In this case they emerge with laboratory angles
∼ m/ω2 ∼ 10−5 rad. For this reason it is important that the angular divergence of
the backscattered photon beam be small, as mentioned in section 2-4a.

Discussion of the experimental prospects for detection of light-by-light scat-

tering date back to 1930,67,68 in advance of theoretical considerations. The issue

was reconsidered after the invention of the laser.69−71 Experimental evidence for

Delbrück scattering, and the splitting of a photon in the field of a nucleus is pre-

sented in ref. 72 and earlier references therein.
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2-6. The Index of Refraction of a Strong Field.

In this section we discuss possible studies of the index of refraction induced
by vacuum polarization in a strong wave field. The main effect accessible to the
techniques of high-energy physics is vacuum Čerenkov radiation.13

Toll, in his Ph.D. dissertation,73 was the first to calculate the index of refraction
due to vacuum polarization. His results apply to a constant magnetic field, and to
a constant field in which E = B and E ·B = 0. As the frequency of a plane wave
can be made arbitrarily small by a Lorentz transformation, the results should apply
to this case also. Additional discussion of the index of a constant magnetic field
is given in ref. 74. The index of refraction at frequency ω is found to be (for
Beff ¿ Bcrit = m2/e)

n(ω) = 1 +
α

π

(
Beff

Bcrit

)2 (
N(χ) + iπ

T (χ)
2χ

)
,

where N(χ) and T (χ) are plotted in Figure 9, and

χ =
ω

m

Beff

m2/e
.

For a constant magnetic field,

Beff =
1
2
B sin φ.

where φ is the angle between B and the direction of propagation of the photon. For
a plane wave,

Beff = B sin2(θ/2),

where θ is the angle between the directions of propagation of the plane wave and
the photon.

For a plane wave the parameter χ is exactly the same as that introduced in
section 2-4b when discussing the Breit-Wheeler effect:

χ =
ωµω′µ

2m2
η,

where ω′ is the frequency and η the field-strength parameter of the strong plane
wave. Note also that for a given field strength B, n − 1 is four times greater for a
plane wave than for a constant magnetic field.

For χ ¿ 1 the function N(χ) takes on the value 14/45 for ‘perpendicular’ po-
larization, 8/45 for ‘parallel’ polarization, and 11/45 for either circular polarization
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Figure 9. The functions N(χ) and T (χ) which appear in the real and imaginary parts

of the index of refraction due to vacuum polarization effects in a strong field.73

of the photon. ‘Parallel’ polarization means the electric field vectors of the strong
plane wave and the photon line up, etc. These limiting cases can be verified using
the nonlinear Lagrangian of Euler and Heisenberg for constant fields73,75 and for
wave fields.64

We will not be further concerned with the absorptive part, T (χ), which Toll

related to the Breit-Wheeler pair-production process. Note that the function

N(χ) drops (and becomes negative) when pair production can be caused by the

probe photon ω. Toll’s analysis (based on the static limit) ignores the possibility

that several wave photons may be involved, which no doubt modifies the behavior

of N(χ) and T (χ) when χ >∼ 1 and η >∼ 1 also. Some consideration of this has

been given by Becker and Mitter.62

Toll73 and others74−78 have considered possible experimental effects of the

index of refraction for optical photons in strong fields, but these are small and

have never been observed. For example, the plane of polarization of an optical

photon would be rotated about 10−12 radian per kilometer in a 40-kG magnetic

field.76

Lutzky and Toll79 remarked that the nonlinear index of refraction might lead
to discontinuous behavior of propagating wavefronts, but did not suggest a specific
experiment. Erber13 has noted that the most accessible effect may be a sort of
Čerenkov radiation of an electron in a strong field.
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For a highly relativistic particle the Čerenkov threshold condition, v = c/n,
becomes 2(n − 1) = 1/γ2

‖ = (1 + η2)/γ2. The factor 1 + η2 arises because the
particle has mass m in a strong field. For an electron colliding head-on with a
circularly polarized plane wave of frequency ω and strength η >∼ 1, the threshold
condition is

γmin =
(

mc2

h̄ω

) √
45π

22α
≈ 107 ⇒ 5 TeV for h̄ω = 1 eV,

noting that Beff/Bcrit = ηh̄ω/mc2.
The vacuum Čerenkov effect would appear as a correction to the nonlinear

Compton scattering of the electron in such a strong field. A more complete analysis
is needed to clarify its rôle among the higher-order effects of nonlinear quantum
electrodynamics. When present, the Čerenkov radiation should be readily identifi-
able by its characteristic angular distribution. In addition, we anticipate that near
the Čerenkov threshold there will be striking interference effects, such as those re-
cently demonstrated between Čerenkov and synchrotron radiation for electrons in
a polarizable medium with a weak applied magnetic field.80

Even when the strong wave field is probed by a high-energy photon, ω, there
should be Čerenkov-like effects. The photon, and its surrounding cloud of vac-
uum polarization, propagates at velocity c/n, where n(ω) is the index as given
above. If parameter χ >∼ 1 for the high-energy photon in the strong wave field, the
high-energy photon would have velocity greater than the phase velocity of lower-
frequency photons, and its surrounding polarization pulse should be a source of
Čerenkov radiation. This would be a correction to the already difficult light-by-
light scattering experiment! For a 50-GeV photon moving opposite to an optical
wave, the condition χ ∼ 1 requires wave-field strength E ∼ 4× 1012 V/cm.

Čerenkov-like radiation has been observed for optical photons in a dielectric

medium.81,82

2-7. Unruh Radiation.

In this section we discuss a speculative effect which first aroused the proponents’
interest in nonlinear electrodynamics. This example may serve to indicate the
possibilities for phenomena beyond the more standard features to be reviewed in
the preceding sections.

An appropriate point of departure is the work of Hawking83 in which he asso-
ciates a temperature with a black hole:

T =
h̄g

2πck
.
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Here g is the acceleration due to gravity measured by an observer at rest with
respect to the black hole, and k is Boltzmann’s constant. The significance of this
temperature is that the observer will find that (s)he is immersed in a bath of black-
body radiation of characteristic temperature T . This is in some way due to the
effect of the strong gravitational field on the ordinarily unobservable zero-point
energy structure of the vacuum.

Contemporaneous with the work of Hawking several people considered quantum
field theory according to accelerated observers. By the equivalence principle we
might expect accelerated observers to experience much the same thermal bath as
Hawking’s observer at rest near a black hole. The efforts of Fulling,84 Davies,85 and
Unruh86 indicate that this may well be so. If a is the acceleration as measured in the
instantaneous rest frame of an observer, then (s)he is surrounded by an apparent
bath of radiation of temperature

T =
h̄a

2πck
.

Additional discussions of this claim are given by Sciama,87 Sciama, Candelas and
Deutsch,88 and by Birrell and Davies.89 ‘Elementary’ discussions are given by
Boyer,90 and by Donoghue and Holstein.91

Of experimental interest is the case when the observer is an electron. Then
the electron can scatter off the bath of radiation producing photons which can be
detected by inertial observers in the laboratory. This new form of radiation, which
we will call Unruh radiation, is to be distinguished from the ordinary radiation
of an accelerated electron. In particular, the intensity of radiation in the thermal
bath varies as T 4. Hence we expect the intensity of the Unruh radiation to vary as
T 4 ∼ a4. This result contrasts with the a2 dependence of the intensity of Larmor
radiation.

We illustrate this further with a semiclassical argument. The power of the
Unruh radiation is given by

dUUnruh

dt
= energy flux of thermal radiation× scattering cross section.

For the scattering cross section we take

σThomson =
8π

3
r2
o

where ro is the classical electron radius. The energy density of thermal radiation is
given by the usual Planck expression :

dU

dν
=

8π

c3

hν3

ehν/kT − 1
,
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where ν is the frequency. The flux of the isotropic radiation on the electron is just
c times the energy density. Note that these relations hold in the instantaneous rest
frame of the electron. Then

dUUnruh

dtdν
=

8π

c2

hν3

ehν/kT − 1
8π

3
r2
o.

On integrating over ν we find

dUUnruh

dt
=

8π3h̄r2
o

45c2

(
kT

h̄

)4

=
h̄r2

oa4

90πc6
,

using the Hawking-Davies relation kT = h̄a/2πc.

A variation of the preceding argument has been given by Gerlach.92 Again

the key idea, taken as an assumption, is that an accelerated observer can have a

non-trivial interaction with the vacuum fluctuations of the electromagnetic field.

We suppose that these fluctuations, ∆E, lead to an additional acceleration of

the observer, which for an electron yields 〈∆a2〉 = e2〈∆E2〉/m2. The apparent

strength of the vacuum fluctuations depends on the acceleration of the electron,

Planck’s constant, and the speed of light, but not the external electric field. By

dimensional arguments, 〈∆E2〉 ∼ h̄a4/c7. The Unruh radiation rate can now be

estimated from the Larmor formula by inserting the fluctuation acceleration:

dUUnruh

dt
=

2

3

e2〈∆a2〉
c3

∼ h̄r2
oa4

c6
.

A numerical comparison with Larmor radiation is instructive:

dUUnruh

dt
∼ 4.1× 10−118a4 (in c.g.s. units)

dULarmor

dt
∼ 5.7× 10−51a2.

The two radiation effects are comparable for a ∼ 3×1033 cm/sec2 ∼ 3×1030g, where
g is the acceleration due to gravity at the surface of the earth. If this acceleration
is to be provided by an electric field we then need

E ∼ 2× 1018 volts/cm.

This is about two orders of magnitude larger than the ‘critical’ field m2c3/eh̄ intro-
duced in section 1. The consequence is that the Unruh radiation effect will manifest
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itself only in the context of the other nonlinear electrodynamic phenomena dis-
cussed in the preceding sections. Untangling the various features of radiation when
E > 1018 volts/cm will be a formidable challenge. For example, the field-strength
required for significant Unruh radiation is similar to that for vacuum Čerenkov
radiation. In addition, Unruh radiation will include e+e− pairs as well as photons.

Note that Elab need not be ∼ 3× 1018 volts/cm if a relativistic electron probes
the field. For a 50-GeV electron γ ∼ 105 so that Elab ∼ 3×1012 volts/cm will suffice.
This is only about 30 times stronger than the electric field of the second-round laser
discussed insection 2-4a.

If we divide the expression for the rate of Unruh radiation by the incident
photon energy flux we obtain the cross section:

σUnruh ∼ α σThomson

(
E

m2/e

)2

.

This might correspond to the Feynman diagram sketched below, in which a virtual
electron-positron pair created in the strong laser field (rather than in the electron’s
own field or that of another charge) emits a photon which scatters off the electron.
Similar diagrams appear in discussions of vacuum polarization effects near nuclei,
where the coupling, ×, to the external potential leads to the Lamb shift at low
energies, while for energies >∼ m, the coupling is dominated by a single virtual
photon tied to the nucleus. In the case of Unruh radiation, energies ∼ m are
achieved via the coupling of the virtual pair to large numbers of photons in the
strong background field, which leads to new phenomena in the semiclassical limit.

The semiclassical analysis presented here bears some relation to the method

of virtual quanta.46 In the latter, an electrostatic field of limited extent appears

as a pulse of radiation to a moving observer. That pulse is then resolved into its

fourier components–the virtual photons. For the Hawking-Unruh effect, it may

be argued that the vacuum fluctuations of the eletromagnetic field, ordinarily

unobservable, take on the character of a thermal spectrum according to an ac-

celerated observer. Of course the full justification of this point of view should be
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agreement with the results of a complete QED analysis, presently unavailable.

A step in this direction is the dissertation of Myhrvold,93 but the form of his

argument does not shed immediate light on experimental considerations. See

also an interesting paper by Ritus.94

Bell and Leinaas95 have suggested that the inability of synchrotron radi-

ation to fully polarize a circulating electron beam96 is due to the thermalizing

influence of the Hawking-Unruh radiation bath seen by an accelerating electron.

Salam and Strathdee,97 Barshay and Troost,98 and Hosoya99 have considered

the possible relevance of the Hawking-Unruh temperature to thermodynamic

models of the strong interaction.

2-8. Photoproduction of W Bosons.

In this section we consider the possibility of studying the reaction

γe → Wν

by creating a backscattered photon beam at the SLC intersect.
When sufficient energy becomes available, W bosons can be produced in large

quantities at e+e− colliders via the reaction

e+e− → W+W−.

Apart from the study of the decay of the W boson, there is intrinsic interest in this
reaction as the first test of the couplings among the gauge bosons themselves, at
the γWW and Z0WW vertices. Of particular interest is the γWW coupling, which
depends on the magnetic moment of the W , predicted to be e/MW in the standard
model.100 This is often written

µW =
e

2MW
(1 + κ),

where κ is called the anomalous magnetic moment of the W . The standard model
prediction is then κ = 1. The total cross section for e+e− → WW turns out to be
quite sensitve to the value of κ, leading to an important experimental test of the
standard model.101,102

The coupling of photons to massive vector mesons was first considered by

Feynman,103 who tacitly assumed κ = 0. Lee and Yang104 and Lee105 noted that

a necessary (but not sufficient) condition for a renormalizable theory of massive
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vector mesons is that the anomalous magnetic moment, κ, be 1. Bardeen et al.100

confirmed this to be the case in the Weinberg-Salam model. A brief argument

is that the photon is a component of the W 0 member of the weak-isospin triplet

(W+, W 0, W−), so the requirement of weak-isospin symmetry at the γWW

vertex adds a piece to the vertex factor, which corresponds to κ = 1.

The magnetic structure of the W boson can be probed at lower laboratory en-
ergies in the reaction γe → Wν, as noted by Mikaelian.14,15 This proceeds via the
two diagrams shown in Figure 10. The second diagram, which does not involve a
γWW vertex, will not contribute if the incident photon has right-hand circular po-
larization. (Angular momentum cannot be conserved, noting that only left-handed
electrons interact weakly.) The cross section for this reaction is not large, varying
as

σγReL→Wν ∼ 94
(
1−M2

W /s
)2

pb

near threshold. Figure 11 sketches the energy dependence of the cross section as
calculated in detail.16

Near threshold the cross section varies as 8
√

2 αGF p2
ν/s. One power of

pν comes from phase space, and the other from the square of the V − A ma-

trix element. At high energies the cross section approaches the constant value

2
√

2 αGF = 94 pb.

If a backscattered photon beam is obtained from the collision of 50-GeV elec-
trons with a 0.308-µm laser beam, the peak photon energy is 37 GeV (Figure 2).
When this beam is in collision with another 50-GeV electron (or positron) beam,√

s = 87 GeV, at which the total cross section is 0.5 pb. If 60-GeV electron beams
were available, we could have

√
s = 107 GeV, for which the cross section is 7.5 pb.

A laser beam of sufficient intensity and duration to scatter 100% of the electrons
would intercept the beam a few millimeters from the nominal e+e− interaction
point. There would be no need to deflect an unscattered remnant of the original
electron beam. The effective eγ luminosity (for W production) might be 5% of the
e+e− luminosity, say 5 × 1029 cm−2s−1. A major run of 100 days with 60-GeV
polarized electrons would then yield about 30 events. An earlier discussion of such
possiblities has been given by Akerlof.106

The angular distribution of the W boson is quite sensitive to its anomalous
magnetic moment, κ.14 This is sketched in Figure 12, for center-of-mass energies
corresponding to 50 and 60-GeV electron beams. A very strong forward-backward
asymmetry is predicted in the standard model compared to the case of no anomalous
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Figure 10. The two Feynman diagrams which contribute to the reaction γe → Wν.

Diagram b) can be suppressed by the use of right-hand circularly polarized photons.

Figure 11. The dependence on center-of-mass energy of the total cross section for the

reaction γReL → Wν.16
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Figure 12. The angular distribution of the W boson produced in the reaction γe →
Wν.14 Angle θ is measured between the photon and the W boson in the center-of-mass

frame. The center-of-mass energies correspond to those obtained from a) 50, and b) 60-

GeV electron beams, one of which is backscattered off a laser beam of 0.308 µm wavelength.

magnetic moment, which should be testable with a small number of events.
Technically it would be easier to arrange for the reaction γe → Wν via virtual

photons in the reaction e+e− → eWν.14,16,107−111 A detailed study is required to
determine whether the luminosity is greater for real or virtual photons. However,
unless the spectator electron is detected, no asymmetry in the angular distribution
would be observed for the e+e− reaction, and the dependence on the size of the
anomalous moment would be much less clear. The spectator electron would emerge
with about 13 GeV, at an angle ∼ 10−5 rad to the electron beam. Further study is
needed to decide whether this electron could be identified against the background
of off-beam-energy electrons due to beamstrahlung.
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3. The Nonlinear Thomson Scattering Experiment.

In this section we present details of the proposed experiment to study the
nonlinear Compton effect. A laser beam of 1.05-µm wavelength and peak field
strength parameter η = eE/mωc = 0.4 will be brought into collision with 25-MeV
electrons in the apparatus sketched in Figure 13. In the rest frame of the incident
electron, the laser photons have energy about 115 eV, so the electron recoil will
be negligible, and the process to be studied is nonlinear Thomson scattering rather
than Compton scattering. The theoretical understanding of both processes has been
reviewed in sections 2-2 and 2-3.

In practice it may be preferable to use a laser of 10-µm wavelength, which is
needed for other aspects of the experimental program at the Brookhaven Accelerator
Test Facility. Section 3 of the present proposal records how the option to use a 1-µm
wavelength is also very viable.

The 25-MeV electron beam will be produced by the Accelerator Test Facility
(ATF), whose rather small emittance, 3(π) × 10−10 rad-m (at 25 MeV), permits
the electron beam to be focused to a spot of radius 1 µm with a depth of focus
β? = 1.6 mm.† The laser beam is brought into head-on collision with the electrons
by an off-axis parabolic mirror with f/d = 3. A hole of 300-µm diameter in the
mirror lets the electron beam and the backscattered photons pass through. The
unscattered laser beam will be collected in a second mirror and reflected out of
the electrons’ path into a beam-flux monitor. The electrons are deflected by 23◦

in a dipole magnet 0.5 m downstream of the collision point, and their momentum
spectrum recorded by the CCD array. Photons which are backscattered to within 10
mrad of the electron-beam direction are analyzed in an x-ray spectrometer located
1 m downstream of the collision point.

For an estimate of the scattering rate, we suppose both the electron bunch and
the laser pulse have FWHM of 2 ps. The laser beam has total energy of 0.1 Joule.
The electron beam is taken to have a Gaussian radial profile, while the laser beam
has the spatial dependence of a (diffraction-limited) Gaussian beam modulated by
a sech2 (soliton) pulse shape:112

Ilaser(r, z, t) =
Imax

1 + z2/zo
2

exp
(
− r2

2σ2(z)

)
sech2

(
t− z/c

τ

)
.

† The depth of focus is the distance from the focal plane at which the spot size has

grown by a factor of 2 in area. In accelerator argot, this is called the β?, while in

laser lingo it is called the confocal parameter or, sometimes, the Rayleigh range.
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Figure 13. Layout of the proposed experiment.

Figure 14. The scattering rate for a single 25-Mev electron in head-on collision with

a laser beam of wavelength 1.05 µm. The laser pulse has 0.1-Joule energy and 2-ps pulse

length, and is focused in an f3 mirror to achieve peak field-intensity parameter η = 0.4

The total scattering rate is 0.4 per electron. The dashed curve is the rate for Compton

scattering if nonlinear effects are ignored.
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In this, the variance of the spot size, σ(z), grows as σo

√
1 + z2/zo

2, where zo is
the confocal parameter. For a diffraction-limited beam optimally filling the mirror
aperture, σo = 0.43λf/d, and zo = 2.28λ(f/d)2. In the present case, σo = 1.4 µm,
and zo = 22 µm. For a laser pulse of 2 ps FWHM, the parameter τ is 1.14 ps.
The above variation of electron and photon flux over the interaction volume is then
combined with the cross section as stated in section 2-3 to give the scattering rate.

Figure 14 summarizes the spectrum of scattered photons. The total scattering
rate is 0.4 per beam electron. Thus the probability that an electron scatters twice
while crossing the laser beam is 0.16. This places an important constraint on the
x-ray detector, which must be able to tell a double scatter at the first harmonic
from the rarer case of a single scatter at the second harmonic. The detector will not
be able to resolve multiple photons in time during the 2-ps pulse, but must deflect
x-rays of different energies by different angles, so they can be separately counted.
This is provided by a detector based on Bragg scattering off a graphite crystal at
near-grazing incidence. Such devices have limited utility for x-ray energies above
30 keV. To be sensitive up to third harmonic scattering we desire the fundamental
to be at about 10 keV, which leads to the choice of a 25-MeV electron beam, when
using a laser wavelength of 1.05 µm.

In the following subsections we discuss briefly the electron beam (3-1), the laser
focus (3-2), the laser system itself is discussed in section 4), the spectrometer to
monitor the electron beam (3-3), the x-ray spectrometer (3-4), backgrounds (3-5),
and the scenario for data collection (3-6). The possibility of coherent scattering of
laser light off a bunched electron beam is considered in section 3-7, but will not be
practical for the proposed experimental configuration.

3-1. The Electron Beam.

Some basic parameters of the proposed Accelerator Test Facility are summa-
rized in Table 1.113 The original proposal called for a single accelerating section
powered by a 36-MW klystron. It now appears that the available klystron will be
rated to closer to 30 MW, so the nominal beam energy would be closer to 40 MeV.
If a second accelerator section and klystron are added, 80-MeV beams would also
be available.

The geometric emittance of 1.5 × 10−10 rad-m holds at 50 MeV, and varies
linearly with beam energy. For the present experiment we wish a 25-MeV beam,
so the geometric emittance would be 3 × 10−10 rad-m. These very low emittances
are achieved with a very small illumination (20-µm radius) at the photocathode of
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Table 1. Accelerator Test Facility Specifications

ATF Present
Parameter Proposal Proposal

Photocathode gun voltage 400 kV 400 kV
Photocathode gun pulse length (FWHM) 6 ps 2 ps
Photocathode laser wavelength 0.532 µm 0.525 µm
Cathode radius 20 µm 20 µm
Transverse energy at cathode ∼ 0.1 eV ∼ 0.1 eV
Invariant emittance out of gun εn 1.35× 10−8 mc-m 1.35× 10−8 mc-m
Cathode current density 200 A/cm2 200 A/cm2

Electrons per bunch ∼ 105 ∼ 105

Beam energy 50 MeV 25 MeV
Klystron peak power 36 MW 9 MW
Klystron repetition rate ≤ 180 pps ≤ 180pps
Electron energy spread ∆E/E (FWHM) ≤ 1% ∼ 0.1%
Geometric transverse emittance 1.5× 10−10 rad-m 3× 10−10 rad-m

at experiment

Figure 15. Electron-beam energy, E = γmc2, as a function of the rf phase, for 50-MeV

nominal beam energy.
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the electron gun, and with a very small transverse energy (0.1 eV) of the electrons
ejected from the cesium-antimony photocathode.114

Figure 15 illustrates how the accelerated electron energy, E = γmc2, varies
with the phase of the electron relative to the 2856-MHz accelerating field. At this
frequency 1◦ of phase equals 0.97 ps in time. The stated electron-energy spread of
∆E/E = 1% derives from an assumption of a 6-ps bunch length with ±5 ps jitter
with respect to an rf cycle. For the present experiment we plan to use a narrower
electron bunch, 2-ps long, synchronized to the rf to 1-ps accuracy, as described in
section 4. Assuming the electrons’ paths through the gun are isochronous to the
needed accuracy, an energy spread of ∆E/E = 0.1% should be achieved.

The electron beam is brought from the linac to the experiment in a beam trans-
port which permits a final focus of 1-µm radius. The corresponding beam divergence
is 3×10−4 radians, and the depth of focus is β? = 1.6 mm. Emittance-defining col-
limators along the beam transport will permit cleanup of tails and further reduction
of the emittance, if desired.

If a momentum-analysis section is included in the beam transport, the beam-
energy spread could be collimated to 0.01%, with a loss in beam intensity. Such a
narrow energy spread could be useful in conjunction with the excellent resolution
of the analysis spectrometer discussed in section 3-3.

The linac structure and any collimators in the beam transport are a likely a
source of x-rays, which will be the principal source of background for the experiment.
This background would be greatly reduced by a bend in the beamline, as would be
provided by a momentum-analysis section.

3-2. The Interaction Region.

The laser beam is brought to a focus in a head-on collision at the final fo-
cus of the electron beam. The power level of the laser beam is 100 GW, which
requires the use of reflection optics. An off-axis parabolic mirror of f/d = 3 focal
length/aperture will focus the laser beam. The mirror radius will be 1 cm, sufficient
to intercept the growth of the laser beam between the laser and the mirror. Hence
the mirror will be located 6 cm from the e-laser interaction point. At this distance
the electron beam radius is 18 µm r.m.s. The electron beam will pass through a
300-µm-diameter hole in the mirror, as sketched in Figure 13.

The unscattered laser beam will be collected in a second parabolic mirror, and
brought to a beam-flux monitor. To aid in alignment of the mirrors with respect to
the electron beam a quadrant detector will be located on the upstream face of the
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second mirror. The two mirrors will be mounted together on an x-y-z translation
stage capable of 0.1-µm steps, such as manufactured by Klinger.

The interaction region will be maintained at a vacuum of 10−5-10−6 torr. The
drive motors for the translation stage could be located inside the vacuum chamber
while maintaining a vacuum of 10−6 torr. The vacuum chamber will be constructed
to be interchangeable with that for the laser-grating experiments at the Accelerator
Test Facility.

3-3. The Electron Spectrometer.

After the electron beam passes the interaction point, it must be deflected to
one side to allow the scattered photons to be analyzed. The magnet required for this
also serves as the dispersive element in a precision electron spectrometer, sketched in
Figure 13. The dipole magnet has a field of 880 Gauss, a field integral of 0.033 Tesla-
m (for the 25-MeV beam), and deflects the electrons by 23◦. The electron beam
then impinges on a CCD array with 385 × 580 pixels each 25-µm square, located 1
m downstream of the deflection magnet. The spectrometer will be capable of 1-keV
resolution for the 25-MeV electrons.

The spectrometer will serve as the primary electron-beam-flux monitor, mea-
suring the beam intensity as a function of momentum. An additional rôle is possible
if the momentum-analysis segment of the electron beam line is constructed. In that
case the beam could be stopped down to a 0.01% momentum bite, corresponding to
an energy width of 2.5 keV. Then electrons which scatter a laser photon to produce
an x-ray of 10 keV or more could be distinguished from the unscattered electrons
in the electron spectrometer.

The electron spectrometer will be in a different configuration from that used in
the laser-grating experiment,4 with the magnet now immediately after the interac-
tion region to improve the acceptance of the x-ray spectrometer. The quadrupole
triplet, which provides a line focus on the CCD array for the laser-grating ex-
periment, will not be needed. Only about 50 columns of the CCD array will be
populated with electrons in the present experiment. If the readout is restricted to
these columns the readout dead-time would be reduced by a factor of 8, permitting
data collection at about 10 pps.

3-4. The X-Ray Spectrometer.

As shown in Figure 14, laser photons that backscatter off the electron beam are
Doppler-shifted to x-ray energies. During a 2-ps pulse of 105 electrons we expect
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4×104 x-rays to be produced. To analyze this we need an x-ray spectrometer which
disperses x-rays of different energies to different positions. Then a total absorption
detector which counts the number of x-rays at a fixed position will determine the
x-ray flux within a well-defined energy bin.

The nonlinear mass-shift effect (at the proposed laser intensity) reduces the
endpoint of the x-ray spectrum by some 15% compared to weak-field Compton
scattering. (See Figure 14.) Thus bins of 1% in x-ray energy would be quite suitable
to analyze the effect. This is 10–100 times broader than the bandwidth of a typical
x-ray monochromator which uses a perfect crystal. However, our requirements are
well matched to the capability of a spectrometer based on a flat pyrolitic graphite
crystal,115 in which there is a spread (or mosaic) of 0.8◦ in the orientations of the
planes of the microcrystals.

The simultaneous functioning of the graphite crystal as a dispersive and focus-
ing element is sketched in Figures 16 and 17. We are fortunate in having a very
good approximation to a point source at the electron-photon interaction region.
This is shown at distance L from the center of the crystal, which is oriented at
the Bragg angle θB for x-rays of energy E. An x-ray of energy E traveling along
the central ray will penetrate into the crystal until it meets a microcrystal with its
crystal planes at angle θB to the x-ray. The x-ray then scatters by angle 2θB with
about 40% efficiency.

Now consider an x-ray also of energy E, but which makes angle ∆/2 to the
central ray, as shown in Figure 16. If the graphite were in the form of a single
perfect crystal, this x-ray would not strike the crystal planes at the Bragg angle θB ,
and would not be scattered. But if ∆ is less than or equal to the mosaic spread of
the graphite crystal then the x-ray does scatter off some microcrystal, again with
scattering angle 2θB . The paths of the two scattered x-rays cross approximately at
distance L from the crystal. That is, the variable orientation of the microcrystals
within the flat macroscrystal duplicates the focusing effect (in the scattering plane
only) of a bent perfect crystal.

Next consider the case of x-rays with energy E + δE, as shown in Figure 17.
The corresponding Bragg angle is now θB − δθB . Such an x-ray traveling along the
central ray at angle θB to the crystal could not scatter off a perfect crystal. But
if δθB < ∆/2, the x-ray will find some microsrystal off which it can scatter, with
scattering angle 2(θB − δθB). Similarly, x-rays of energy E + δE which make small
angles to the central ray also scatter off some microsrystal, and are brought to a
focus at distance L from the crystal. Because of the dependence of the Bragg angle
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Figure 16. The scattering of monoenergetic x-rays by a graphite mosaic crystal. The

scattering angle is always twice the Bragg angle θB . The mosaic spread, ∆, of orientations

of the microcrystals results in a focusing geometry with angular acceptance ∆.

Figure 17. X-rays of energy E + δE are focused by Bragg reflection off a graphite

mosaic crystal to a different point than those of energy E.
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on x-ray energy, the scattered x-rays disperse along a focal plane as desired.
For numerical computation it is useful to note the Bragg relation for graphite:

sin θB =
1.85

E[keV]
.

This follows from the usual form of Bragg’s law,

sin θB =
λ

2d
,

the useful conversion formula

λ[Å] =
12.38

E[keV]
,

and the fact that the crystal-plane separation in graphite is 2d = 6.71 Å. The
dispersive effect can be calculated by taking the derivative of the Bragg law:

cot θB δθB =
δE

E
,

which is well aproximated in graphite for E >∼ 10 keV by

δθB =
1.85

E[keV]
δE

E
.

For example, with E = 10 keV, the Bragg angle is 186 mrad, so the scattering
angle is 372 mrad. For a 1% bite δE/E about 10 keV, the angular bite is δθB = 1.86
mrad. If the distance L from the source to the crystal, and hence from crystal to
the detector, is 1 m, then a slit of 3.7 mm at the face of the detector would define
the 1% energy acceptance.

The angular acceptance (in the scattering plane) of the spectrometer is in
prinicple limited only by the mosaic spread angle ∆ = 0.8◦ = 14 mrad. To take full
advantage of this range the crystal must have length

l =
L ·∆
sin θB

=
L ·∆ · E[keV]

1.85
.

We wish to analyze the third harmonic scattering, for which E ∼ 30 keV, so this
requires crystal length l ∼ 23 cm.

The flat-crystal geometry of the spectrometer does not provide any focusing
transverse to the scattering plane. With source and detector equidistant from the
crystal, the transverse size of the image is twice that of the intercept of the x-rays
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Figure 18. The relation between x-ray energy and production angle for the first three

harmonics in nonlinear Thomson scattering of 25-MeV electrons and a 1.05-µm laser beam.

The bands are due to the intensity dependence of the nonlinear effects.

at the crystal. With a Ge(Li) detector of 50-mm diameter, the useful width of the
graphite crystal is then 25 mm. Hence there will be acceptance for x-rays which
make angle θ of up to 12.5 mrad with respect to the direction of the electron beam.
As just noted, there cannot be full angular acceptance for angles θ > ∆/2 = 7
mrad.

There is an additional effect on the transverse size of the image on the detector.
Due to the mosaic spread, ∆, of the microcrystals, the x-rays of a given energy
which scatter from a given point on the graphite crystal have a spread of angles,
∆, in azimuth. The x-rays scatter at polar angle 2θ and describe an arc of length
l = L · ∆ · sin θ over the face of the detector. For L = 1 m, ∆ = 14 mrad, and
θB = .186 corresponding to 10 keV, we have arc length l = 5 mm.

In summary, the configuration of the x-ray spectrometer is simple and classic.
The graphite crystal is mounted on a rotating stage located 1 m from the e-laser
interaction point, along the line of the electron beam (see Figure 13). X-rays of a
given energy are brought to a focus 1 m from the crystal, after scattering at twice
the Bragg angle. A slit defines the width of the energy bin, and the number of
x-rays in that bin is determined by measurement of the sum of their energies in a
Ge(Li) solid state detector, such as Ortec Model GLP-50/10.
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Figure 18 shows the relation between x-ray energy and angle θ relative to the
direction of the electron beam for the first three harmonics in nonlinear Thomson
scattering. Because the electron beam will pass through regions of various laser-
beam intensity, there is a range of x-ray energies produced at any fixed angle. The
bands in Figure 18 show this range corresponding to field-strength parameter η

between 0 and 0.4. The scattering rate will be much higher on the η = 0.4 edge of
the bands. With a graphite crystal of mosaic spread angle ∆ = 14 mrad, there will
be full collection efficiency out to production angle 7 mrad. The collection efficiency
at larger angles will be determined experimentally by a calibration run with reduced
laser intensity, so that η ∼ 0 and we may utilize the well-known spectrum of x-rays
from linear Thomson scattering.

3-5. Backgrounds.

Background x-rays could arise from synchrotron radiation in the dump mag-
net (or beam-momentum-selection magnets if present), from bremsstrahlung of the
electron beam off residual gas in the vacuum chamber, or from bremsstrahlung off
the emittance-defining collimators in the beam line. The latter effect is likely to be
the most serious, but is hard to estimate quantitatively. Considerable care will be
required to install the necessary shielding against this source. We now show that
the other two sources may be calculated to be negligible.

Concerning synchrotron radiation, recall that the characteristic frequency ra-
diated by an electron of energy E = γmc2 in a magnetic field B is

ω ∼ γ3ωo = γ2 eB

mc
= 511γ2 B

Bcr
[keV],

where Bcr = m2c3/eh̄ = 4.41 × 1013 Gauss. Thus for E = 25 MeV and B = 880
Gauss we find ω = 0.025 eV, which is hardly in the x-ray range. Furthermore, the
total energy radiated in one revolution is

∆E

E
=

4π

3
αγ2 B

Bcr
.

For a 23◦ bend and the above parameters for E and B, we have ∆E = 0.0025 eV,
or 0.1 radiated photon per electron. Clearly there can be no significant tail into the
keV region.

Concerning scattering off residual gas, suppose we have as much as 10-m path
in a vacuum of 10−5 torr. Assuming the residual gas to be air, the radiation length
at this pressure is then 2×1010 m. For 105 electrons of 25-MeV energy traversing 10
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m of this gas, the total radiated energy is about 5 keV. Hence we might expect one
x-ray per pulse. A vacuum of 10−6 torr would render the residual gas background
completely negligible.

3-6. Data Collection.

Both the readout of the CCD array of the electron spectrometer, and thermal
limitations of the final laser amplifier will likely limit the repetition rate of the
experiment to less than 10 pulses per second. For the purpose of rate estimates we
assume only one pulse per second.

The expected rate of x-ray production per electron is presented in Figure 14,
for laser operation at design intensity. As noted in section 3-1, up to 105 electrons
per pulse can be provided by the Accelerator Test Facility. With a total scattering
probablility of 0.4 per electron, some 4 × 104 x-rays will be produced each pulse.
These are largely due to first harmonic scattering, which populates the 0–10 keV
region of the x-ray spectrum. In a 1% energy bin (100 ev) we then expect about
400 x-rays per pulse. Statistical accuracy of 2% would be obtained with only 10
pulses.

The graphite-mosaic-crystal spectrometer will collect x-rays only within about
10 mrad of the electron-beam direction. Refering to Figure 18, we see that we will
be able to explore readily only the upper 20% of the energy range of each harmonic.
That is, some 20 spectrometer settings of 1% bandwidth would constitute a data
run at each harmonic.

According to Figure 14, the data rate at the third harmonic will be about
1/1000 that at the first harmonic. Good statistical accuracy could then be obtained
in one hour of running, 3600 pulses. A scan of 20 spectrometer settings would take
one day.

In section 3-4 we mentioned the need to calibrate the x-ray spectrometer on the
ordinary Thomson-scattering spectrum obtained with a low-intensity laser beam.
To avoid any nonlinear mass-shift effect on the spectrum to the 1% level, the laser
field-intensity parameter η2 should be less than 0.001. (Recall from section 2-3 that
the position of the ‘Compton edge’ of the energy spectrum is multiplied by 1/(1+η2)
in a strong field.) As the laser photon flux is also proportional to η2, the scattering
rate would then be 160 times smaller than that at the nominal operating condition
of η = 0.4. Thus in the calibration run, which can only explore the first harmonic
scattering, there will be about 3 x-rays per pulse in a 1% energy bin. Calibration
data should be collected for about one hour at each spectrometer setting, for a total

53



of one day’s running. To calibrate the spectrometer at energies above 10 keV, the
electron beam energy will be raised. For example, 20-keV x-rays will be studied
with 35-MeV electrons, and 30-keV x-rays with 43-MeV electrons, noting that the
scattered x-ray energy varies as the square of the electron-beam energy. In each
case the calibration should take about one day.

Thus once the apparatus is fully working, the entire data collection could be
performed in about 24 hours, with final calibration occupying several days. We
feel this is consistent with the nature of a demonstration experiment, in which the
greatest amount of time will be spent in perfecting the novel technologies required.

3-7. The Possiblity of Coherent Scattering.

In this section we examine the suggestion that it might be possible to obtain an
enhancement of the x-ray production rate by the coherent interaction of a bunched
electron beam with the laser beam.116,117 We find it unlikely that any coherence
effect for x-rays can be arranged in the proposed apparatus. We do not consider
the possibility of stimulated Compton scattering,118 which would require as the
seed x-ray intensities (due to unstimulated Compton scattering) far beyond those
achievable.

Our analysis is based on rather simple arguments. Following Csonka116, we
first consider the case of coherent effects involving only a single bunch of electrons.
Then phase differences between radiation from different electrons in the bunch will
average to zero unless the bunch size is much less than a wavelength of the light
emitted. This test is to be applied not in the laboratory frame, but in the rest
frame of the electron bunch. In the case of a 25-MeV electron beam, the boost
to the electrons’ rest frame is γ = 50. In this frame the frequency of the laser
beam, which meets the electron beam head-on, is 2γ times the lab frequency, and
hence the wavelength is 1/2γ smaller. With a laser of laboratory wavelength 1 µm,
the electron bunch length must be less than 0.01 µm in the electrons’ rest frame.
However, the laboratory length of the electron bunch is 1/γ times that in the rest
frame, due to the Lorentz contraction. Hence the laboratory bunch length must be
less than 0.0002 µm. If the laser light has a 10-µm wavlength, the electron bunch
must be shorter than 0.002 µm for coherent scattering.

Conceivably a modulation could be induced on the electron beam such that
the bunch length is only 1% of the wavelength of the modulation. Even for the case
of a 10-µm laser, the modulation length would need to be less than 0.2 µm. Such
a modulation could only be caused by an electromagnetic wave of that wavelength,
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which is in the ultraviolet. Hence laser technology is unsuitable to provide the
needed bunching. One might imagine the use of a beam from a free-electron laser,
but this is a very problematic scenario.

De Martini117 has considered the case of coherence between bunches, rather
than within a single bunch, of an electron beam in head-on collision with a laser
beam. In this view coherence is possible when the backscattered light has a wave-
length which is a submultiple of the bunch spacing, evaluated in the electrons’ rest
frame of course. More precisely, we need 2λ?

b = nλ?, thinking of the scattering in
analogy with Bragg’s law, where λ?

b is the spacing of the electron bunches and λ?

is the wavelength of the laser light in the rest frame. Now such a scattering will
be probable only if the electron density distribution has a significant component at
the nth harmonic of the bunch spacing. In turn this requires that the bunch length
be less than 1/n of the bunch spacing. Altogether we infer that the length of an
individual bunch must be less than a wavelength of the laser light in the electrons’
rest frame, exactly as argued above.

We conclude that there is no simple technology to induce the very fine bunching
of the electron beam needed to produce coherent scattering off the laser beam. On
the other hand, the incoherent scattering rate achievable with the proposed laser
system is very high, and likely is the simplest way to obtain large x-ray fluxes on a
picosecond time scale.
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4. The Proposed Laser System.

4-1. Overview.

The proposed laser system for the 25-MeV experiment at BNL is an upgrade of
the front-end of the laser system being constructed at Los Alamos for the Accelerator
Test Facility. The proposed laser could also serve as the front end in the higher
performance system needed for the 50-GeV experiments.

The laser system for the 25-MeV experiment will produce a few pulses per
second of 0.1-joule energy and 2-picoseconds length at 1.05-µm wavelength. When
focused in an f3 mirror a peak intensity of 1018 watts/cm2 can be obtained. The
laser system is based on a design of the Mourou group at the Laboratory for Laser
Energetics at the U. of Rochester.119,120 The oscillator will be a Quantronix Model
416, or Spectra Physics Series 3000, mode-locked laser with a Nd:YLF rod, which
produces 40-ps-wide pulses. After transmission through a long optical fiber the
pulse width is stretched to 300 ps, and a frequency ‘chirp’ imposed by nonlinear
interaction in the fiber. A few pulses per second are injected into a Nd:phosphate-
glass amplifier, which could be constructed by Quantel Corp. The amplified output
pulse is then compressed with a grating pair to 1-ps width. Figures 19 and 20,
from ref. 120, sketch the arrangement of this system. The mode-locked laser will
operate at 79.33 MHz, synchronized with the sixth subharmonic of the klystron-
driver frequency. A small fraction of the final pulse will be sent to the photocathode
of the linac gun, and the remainder brought into collision with the linac beam. The
upgrade to the ATF front-end laser will cost about $150K, and take one year to
implement.

For the second-round experiments it is necessary to have a laser system which
can produces intensities in excess of 1019 Watts/cm2. It is conjectured that the
Nd:glass amplifier scheme sketched above can be scaled upwards to produce pulses
of greater than 100 Joules, with duration 1 ps or less.119,120 If this is indeed proven
true we would use such an upgraded system. However, an alternate technology has
already been demonstrated which is adequate for our purposes. For this the laser
system of the 25-MeV experiment (or a copy) serves as pump for a dye-excimer
laser system which will produce a few pulses per second each of 0.25-joule energy
and of 0.25-picoseconds length. The wavelength is 308 nm, so that when focused in
an f6 lens, a peak intensity of 1020 watts/cm2 can be achieved. This will likely be
the most intense laser beam built to date (although certain existing lasers can in
principle be focused to a similar intensity). The estimated cost for the second-phase
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Figure 19. Block diagram of the 1.05-µm wavelength amplication and compression

system.120

Figure 20. Details of the Nd:glass amplifier.120
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Figure 21. Schematic diagram of the antiresonant-ring dye laser.122 The saturable ab-

sorber (DODCI) is positioned precisely opposite the 50% splitter in the antiresonant ring,

allowing colliding-pulse mode locking to occur. The dye laser is synchronously pumped by

a frequency-doubled cw mode-locked Nd:YAG (or Nd:YLF) laser.

Figure 22. An optically synchronized amplifier for femtosecond pulses.123
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Figure 23. Amplification of 308-nm pulses in a series of XeCl excimer cavities.124 The

308-nm pulses derive from the frequency-doubled output of a dye-laser system operating

at 616-nm.

laser system is an additional $300K.
The laser oscillator is a synchronously-pumped colliding-pulse mode-locked

laser121 operating at 616 nm. A portion of the output of the 1.05-µm mode-locked
laser will be frequency-doubled to serve as the pump. The output pulses of 616-
nm light will be about 0.1-ps long, and will contain about 0.1 nJoule. Figure 21
sketches the very elegant configuration of such an oscillator.122 The 616-nm pulses
are amplified to about 10 mJ in a 5-stage Nd:YLF-pumped dye-amplifier chain.
(The frequency-doubled output of the Quantel amplifier serves as the pump.) Fig-
ure 22 sketches a possible layout for the synchronously-pumped amplifier.123 The
amplified 616-nm pulses are then frequency-doubled to 308 nm, and sent through
two stages of XeCl excimer amplifiers. Figure 23 sketches such an excimer-amplifier
system (driven by a lower performance dye laser).124 In a double-pass configuration
of the final amplifier (such as Helionetics HLX-101) the pulse energy should reach
0.25 joule. The gain-bandwidth of XeCl amplifiers will limit the pulse width to be
greater than 150-200 femtoseconds.

All features of this laser system have been demonstrated by members of the
laser-physics community, with the important exception of the diffraction-limited
character of the final pulse. It is estimated that the construction of such a system
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will require 2-3 man-years of very skilled labor in addition to utilizing the excellent
resources of commercial laser firms.

4-2. Laser-Linac Synchronization.

Successful running of the experiment will require synchronization of the 2-ps
laser pulse with the 2-ps electron bunch to accuracy of about 1 ps. A similar
specification holds for the operation of the Accelerator Test Facility for its other
purposes as well. As the synchronization is a vital issue we describe how it can be
accomplished in some detail, particularly as previous discussions4 have been very
brief.

A block diagram of the synchronization scheme is given in Figure 24. Both
the laser and the linac derive their basic timing signals from a crystal reference
oscillator, running at 39.666 MHz.† The reference oscillator should have a low
aging rate and very low phase noise, such as obtainable with the double-ovenized
crystal Model CO-246-A210-VXL2 manufactured by Vectron Laboratories. The
39.666 MHz signal is amplified to drive the acouso-optic mode locker of the laser,
which emits a pulse train of frequency twice that applied to the mode locker, namely
79.333 MHz. The 39.666 MHz signal is also frequency-multiplied by 72 to yield the
2856 MHz reference for the klystron. A fast trigger selects a few pulses per second
for which the laser pulse is amplified and compressed, and for which the klystron
modulator is activated.

It is believed125 that the timing of the electron bunch as it emerges from the
linac will be accurate to 1–2 ps compared to the timing of the reference oscilla-
tor, provided that latter has 1-ps timing stability during the 2-µs rf filling time of
the linac structure. On the other hand, mode-locked lasers without special synchro-
nization exhibit 5–10-ps timing fluctuations relative to the reference oscillator.126,127

Hence an extra effort must be made to stabilize the mode locking of the laser.

A simple scheme for stabilizations has been demonstrated by Cotter126 for a
Quantronix laser. This is also sketched in Figure 24. A portion of the 79.333 MHz
pulsed output of the laser is converted to electrical pulses in a photodiode, which
are then compared with a frequency-doubled signal from the reference oscillator
in a phase detector. The latter is a double-balanced mixer, sketched in Figure

† The reference frequency could be any subharmonic of the 2856-MHz klystron fre-

quency that is convenient for the laser operation. The choice of 39.666 MHz is espe-

cially favorable if the system were desired to operate at SLAC.

60



Figure 24. Block diagram of the laser-linac synchronization scheme.
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Figure 25. a. The double balanced mixer phase detector as used by Cotter.126. b.

The phase detector of Rodwell et al.127 Note the use of the first balanced mixer as a phase

shifter.

Figure 26. Sketch of the spectrum of the pulse train of a mode-locked laser, showing

the sidebands due to amplitude modulation whose intensity is independent of the harmonic

number, and the sidebands due to phase modulation whose intensity rises as the square of

the harmonic number. After Von der Linde.128
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25a. The phase error signal is amplified and fed to the voltage-controlled phase
shifter which drives the mode locker of the laser. The phase error signal from a
typical balanced mixer is about 2 mrad per mV, while a 1-ps shift at 80 MHz
corresponds to a phase shift of only 0.5 mrad. At this small signal level effects
of amplitude modulation rather than phase modulation may be noticeable in the
mixer. The spurious effects of amplitude modulation may be suppressed by the
improved phase detector sketched in Figure 25b, as implemented by Rodwell et
al.127 Should it prove necessary to provide amplitude stabilization as well as phase
stabilization of the Nd laser, we could use a device such as the Cambridge Research
and Instrumentation LS-200, in which an electro-optic modulator is controlled by a
feedback loop to divert excess amplitude fluctuations of a polarized beam into the
other polarization.

Detailed diagnostics of the phase and amplitude modulations can be provided
following a technique of Von der Linde.128 In this the output of the monitor photo-
diode (Figure 24) is analyzed on a precision spectrum analyzer such as HP 8568B
which has a very stable reference oscillator. As sketched in Figure 26 the most
prominent feature of the spectrum is the series of near delta function peaks at the
harmonics of the laser repetition frequency. Each harmonic peak is surrounded by
sidebands at a much lower power level. The effect of amplitude modulation is to
produce sidebands whose intensity is independent of the harmonic number n, while
the intensity of the phase modulation sidebands rises as n2. Thus at, say, the 20th

harmonic the contribution due to amplitude modulation is negligible compared to
that from phase modulations, while the former can be isolated by studying the side-
bands at the fundamental. The total power in the phase-modulation sidebands is
proportional to the mean-square phase error, so the timing jitter ∆t can be found
by (

n∆t

T

)2

=
1

Pn

∫ ∞

−∞
Pside(ω)dω,

where Pn is the power in the nth harmonic and Pside is that in its nearby sidebands.
Using this method Rodwell et al.127 verify that a mode-locked Nd:YAG laser may
be synchronized to a reference oscillator to 1 ps, as inferred by Cotter126 directly
from the phase-error output of a balanced mixer.

The ultimate test of laser-linac synchronization will of course be that the elec-
tron bunch actually collides with the laser beam. The simplest evidence for this
will be detection of the backscattered x-rays, as proposed in the present experiment.
That is, the essential features of this experiment will be needed as a diagnostic of
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e-laser collisions for whatever purpose.

It may be useful to have an additional check of the synchronization which
compares the 2856-MHz klystron rf signal with the laser pulses, either before or after
amplification of the latter. This could be implemented without actual acceleration
of electrons, but otherwise would test all features of the system. A possible device
is a GaAs crystal in which 2856-MHz standing sound waves are generated via a
transducer (such as made by Brimrose Co.), in a manner similar to the operation of
the acousto-optic mode locker of the Nd laser. The intensity of the laser pulse which
scatters off the Bragg planes formed by the standing waves is then proportional to
sin2 φ where φ is the phase difference between the laser pulse and the 2856-MHz rf
wave.

4-3. Laser Diagnostics.

In addition to the diagnostics of the laser-linac synchronization just described
it will be necessary to have several other measures of the laser performance.

As a zeroeth order check of the pulse width of the Nd:YLF oscillator, the output
of the monitor photodiode (Figure 24) can be viewed on a sampling oscilloscope,
such a Tektronix mainframe 7704 with 7S11 and 7T11 plugins and an S-4 sampling
head. The rise time of the best sampling scope is only 25 ps, so the details of the
optimized pulse shape cannot be studied this way, but this is the most direct method
to diagnose serious departures from nominal performance. Full information on the
40-ps pulse width of the laser oscillator could be provided by a spectrum analyzer of
bandwidth greater than 25 GHz, such as the HP 8566B. However, it is more effective
to use the cheaper and lower bandwidth HP 8568B analyzer solely as a diagnostic of
the pulse synchronization, and study the spectral content of the pulse on a scanning
Fabry-Perot interferometer, such as the Burleigh RC-110. An independent measure
of the oscillator-pulse width will be provided by an autocorrelator, such as the
Femtochrome FR-103 or Inrad 514, based on second harmonic generation in a KDP
crystal. These devices produce a complete autocorrelation trace at about 30 Hz.

Additional diagnostics are required for the output of the Nd:glass amplifier,
which operates at only a few Hz. Hence devices capable of measurements on a single
shot are needed here. The 1-ps pulse shape can be monitored in a novel variation
of the autocorrelation technique recently demonstrated by Saltiel et al.129 In this a
point image of the amplified laser pulse is transformed into two line images, and a
variable delay imposed on one of them. When the two line images are superimposed
at the face of a KDP crystal the complete autocorrelation function can be mapped
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with a single pulse. The total energy in each pulse will be monitored with a power
meter such as Gentec ED500. The profile of each pulse will be recorded by a CCD
array, such as Panasonic WVCD50 with a Microdisk Co. Frame Grabber readout.

The cost of the eight diagnostic instruments identified in this and the previous
section is somewhat over $100k.
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