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1 Problem

If a continuous medium has a internal stress, either compressive or tensile, it has an internal
density of mass/energy larger than that of the same medium when unstressed.

If this medium is in motion, the moving density of stress-induced mass/energy constitutes
an apparent flow of energy that is consistent with the F·v power associated with the internal
forces whose points of application are moving.

In systems involving steady motion, this flow of energy is only apparent to observers for
which a stressed part of the system is in motion. In a system with stressed parts that have
motion relative to each other, observers identify a flow of energy only in those parts that are
in motion relative to the observer. Hence, different observers can have different views as to
the path of the steady flow of energy in the system. This contrasts with the case of pulsed
energy flow, in which all observers could identify the position of a localized disturbance, and
would associate energy transport with that pulse.

The relativity of steady energy flow is a theme of prob. 65 of [1], in which one part of the
system is a moving elastic belt. The technical complexity of belt drives, in which necessary
slippage at the drive pulleys [2, 3] tends to excite stress waves [4, 5], perhaps obscures the
relativity of energy flow in this example [6].

For a possibly simpler example in which the relativity of steady energy flow can be
discussed from both macroscopic and microscopic points of view, consider a 1-dimensional
ideal gas consists of n point molecules of mass m that are confined within a region of length
L. The temperature T can be modeled by supposing that all molecules have the same speed
v =

√
kT/m, where k is Boltzmann’s constant.

If the confining walls/pistons are fixed, the gas exerts a pressure (= force F for the
1-dimensional case) given by,

F =
nkT

L
=

nmv2

L
=

2mv

2L/nv
, (1)

which is equal to the momentum change 2mv in an elastic collision with the fixed piston
divided by the average time 2L/nv between such collisions. This force is transmitted from
one piston to gas molecules and then to the other piston by the motion of the molecules.
The average momentum of the molecules is zero if the pistons are at rest. However, the
rate of momentum transfer is dp/dt = F , so that the gas can be said to transfer momentum
without possessing it [7].

Suppose the left piston moves to the right with a constant velocity δv � v, and the right
piston moves to the right with the same small velocity. Then, the left piston does work on
the gas at the rate Fδv, and the gas does work on the right piston at the same rate. Discuss
the flow of energy and momentum through the gas in this case.
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2 Solution

For two other examples the illustrate relativistic issues of steady energy flow, see [8, 9].
If the pistons have speed δv, an elastic collision of a molecule with the left (right) piston

lead to an increase (decrease) of the speed of the molecule by 2 δv. The average speed of
the molecules at temperature T is v =

√
kT/m, so in our simple model the right-moving

molecules have speed v + δv and the left-moving molecules have speed v − δv. Half of the
molecules are left-moving and half are right moving at any moment in time, so the total
momentum of the gas molecules is,

ptotal =
n

2
m(v + δv) − n

2
m(v − δv) = nmδv, (2)

and the (linear) momentum density in the gas is,

ρp =
ptotal

L
=

nmδv

L
. (3)

Energy is being added to the gas at the left piston at rate F δv = nmv2 δv/L, and this
energy is continously being removed at the same rate at the right piston. Hence, the flow of
energy through the gas is,

dE

dt
= F δv =

nmv2 δv

L
. (4)

We verify this result by calculating the flow of energy past, for example, the point midway
between the two pistons. The right-moving molecules have kinetic energy m(v + δv)2/2 and
the number of such molecules passing the midpoint per unit time is their linear number
density n/2L times their velocity v (relative to the moving midpoint between the pistons),
so the right-moving energy flow is (nv/2L)m(v + δv)2/2. Thus, the energy flow through the
gas is,1

nv

2L

m(v + δv)2

2
− nv

2L

m(v − δv)2

2
=

nmv2 δv

L
=

dE

dt
. (5)

An observer who moves to the right with velocity δv sees no motion of the pistons, and
so considers that they are doing no work. According to this observer, both the left- and
right-moving molecules have speed v, so the energy flow and the momentum density in the
gas are both zero. This suggests that the concept of (steady) energy flow is a relative one,
as is the point of prob. 65 of [1]. To illustrate this further, we consider two more detailed
examples.

1We could also consider the total energy flow in the gas, which combines the flow through the gas with
the bulk flow of kinetic energy density nmv2/2L at velocity δv to give a result 3/2 times that of eq. (5).
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2.1 The Force on the Pistons is Provided by Rockets

As an idealized 3-d realization of the present problem suppose the gas is confined inside
a long, narrow pipe inside which the two pistons slide without friction, as sketched below.
There is no tension or compression in the pipe in this case.

Each piston is equipped with a rocket that emits mass at a rate dM/dt at speed u relative
to the piston, such that the reaction force on the piston is,

F = u
dM

dt
. (6)

We suppose that energy is conserved in the rocket engine, so that the internal energy of each
piston decreases at the rate,

dEp

dt
=

u2

2

dM

dt
, (7)

which equals the rate of creation of kinetic energy in the rocket exhaust.
In the rest frame of the pistons, no energy is being transferred from one piston + rocket

to the other. The center of mass of the system remains at the midpoint between the pistons
in this frame.

But in a frame in which the pistons appear to move to the right with speed δv, the left
piston appears to be doing work at the rate F δv, and the right piston has work done on it
at the same rate.

The speed of the exhaust of the left rocket appears to be u− δv in this frame, while the
speed of the exhaust of the right rocket appears to be u + δv. The rate of creation of kinetic
energy by the left rocket is dM/dt(u − δv)2/2, while the left piston is losing energy at the
rate dEp/dt + dM/dtδv2/2. Altogether, the rate of change of energy of the left piston +
rocket + exhaust is,

dEl

dt
=

dM

dt

(
(u − δv)2

2
− u2

2
− δv2

2

)
= −dM

dt
u δv = −F δv. (8)

Similarly, the rate of change of energy of the right piston + rocket + exhaust is,

dEr

dt
=

dM

dt

(
(u + δv)2

2
− u2

2
− δv2

2

)
=

dM

dt
u δv = F δv. (9)

As noted in eq. (5), the flow of energy in the gas is F δv in a frame where the pistons move
with speed δv, so in this frame it appears that energy is being transferred from the left piston
+ rocket + exhaust through the gas to the right piston + rocket + exhaust.

In this example, energy appears to be transferred only if the gas appears to have bulk
motion. If energy appears to be transferred, it is transferred through the gas because of the
difference in speed of the left- and right-moving molecules.
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2.2 The Force on the Pistons is Linked to the Pipe that Confines

the Gas

An example more representative of an actual pneumatic power transmission system is below.
A battery powers a linear motor that exerts force F on the left piston. The right piston is
connected to an object that can dissipate energy, such as a shock absorber.

An important distinction between this and the previous example is that the pipe that
confines the gas is now under tension F .

Also, if the pistons are moving relative to the right relative to the pipe, then all observers
will agree that the battery loses internal energy, and the shock absorber gains internal energy.
And then according to the equivalence of mass and energy [10], all observers will agree that
mass is being transferred from the battery to the shock absorber.

We now consider the flow of energy from the perspective of observers for which the pipe
is at rest, and those for which the pistons are at rest.

2.2.1 The pipe is at rest and the pistons are at rest with respect to the pipe

The battery does no work as the pistons are at rest with respect to the pipe.
The pistons do no work as they appear to be at rest.
There appears to be no flow of energy in this case.

2.2.2 The pipe has speed δv and the pistons are at rest with respect to the pipe

Again, the battery does no work as the pistons are at rest with respect to the pipe.
However, since the system is moving, say, to the right, the pistons do work at the rate

±F δv, where the +(−) sign applies to the left (right) piston.
The right-moving molecules appear to have velocity v+δv while the left-moving molecules

appear to have velocity v−δv. Hence, there appears to be an energy flow to the right through
the gas at the rate F δv, as in eq. (5).

Since the battery does no work in this case, we expect that there is no net flow of energy
from left to right in the system. Hence, there must appear to be a flow of energy at rate
F δv in the pipe that confines the gas.

Indeed, the pipe is under tension F and is moving to the right with speed δv. Hence, at
any cross section of the pipe, the righthand side of the pipe appears to be doing work on the
lefthand side of the pipe at rate F δv. This implies an apparent flow of energy from right to
left through the pipe at rate F δv, which compensates for the apparent flow of energy from
left to right through the gas.
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Although there is no net flow of energy in this case, there appears to be a circulation of
energy from left to right through the gas, and then from right to left through the pipe.2

This circulation of energy is apparent only to observers for whom the system appears to
be in motion along the axis of the pipe.

For completeness, we note that this apparent circulation of energy is consistent with the
relativistic, (symmetric) mechanical energy-momentum-stress tensor, which can be written
as,

Tμν
mech =

⎛
⎝ umech cρmech

Smech/c −T ij
mech

⎞
⎠ , (10)

where the mechanical energy density is umech = ρmc2, the mass density is ρm, the speed of
light is c, the mechanical energy flux (including the flux of rest mass/energy) is Smech, the
density of mechanical momentum is related by,

ρmech =
Smech

c2
, (11)

and T ij
mech is the 3-dimensional mechanical stress tensor.

For example, in the rest frame of a gas at pressure P = F/Ag the energy-momentum-
stress tensor is given by,

T�μν =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ�
gc

2 0 0 0

0 F/Ag 0 0

0 0 F/Ag 0

0 0 0 F/Ag

⎞
⎟⎟⎟⎟⎟⎟⎠

, (12)

where ρ�
g is not simply the rest-mass density of the gas, but includes the relativistic correction

to the mass of the moving molecules.
The Lorentz transformation Lz from the rest frame to a frame in which the system has

velocity v ẑ can be expressed in tensor form as,

Lμν
z =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ 0 0 γβ

0 1 0 0

0 0 1 0

γβ 0 0 γ

⎞
⎟⎟⎟⎟⎟⎟⎠

, (13)

2For a discussion of angular momentum in such apparent circulations of energy, see [8].
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where β = v/c. Hence, the energy-momentum-stress tensor in that frame is given by,

Tμν
mech = (LzT

�
mechLz)

μν =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ2ρ�
gc

2 + γ2β2F/Ag 0 0 γ2β(ρ�
gc

2 + F/Ag)

0 F/Ag 0 0

0 0 F/Ag 0

γ2β(ρ�
gc

2 + F/Ag) 0 0 γ2β2ρ�
gc

2 + γ2F/Ag

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(14)
The total mechanical energy flux has only a z component,

Smech,z = γ2v(ρ�
gc

2 + F/Ag) ≈ v(ρ�
gc

2 + F/Ag), (15)

where the approximation holds for v � c. As expected, the energy flux Smech,z consists of a
the transport of energy/mass density ρ�

gc
2 at velocity v plus the energy flux Fv/Ag associated

with the moving molecules in the gas whose pressure is P = F/Ag in the average rest frame
of the gas.

For a pipe under tension F along the z axis, the energy-momentum-stress tensor in the
rest frame of the pipe is,

T�μν =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ�
pc

2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −F/Ap

⎞
⎟⎟⎟⎟⎟⎟⎠

, (16)

where Ap is the cross-sectional area of the pipe. In a frame where the pipe has velocity v ẑ
the stress tensor has the form,

Tμν
mech = (LzT

�
mechLz)

μν =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ2ρ�
pc

2 − γ2β2F/Ap 0 0 γ2β(ρ�
pc

2 − F/Ap)

0 0 0 0

0 0 0 0

γ2β(ρ�
pc

2 − F/Ap) 0 0 γ2β2ρ�
pc

2 − γ2F/Ap

⎞
⎟⎟⎟⎟⎟⎟⎠

. (17)

The energy flux contains a term ≈ −vF/Ap for v � c, corresponding to an apparent steady
flow of energy in the pipe in the opposite direction to the motion of the pipe. No velocity can
be associated with this apparent counterpropagating energy flow as we have no microscopic
model of the behavior of the pipe under tension.3

The total flow of energy associated with the pressure in the gas and the tension in the
pipe is Ag(vF/Ag) + Ap(−vF/Ap) = 0, as expected.

3In a solid where the electrons of neighboring atoms interact slightly, the characteristic velocity of atomic
electrons, αc ≈ 0.01c, may be the relevant velocity of the energy flow.
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2.2.3 The pipe is at rest and the pistons have speed δv with respect to the pipe

This is the situation discussed in the text around eqs. (2)-(5). There is a transfer of en-
ergy/mass from the battery to the shock absorber, and an observer for which the pipe is at
rest identifies the flow of energy as being through the gas.

The pipe is under tension, and so has an energy density greater than that of an unstressed
pipe, but there is no energy flow associated with this energy density in a frame where the
pipe is at rest.

The energy-momentum-stress tensor (14) alerts us to small, relativistic corrections to
eqs. (1)-(5). In the rest frame of the pistons, the force (pressure) is actually,

F

A
=

γvnmv2

L
, (18)

where,

γv =
1√

1 − v2/c2
, (19)

because the relativistic momentum change in a collision is 2γvmv rather than 2mv. The
mass/energy density in the rest frame is,

ρ�
m =

γvnmc2

L
. (20)

Then, from eq. (15) we find the total energy flux in the gas to be,

S = γ2
δv

γvnmc2

L
δv

(
1 +

v2

c2

)
. (21)

The first term of eq. (21) is the flux of mass/energy due to the bulk motion of the gas, and
the second, smaller term is the flux of energy through the gas.

The density of momentum in the gas is,

ρp =
S

c2
= γ2

δv

γvnm

L
δv

(
1 +

v2

c2

)
. (22)

The first term of eq. (22) is the momentum density due to the bulk motion of the gas, and
the second, smaller term is the momentum density associated with the flux of mass/energy
through the gas.

To obtain eqs. (21)-(22) in the manner of eqs. (2) and (4) we must take into account
the relativistic mass increase, the relativistic velocity transformation, and the relativistic
transformation of number density of the left- and right-moving molecules.

2.2.4 The pipe is moving and the pistons are at rest

According to an observer who moves to the right at speed δv, in situation 3 the pistons are
at rest, the pipe moves to the left with speed δv, and energy is transferred from the battery
to the shock absorber. The energy does not appear to be transmitted through the gas, as
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both the left- and right-moving molecules have speed v. Rather, the energy appears to be
transmitted along (and inside) the wall of the pipe.

The pipe is under tension F so that at any cross section of the pipe the left side appears
to be doing work on the right side at rate F δv. The energy appears to flow from the battery,
down the (left-moving) pipe to the right, and into the shock absorber.4
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