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1 Problem

Discuss the motion of a cylinder that rolls without slipping on another cylinder, when the
latter rolls without slipping on a horizontal plane. The cylinders have axial moments of
inertia Ii = kimir

2
i where mi are the masses and ri are the radii of rolling.1

2 Solution

This problem was suggested by Bradley Klee. See also sec. 16.2, p. 233, Vol. 1, of [1], and
prob. 2.9, p. 24 of [2]. For the related case of one cylinder rolling inside another, see [3].

When one cylinder is directly above the other, we define the line of contact of the lower
cylinder, 1, with the horizontal plane to be the z-axis, at x = y = 0. Then, the condition of
rolling without slipping for the lower cylinder is that when it has rolled (positive) distance
x1, the initial line of contact has rotated through angle φ1 = x1/r1, clockwise with respect
to the vertical, as shown in the figure below. This rolling constraint can be written as

x1 = r1φ1. (1)

Meanwhile, if the upper cylinder, 2, rolls such that the line of centers (in the x-y plane)
makes angle θ (positive clockwise) to the vertical, then the initial point of contact of the
upper cylinder has rotated through angle φ2, measured counterclockwise from the line of
centers, such that for rolling without slipping the arc lengths are equal between the initial

1One of the two dimensionless positive constants ki can be greater than 1 for a “cylinder” in the form
of a bobbin that rolls on a narrow cylinder or track.
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points of contact of the two cylinders and the new point of contact. This second rolling
constraint can be written as,

r2φ2 = r1(φ1 − θ) , φ2 − θ =
r1

r2
φ1 −

r1 + r2

r2
θ =

r1φ1 − rθ

r2
with r ≡ r1 + r2. (2)

where φ2 − θ is the angle of the initial point of contact of cylinder 2 to the vertical.
Of course, the center of cylinder 1 is at y1 = r1, and so long as the two cylinders are

touching, their axes are separated by distance r = r1 +r2. Altogether there are 4 constraints
on the 6 degree of freedom (of two-dimensional motion) of the system, such that there are
only two independent degrees of freedom, which we take to be the angles φ1 and θ.

Energy E = T +V is conserved, and since neither the kinetic energy T nor the potential
energy V (taken to be zero when θ = θ0),

V = −m2gr(cos θ0 − cos θ), (3)

depend on coordinate φ1 there will be another conserved quantity, the canonical momentum,

pφ1
=

∂L
∂φ̇1

=
∂T

∂φ̇1

. (4)

where L = T − V is the Lagrangian of the system. However, pφ1
is not a single angular

momentum.2

Since there are two conserved quantities and two degrees of freedom, there is no need to
evaluate Lagrange’s equations of motion to determine the motion, so long as the cylinders
remain in contact and roll without slipping.3

The kinetic energy of cylinder 1, whose axis is at (x1, r1), is,

T1 =
m1ẋ

2
1

2
+

I1φ̇1

2
=

1 + k1

2
m1r

2
1φ̇

2

1, (5)

using the rolling constraint (1) and the expression I1 = k1m1r
2
1 for the moment of inertia I1

in terms of parameter k1.
The kinetic energy of cylinder 2, whose axis is at (x2, y2), is, using I2 = k2m2r

2
2,

T2 =
m2(ẋ

2
2 + ẏ2

2)

2
+

I2(φ̇2 − θ̇)2

2
=

m2(ẋ
2
2 + ẏ2

2)

2
+

k2m2r
2
2(φ̇2 − θ̇)2

2
, (6)

noting that the separation of kinetic energy into energy of the center-of-mass motion plus
energy of rotation about the center of mass requires the angular velocity to be measured

2An example of a system in which there exists a constant of the motion involving angular velocity and
moments of inertia, but which is not a single angular momentum, has been given in [4]. See also [5].

3For the implausible case of n cylinders, one on top of another, there are 3n degrees of freedom, n
constraints of touching, and n rolling constraints, leaving n independent degrees of freedom. Energy is
conserved, and if we take the n independent coordinates to be angle φ1 and the n − 1 angles θi,i+1 of the
lines of centers of adjacent cylinders, then the energy depends on the θi,i+1 but not φ1. Hence, there is one
conserved canonical momentum. For n > 2 it is necessary to use some of Lagrangre’s equations of motion
to solve for the motion.
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with respect to a fixed direction in an inertial frame. Then, recalling eqs. (1)-(2), we have,

x2 = x1 + r sin θ, ẋ2 = r1φ̇1 + r cos θ θ̇, (7)

y2 = r1 + r cos θ, ẏ2 = −r sin θ θ̇, (8)

φ̇2 − θ̇ =
r1φ̇1 − rθ̇

r2
, (9)

and the kinetic energy of cylinder 2 can be written as,

T2 =
m2

2
[r2

1φ̇
2

1 + 2r1r cos θ φ̇1θ̇ + r2θ̇
2
]

+
k2m2

2
[r2

1φ̇
2

1 − 2r1rφ̇1θ̇ + r2θ̇
2
]

=
1 + k2

2
m2r

2
1φ̇

2

1 + (cos θ − k2)m2r1rφ̇1θ̇ +
1 + k2

2
m2r

2θ̇
2
. (10)

The total kinetic energy T1 + T2 is,

T =
(1 + k1)m1 + (1 + k2)m2

2
r2
1φ̇

2

1 + (cos θ − k2)m2r1rφ̇1θ̇ +
1 + k2

2
m2r

2θ̇
2
, (11)

and the conserved canonical momentum is,

pφ1
=

∂T

∂φ̇1

= [(1 + k1)m1 + (1 + k2)m2]r
2
1φ̇1 + (cos θ − k2)m2r1rθ̇ = constant. (12)

The total horizontal momentum of the system is, using the rolling constraint (1),

Px = (m1 + m2)ẋ1 + m2r cos θ θ̇ = (m1 + m2)r1φ̇1 + m2r cos θ θ̇, (13)

while the angular momentum of the cylinder 1 about its axis is,

L1 = k1m1r
2
1φ̇1, (14)

and that of cylinder 2 about its axis is, using the constraint (2),

L2 = k2m2r
2
2(φ̇2 − θ̇) = k2m2r2(r1φ̇1 − rθ̇). (15)

Hence, the conserved canonical momentum (12) can be written as,

pφ1
= r1Px + L1 +

r1

r2

L2. (16)

Equation (12) for the constant pφ1
can be rewritten as,

φ̇1 = ω0 − (cos θ − k2)m2r

[(1 + k1)m1 + (1 + k2)m2]r1
θ̇ = ω0 − Ar

r1
(cos θ − k2) θ̇, (17)

φ̈1 = −Ar

r1

[
(cos θ − k2) θ̈ − sin θ θ̇

2
]
, (18)

where A =
m2

(1 + k1)m1 + (1 + k2)m2
. (19)

3



Equation (17) integrates to give, for θ0(t = 0) = 0,

φ1 = ω0t − Ar

r1
(sin θ − k2 θ). (20)

A particular solution is that θ is constant, say θ0 with |θ0| < π/2, while φ = ω0t, in which
case φ2 = r1(ω0t− θ0)/r2 according to the rolling constraint (2). Here, the two cylinders roll
together, with cylinder 2 at fixed angle θ0, but this motion is unstable.4

For k2 < 1 (as for typical cylinders) and motion that starts with ω0 = 0 and x1,0 = φ1,0 =
θ0 = 0, after a small perturbation, the motion leads to angles φ1 and θ with opposite signs
until sin θ = k2θ after which the signs are the same (if the cylinders remain in contact).
Similarly, the angular velocities φ̇ and θ̇ begin with opposite signs, but the signs become the
same when cos θ = k2.

5 For a bobbin-like cylinder with k2 > 1, angles φ1 and θ (and angular
velocities φ̇1 and θ̇) always have the same signs. The figure on p. 1 corresponds to k2 > 1,
in which the system has positive x-momentum, although it started from rest.

From the rolling constraint (2) we now have (for motion starting from rest),

φ2 =
r1

r2
(φ1 − θ) =

r1

r2
ω0 − Ar

r2
(sin θ − k2 θ) − r1

r2
θ. (21)

For k2 < 1, angles φ1 and φ2 have the same signs at small times, both opposite to that of θ.
For k2 > 1 the sign of φ2 can be the same as that of θ, but only for a subset of the possible
values for the other parameters of the system.

The constant energy E = T + V can now be expressed as a function only of θ and θ̇,
with the form,

E

m2r2
= 0 = [1 + k2 − A(cos θ − k2)

2]
θ̇

2

2
− g

r
(1 − cos θ), (22)

for motion that starts from with θ = 0 = φ1 = φ2, and with ω0 = 0.6

2.1 Time Dependence

Thus far, we have obtained analytic expressions for angles φ1 and φ2 in terms of angle θ,
and from these analytic expressions for x1, x2 and y2 can also be obtained as a function of
θ. However, we do not know the time dependence θ(t), from which the time dependence of
all other quantities could be inferred.

By differentiating the energy equation (22), we obtain a second-order time-differential
equation for θ,

θ̈ =
g/r −A(cos θ − k2)θ̇

2

1 + k2 − A(cos θ − k2)2
sin θ =

1 + k2 − A(cos θ − k2)(3 − 2 cos θ)

[1 + k2 − A(cos θ − k2)2]2
g

r
sin θ. (23)

4If the upper cylinder is a “supercylinder”, making elastic bounces off the horizontal surface, during
which bounces the point of contact of the cylinder comes to rest, the motion of the upper cylinder is a series
of pairs of “hops”, with or without net horizontal motion [6, 7].

5For a much simpler example in which a constrained cylinder begins rotation in one sense and later
reverses, see [8].

6The case that m1 = m2 , r1 = r2 = a = r/2 and k1 = k2 = 1/2 is considered in ex. 33, p. 492 of [9]. It
follows from eq. (22) that θ̇

2
= 12(1 − cos θ)/a(17 + 4 cos θ − 4 cos2 θ).
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For the special case that the upper cylinder is a hollow shell, k2 = 1, the equation of motion
for small θ simplifies to,

θ̈ ≈ g

2r
θ, (k2 = 1, θ � 1). (24)

which is the (Mathieu) equation for an inverted pendulum (of length l = 2r), for which
solutions are tabulated in, for example, [12].

Numerical methods must be used to deduce t(θ) via either eqs. (23) or (24). Strictly, infi-
nite time is required to reach any finite value of θ if the system starts from rest, so discussions
of such examples usually consider a small, nonzero initial angle or angular velocity. While
θ(t) is a monotonic function for the present example, if the axis of the lower cylinder were
subject to a periodic horizontal force in the x- (or y-) direction, the system could exhibit
stability at θ = 0, as discussed, for example, in sec. 30 of [13].

2.2 Constraint Forces

The various forces on the two rolling cylinders are illustrated in the figure below. Here, we
deduce these forces via Newton’s equations of motion, plus the knowledge of the motion
obtained above via a variant of Lagrange’s method.7

2.2.1 Forces at the Horizontal Surface

The system of two cylinders, whose center of mass is at,

xcm =
(m1 + m2)x1 + m2r sin θ

m1 + m2
, ycm =

(m1 + m2)r1 + m2r cos θ

m1 + m2
, (25)

7Lagrange’s method was devised to deduce the equations of motion of a system without consideration of
constraint forces that do no work. The method can be extended to include such forces by use of appropriate
additional coordinates in the Lagrangian, and representing the effects of constraints in terms with Lagrange
multipliers. See, for example, sec. 2.4 of [10] and sec. 19 of [11], as well as the Appendix.
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is subject to the external force F1 x̂ + [N1 − (m1 + m2)g] ŷ, so the equation of motion of the
center of mass are,

F1 = (m1 + m2)ẍcm = (m1 + m2)ẍ1 + m2r
(
cos θ θ̈ − sin θ θ̇

2
)

= (m1 + m2)r1φ̈1 + m2r
(
cos θ θ̈ − sin θ θ̇

2
)

, (26)

N1 = (m1 + m2)g + (m1 + m2)ÿcm = (m1 + m2)g − m2r
(
sin θ θ̈ + cos θ θ̇

2
)

, (27)

using the rolling constraint (1). Then, using eqs. (18), (22) and (23) we obtain F1 and N1

as functions of angle θ.
A single cylinder that rolls without slipping on a horizontal plane has constant horizontal

speed, and hence the force of friction is zero at the line of contact between the cylinder and
plane.

In the present example the horizontal speeds of the two cylinder are not constant, and
the force of friction F1, eq. (26), due to the plane is not zero, such that the x-momentum of
the system is not constant (as in the figure above).

2.2.2 Friction between the Cylinders

The force of friction, F21 = −F12 on cylinder 2 due to cylinder 1, can be determined from
the angular acceleration of cylinder 2, using a torque equation and the rolling constraint (2),

F21 =
I2

r2
(φ̈2 − θ̈) = k2m2r2(φ̈2 − θ̈) = k2m2(r1φ̈1 − rθ̈). (28)

Then, the friction force F1 at the horizontal surface can also be determined from the
angular acceleration of cylinder 1, using the torque equation,

(F1 + F12)r1 = (F1 − F21)r1 = −I1φ̈1 = −k1m1r
2
1φ̈1, (29)

such that,

F1 = −(k1m1 + k2m2)r1φ̈1 + k2m2rθ̈. (30)

This is consistent with eq. (26) in view of the relation (18).
These nonzero frictional forces imply that linear momentum Px and angular momenta

L1 and L2 are not conserved in this example, although there is a conserved quantity (16).

2.2.3 Normal Force between the Cylinders

The normal force N12 = −N21 of cylinder 2 on cylinder 1 can be determined two ways,
by consideration of the x- or y-components of the forces on cylinder 1 (or equivalently, on
cylinder 2).

The vertical force components on cylinder 1 sum to zero, which implies that,

N12 cos θ = N1 −m1g + F12 sin θ

= m2

[
g − r

(
sin θ θ̈ + cos θ θ̇

2
)

+ k2(r1φ̈1 − rθ̈) sin θ
]

(31)
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using eqs. (27) and (28). Likewise, The horizontal force components on cylinder 1 sum to
m1ẍ1, which implies that,

N12 sin θ = F1 − m1ẍ1 − F12 cos θ

= m2

[
r1φ̈1 + r

(
cos θ θ̈ − sin θ θ̇

2
)
− k2(r1φ̈1 − rθ̈) cos θ

]
, (32)

using eqs. (26) and (28). Then,

N12 = N12 cos2 θ + N12 sin2 θ = g cos θ + r1 sin θ φ̇1 − r θ̇
2
. (33)

When N12 goes to zero, the cylinders separate.

2.3 Angle of Separation

The above analysis holds only so long as the two cylinders remain in contact, and the normal
force N12 between the cylinders is nonzero, i.e., when,

r θ̇
2

= g cos θ + r1 sin θ φ̇1. (34)

For a method that does not use the forces to find the angle θs at which the cylinders
separate, we go to the accelerated frame of the lower cylinder, in which there appears to be
an effective acceleration due to “gravity” of,

geff = −ẍ1 x̂ − g ŷ = −r1φ̈1 x̂− g ŷ. (35)

Cylinder 2 loses contact with cylinder 1 when the component of geff along the line of
centers, r̂ = −(sin θ, cos θ), of the cylinders equals the instantaneous radial acceleration,

rθ̇
2
. That is, separation occurs at angle θs where,8

rθ̇
2

s = r̂ · geff = g cos θs + r1 sin θs φ̈1 = g cos θs − rA sin θs

[
(cos θs − k2) θ̈s − sin θs θ̇

2

s

]
, (37)

using eq. (18). This confirms eq. (34).
Even for the special case of identical cylinders, m1 = m2, r1 = r2 = r/2 and k1 = k2, the

expression (37) remains intricate.

8When the lower cylinder is fixed, geff = g, and eq. (37) reduces to rθ̇
2

s = g cos θs. The energy expression
(22) simplifies to (1 + k2)rθ̇

2
/2 = g(1 − cos θ), for motion that starts with θ = 0 = φ1 = φ2. Separation

occurs when rθ̇
2

s = g cos θs, such that,

cos θs =
2

3 + k2
. (36)

In the limit that the upper cylinder is a line/point, k2 → 0 and cos θs → 2/3, as in the well known “freshman
physics” problem of a bug sliding off a log. For a solid cylinder, k2 = 1/2 and cos θs = 4/7, for a solid sphere
k2 = 2/5 and cos θs = 10/17, etc.
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3 Variants

Thus far we have assumed that both cylinders roll without slipping. Variants include the
three cases in which it is assumed instead that there is no friction at one or both lines of
contact, and the cases where either one or two of the coordinates x1, φ1 and φ2 are held fixed
with either no friction anywhere or rolling without slipping where rolling is possible. Here,
we consider only the first of these examples.

In all cases the potential energy v is given by eq. (3) and the kinetic energy T by a variant
of eq. (11). We only consider systems that start from rest with cylinder 2 directly above
cylinder 1.

3.1 No Friction Anywhere

In the case of no friction anywhere, the cylinders do not rotate.9 Energy is conserved, and
the conserved total horizontal momentum is always zero. The system has two degrees of
freedom, which we take to be x1, the coordinate of the center of the lower cylinder, and the
angle θ of the line of centers between the two cylinders.

The total kinetic energy can be obtained from eq. (11) by setting k1 and k2 to zero, and
replacing factors of r1φ̇1 by ẋ1 (undoing the rolling constraint (1), so to speak),

T =
m1 + m2

2
ẋ2

1 + m2r cos θ ẋ1θ̇ +
m2

2
r2θ̇

2
. (38)

The conserved canonical momentum is, for motion starting from rest with φ1 = φ2 = θ = 0,

px1 =
∂T

∂ẋ1

= (m1 + m2)ẋ1 + m2r cos θ θ̇ = Px = 0, (39)

which is just the total horizontal momentum.10 Using eq. (39) to eliminate ẋ1 from the
kinetic energy, we obtain the total energy as,

E

m2r2
= 0 =

m1 + m2 sin2 θ

m1 + m2

θ̇
2

2
− g

r
(1 − cos θ). (40)

To find the angle θs at which the cylinders separate, we again go to the accelerated frame
of the lower cylinder, in which there appears to be an effective acceleration due to “gravity”,

geff = −ẍ1 x̂− g ŷ =
m2r

m1 + m2

(
cos θ θ̈ − sin θ θ̇

2
)

x̂ − g ŷ, (41)

where θ̇ and θ̈ can be deduced in terms of θ from eq. (40).
Cylinder 2 loses contact with cylinder 1 when the component of geff along the line of

centers, r̂ = −(sin θ, cos θ), of the cylinders equals the instantaneous radial acceleration,

rθ̇
2
. That is, separation occurs at angle θs where,

rθ̇
2

s = r̂ · geff = g cos θs − m2r sin θs

m1 + m2

(
cos θs θ̈s − sin θs θ̇

2

s

)
. (42)

9The case of two spheres with no friction was discussed on p. 260 of [17].
10This example includes other conserved/zero generalized momenta such as the z-component of the linear

momentum, and the angular momentum about the x- and y-axes.
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After considerable effort, one can verify that eqs. (40) and (42) combine to give,

m2 cos θ2
s = (m1 + m2)(3 cos θs − 2), (43)

as noted in ex. 6, p. 121 of [15].
When the lower cylinder is fixed, we can set k2 = 0 and the result (36) again becomes

cos θs = 2/3 as for a point mass sliding on a cylinder/sphere.

3.2 No Friction at the Horizontal Plane

In the case of no friction at the horizontal plane, but rolling without slipping of cylinder 2
on cylinder 1, both cylinders rotate, being torqued by the friction along the line of contact of
the cylinders. Energy is conserved, and the conserved total horizontal momentum is always
zero. The system has three degrees of freedom, which we take to be x1, φ1 and θ.

The total kinetic energy can be obtained from eq. (11) by replacing factors of r1φ̇1 not
associated with k1 or k2 by ẋ1 (again undoing the rolling constraint),

T =
m1 + m2

2
ẋ2

1 +
k1m1 + k2m2

2
r2
1φ̇

2

1 + m2r cos θ ẋ1θ̇ − k2m2r1r φ̇1θ̇ +
1 + k2

2
m2r

2 θ̇
2
. (44)

There are now two the conserved canonical momenta,

px1 =
∂T

∂ẋ1

= (m1 + m2)ẋ1 + m2r cos θ θ̇ = Px = 0, (45)

which is the total horizontal momentum (for motion starting from rest with φ1 = φ2 = θ = 0),
and,

pφ1
=

∂T

∂φ̇1

= (k1m1 + k2m2)r
2
1 φ̇1 − k2m2r1r θ̇ = L1 +

r1

r2

L2 = 0. (46)

Using eqs. (45)-(46) to eliminate ẋ1 and φ̇1 from the kinetic energy, we obtain the total
energy as,11

E

m2r2
= 0 =

(
1 + k2 − m2 cos2 θ

m1 + m2
− k2

2m2

k1m1 + k2m2

)
θ̇

2

2
− g

r
(1 − cos θ). (47)

To find the angle θs at which the cylinders separate, we again go to the accelerated frame
of the lower cylinder, in which there appears to be an effective acceleration due to “gravity”,

geff = −ẍ1 x̂− g ŷ =
m2r

m1 + m2

(
cos θ θ̈ − sin θ θ̇

2
)

x̂ − g ŷ, (48)

where θ̇ and θ̈ can be deduced in terms of θ from eq. (47).

11This case is considered in ex. 32, p. 492 of [9] for k1 = k2 = 1/2, where eq. (47) takes the form
(3m1 + 2m2 sin2 θ)θ̇

2
= 4(m1 + m2)g(1 − cos θ)/r.
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Cylinder 2 loses contact with cylinder 1 when the component of geff along the line of
centers, r̂ = −(sin θ, cos θ), of the cylinders equals the instantaneous radial acceleration,

rθ̇
2
. That is, separation occurs at angle θs where,

rθ̇
2

s = r̂ · geff = g cos θs − m2r

m1 + m2

(
cos θs θ̈s − sin θs θ̇

2

s

)
sin θs. (49)

This has the same form as eq. (42), but since the energy expressions (40) and (47) are
different, the value of θs will be different.12

When the lower cylinder is fixed, we again have cos θs = 2/(3 + k2) as in eq. (36).

3.3 No Friction between the Cylinders

In the case of no friction between the cylinders, but cylinder 1 rolls without slipping on
the horizontal plane, only cylinder 1 rotates, being torqued by the friction at the horizontal
surface. Energy is conserved, but the total horizontal momentum is not. The system has
two degrees of freedom, which we take to be φ1 and angle θ, using the rolling constraint (1)
to eliminate x1 from the energy, and the rolling constraint (2) to eliminate φ2 in favor of φ1

and θ.
The total kinetic energy can be obtained from eq. (11) by setting k2 to zero,

T =
(1 + k1)m1 + m2

2
r2
1φ̇

2

1 + m2r1r cos θ φ̇1θ̇ +
m2

2
r2 θ̇

2
, (51)

and the conserved canonical momentum is, for motion starting from rest with φ1 = φ2 =
θ = 0,

pφ1
=

∂T

∂φ̇1

= [(1 + k1)m1 + m2]r
2
1φ̇1 + m2r1r cos θ θ̇ = 0. (52)

Using eq. (52) to eliminate φ̇1 from the kinetic energy, we obtain the total energy as,

E

m2r2
= 0 =

(
1 − m2 cos2 θ

(1 + k1)m1 + m2

)
θ̇

2

2
− g

r
(1 − cos θ). (53)

To find the angle θs at which the cylinders separate, we again go to the accelerated frame
of the lower cylinder, in which there appears to be an effective acceleration due to “gravity”,

geff = −ẍ1 x̂ − g ŷ = −r1φ̈1 x̂− g ŷ =
m2r

(1 + k1)m1 + m2

(
cos θ θ̈ − sin θ θ̇

2
)

x̂− g ŷ, (54)

12An amusing special case has been noted in ex. 5, p. 121 of [15]. Suppose the two cylinders are identical,
m1 = m2, r1 = r2 = a = r/2, and k1 = k2 = k . Then, eq. (46) becomes φ̇1 = θ̇, such that φ1 = θ, and then
by the rolling constraint (2), φ2 = φ1 − θ = 0. That is, the two cylinder roll together as if they were a single
rigid body – until they separate.

Routh also claims that the cylinders separate at angle θ related by (k + 1 + sin2 θ)a θ̇
2

= 2g(1 − cos θ),
where a = r1 = r2 = r/2, and we note that Routh’s k2 equals our ka2. However, this is just the energy
relation (47), which holds for any angle at which the cylinders touch. If I evaluated eq. (49) correctly,

2[(2 + k) cos θs − 1] = cos θs(1 − cos θs)2(1 + cos θs). (50)
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where θ̇ and θ̈ can be deduced in terms of θ from eq. (53).
Cylinder 2 loses contact with cylinder 1 when the component of geff along the line of

centers, r̂ = −(sin θ, cos θ), of the cylinders equals the instantaneous radial acceleration,

r θ̇
2
. That is, separation occurs at angle θs where,

r θ̇
2

s = r̂ · geff = g cos θs − m2r sin θs

(1 + k1)m1 + m2

(
cos θs θ̈s − sin θs θ̇

2

s

)
. (55)

When the lower cylinder is fixed, we again have cos θs = 2/3 as in sec. 3.1.

A Appendix: Constraint Forces via Lagrange

Multipliers

In general, two rigid bodies, such as the two cylinders of the present example, are to be
described by six coordinates per body (say, the spatial coordinates of the center of mass of
a body, the two angular directions of some fixed body axis, and the angle of orientation of
the body about this axis), for a total of twelve coordinates. In the present example, only
two of these twelve coordinates are independent, as there are ten constraints: the axes of
the cylinders lie along the z-axis (4 constraints), the centers of mass of the cylinders are
at z = 0 (2 constraints), the lower cylinder lies on the plane y = 0 (1 constraint), the two
cylinders touch one another (1 constraint), the lower cylinder rolls without slipping on the
plane y = 0 (1 constraint), and the upper cylinder rolls without slipping on the lower cylinder
(1 constraint).

Furthermore, there is no dissipation of energy in this problem.
Given these constraints/conditions, Lagrange’s method consists of computing the kinetic

energy T and the potential energy V in terms of the independent coordinates (taken above
to be φ1 and θ). The total energy E(φ1, θ) = T + V is conserved, so the time derivative
dE/dt = 0 provides one relation between φ1 and θ.From the Lagrangian L = T − V we can,
in principle, deduce the equations of motion via Lagrange’s equations,

d

dt

∂L
∂q̇i

=
∂L
∂qi

, (56)

If ∂L/∂qi = 0 (as for qi = φ1 in the present example), then ∂L/∂q̇i is constant (as in
eq. (12) for the present example), and may be called a conserved quantity.13 Thus, it may
be (as in the present example) that there are as many conserved quantities as independent
coordinates, and Lagrange’s equations (56) are not needed to determine the motion.

In Lagrange’s method, for examples like the present with no dissipation of energy and
“simple” constraints on the coordinates, no mention is made of forces. If desired, expressions
for various forces can be deduced from Newton’s F = ma with the acceleration a being
obtained from Lagrange’s equations (56). A subclass of the forces are those associated with
the various constraints on the coordinates of the systems; these are the so-called constraint
forces, which do no work (if no energy is dissipated).

13Astonishingly, a paper [14] was published claiming that this in not “well known to instructors and
students of physics”.

11



We can also deduce the constraint forces via a method in which more than the minimum
number of coordinates are used, as apparently first proposed by Routh [15, 16] for holonomic
constraints,14 as a special case of a method for problems with nonholonomic constraints given
by Ferrers [19]. See also [20].

In this method, the minimum number n of independent coordinates is augmented with
m additional coordinates, so that the total set of coordinates is qi, i = 1, . . . , n + m, and
for which the m constraint equations fj(qi) = 0, j = 1, . . . , m, are known, but not explicity
enforced initially. Then, we consider the n + m modified Lagrange equations,

d

dt

∂L
∂q̇i

− ∂L
∂qi

=
m∑

j=1

λj
∂fj

∂qi

, (57)

where the λj are so-called Lagrange multipliers (which have the physical significance of
being the j constraint force if the dimensions of the constraint equation fj = 0 are chosen
appropriately).

In the present example with 12 coordinates, of which only 2 are independent, there are 10
constraint equations. Any number of these can be ignored in an implementation of eq. (57),
so there are 210 = 1024 different possible variations of the analysis of the present problem.

Here, we consider the problem to be two dimensional, in which case the first six constraints
are automatically satisfied. The remaining four constrains are:

1. That the lower cylinder rolls without slipping on the plane y = 0, eq, (1),

f1 = x1 − r1φ1 = 0, (58)

2. That the upper cylinder rolls without slipping on the lower cylinder, eq. (2),

f2 = r2φ2 − r1(φ1 − θ) = 0, (59)

3. That the two cylinders touch,

f3 = r − r1 − r2 = 0, (60)

where r is the distance in between the axes of the two cylinders,

4. That the lower cylinder touches the plane y = 0,

f4 = y1 − r1 = 0. (61)

That is, we consider as many as six coordinates, x1, y1, φ1, φ2, θ and r, rather than the
minimal set φ1, θ used in the main body of this note.

We now consider the 15 analyses based on temporarily relaxing various subsets of the
constraints f1, f2, f3 and f4.

14The term “holonomic” was introduced by Hertz on p. 91 of [18].
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A.1 Relax the Rolling Constraint on the Lower Cylinder

If we imagine that the constraint (58) on the lower cylinder is relaxed, then we need three
coordinates, x1, φ1 and θ to describe the system.

Constraints (59)-(61) are still enforced, so the kinetic energy of the lower cylinder is given
by the first form of eq. (5), while the kinetic energy of the upper cylinder becomes,

T2 =
m2

2
ẋ2

1 + m2ẋ1r cos θ θ̇ +
(1 + k2)m2

2
r2θ̇

2
+

k2m2r
2
1φ̇

2

1

2
− k2m2r1rφ̇1θ̇, (62)

and the potential energy is still given by eq. (3).
The Lagrangian L = T1 + T2 − V does not depend on x1 or φ1, so it is useful to identify

the canonical momenta,

px1 =
∂L
∂ẋ1

= (m1 + m2)ẋ1 + m2r cos θ θ̇ = Px, (63)

which is the total horizontal momentum, eq. (13), of the system, and,

pφ1
=

∂L
∂φ̇1

= (k1m1 + k2m2)r
2
1φ̇1 − k2m2r1rθ̇ = k1m1r

2
1φ̇1 + r1[k2m2(r1φ̇1 − k2m2rθ̇)]

= L1 +
r1

r2
L2, (64)

where L1 and L2 are the angular momenta, eqs. (14)-(15), of the two cylinders about their
axes.

The derivatives of the constraint equation (58) are,

∂f1

∂x1
= 1,

∂f1

∂φ1

= −r1,
∂f1

∂θ
= 0. (65)

The extended Lagrange method for this case involves a single multiplier λ1 associated
with the rolling constraint (58), such that the three Lagrange equations are now,

dpx1

dt
= λ1

∂f1

∂x1
= λ1, (66)

dpφ1

dt
= λ1

∂f1

∂φ1

= −r1λ1, (67)

d

dt

∂L
∂θ̇

− ∂L
∂θ

= λ1
∂f1

∂θ
= 0. (68)

Combining eqs. (66) and (67), we have that,

d

dt

(
px1 +

pφ1

r1

)
= 0, px1 +

pφ1

r1
= Px +

L1

r1
+

L2

r2
= 0, (69)

supposing that the system starts with x1 = φ1 = θ = 0, which is eq. (16) divided by r1.
The force λ1 associated with the constraint f1 that the lower cylinder rolls without

slipping on the plane y = 0 is related by,

− λ1 =
1

r1

dpφ1

dt
= (k1m1 + k2m2)r1φ̈1 − k2m2rθ̈, (70)

which is the force F1 found in eq. (30).
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A.2 Relax the Rolling Constraint on the Upper Cylinder

If we imagine that the constraint (59) on the upper cylinder is relaxed, then we need three
coordinates, φ1, φ2 and θ to describe the system.

Constraints (58) and (60)-(61) are still enforced, so the kinetic energy of the lower cylinder
is given by the second form of eq. (5), while the kinetic energy of the upper cylinder is given
by,

T2 =
m2

2

[
r2
1φ̇

2

1 + 2r1r cos θ φ̇1θ̇ + r2θ̇
2
]

+
k2m2r

2
2

2

(
φ̇

2

2 − 2φ̇2θ̇ + θ̇
2
)

, (71)

and the potential energy is still given by eq. (3).
The Lagrangian L = T1 + T2 − V does not depend on φ1 or φ2, so it is useful to identify

the canonical momenta,

pφ1
=

∂L
∂φ̇1

= [(1 + k1)m1 + m2]r
2
1φ̇1 + m2r1r cos θ θ̇, (72)

and,

pφ2
=

∂L
∂φ̇2

= k2m2r
2
2(φ̇2 − θ̇). (73)

The derivatives of the constraint equation (59) are,

∂f2

∂φ1

= −r1,
∂f2

∂φ2

= r2,
∂f2

∂θ
= r1. (74)

The extended Lagrange method for this case involves a single multiplier λ2 associated
with the rolling constraint (59), such that the three Lagrange equations are now,

dpφ1

dt
= λ2

∂f2

∂φ1

= −r1λ2, (75)

dpφ2

dt
= λ2

∂f2

∂φ2

= r2λ2, (76)

d

dt

∂L
∂θ̇

− ∂L
∂θ

= λ2
∂f2

∂θ
= r1λ2. (77)

Combining eqs. (75) and (76), we have that,

d

dt

(
pφ1

r1
+

pφ2

r2

)
= 0,

pφ1

r1
+

pφ2

r2
= 0 (78)

supposing that the system starts with x1 = φ1 = θ = 0. After we enforce the rolling
constraint (59), this becomes Px + L1/r1 + L2/r2 = 0, as previously noted.

The force λ2 associated with the constraint f2 that the upper cylinder rolls without
slipping on the lower cylinder is related by,

F2 = λ2 =
1

r2

dpφ2

dt
= k2m2r2(φ̈2 − θ̈) = k2m2(r1φ̈1 − rθ̈), (79)

which was previously found as F21 in eq. (28),
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A.3 Relax the Constraint that the Cylinders Touch

If we imagine that the constraint (60) between the cylinders is relaxed, then we need four
coordinates, φ1, φ2, θ and r to describe the system.

Constraints (58) and (61) are still enforced, so the kinetic energy of the lower cylinder is
given by the second form of eq. (5), while the kinetic energy of the upper cylinder is given
by,

T2 =
m2

2

[
r2
1φ̇

2

1 + 2r1(r cos θ θ̇ + ṙ sin θ)φ̇1 + r2θ̇
2
+ ṙ2

]
+

k2m2r
2
2

2

(
φ̇

2

2 − 2φ̇2θ̇ + θ̇
2
)

, (80)

while the potential energy should now be written as V = m2g(r cos θ − r1 − r2) (to be zero
when cylinder 2 sits directly on top of cylinder 1).

The Lagrangian L = T1 + T2 − V does not depend on φ1 or φ2, so it is useful to identify
the canonical momenta,

pφ1
=

∂L
∂φ̇1

= [(1 + k1)m1 + m2]r
2
1φ̇1 + m2r1(r cos θ θ̇ + ṙ sin θ) = r1Px + L1 + m2r1ṙ sin θ,(81)

and pφ2
=

∂L
∂φ̇2

= k2m2r
2
2(φ̇2 − θ̇) = L2. (82)

The derivatives of the constraint equation (60) are,

∂f3

∂φ1

= 0,
∂f3

∂φ2

= 0,
∂f3

∂θ
= 0,

∂f3

∂r
= 1. (83)

The extended Lagrange method for this case involves a single multiplier λ3 associated
with the touching constraint (60), such that the four Lagrange equations are,

dpφ1

dt
= λ3

∂f3

∂φ1

= 0, (84)

dpφ2

dt
= λ3

∂f3

∂φ2

= 0, (85)

d

dt

∂L
∂θ̇

− ∂L
∂θ

= λ3
∂f3

∂θ
= 0, (86)

d

dt

∂L
∂ṙ

− ∂L
∂r

= λ3
∂f3

∂r
= λ3. (87)

The force λ3 associated with the constraint f3 that the upper cylinder touches the lower
cylinder is related by,

λ3 =
d

dt

∂L
∂ṙ

− ∂L
∂r

= m2r1

(
sin θ φ̈1 + cos θ φ̇1θ̇

)
− m2

(
r1 cos θ θ̇φ̇1 + r θ̇

2
)

+ m2g cos θ

= m2

[
r1 sin θ φ̈1 − r θ̇

2
+ g cos θ

]
, (88)
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on setting r̈ = 0, as this expression makes physical sense only after constraint (60) is enforced.
A case of particular interest is when this force goes to zero, at the angle θs of separation,
which is now related by,

r θ̇
2

s = g cos θ + r1 sin θs φ̈1 (89)

= g cos θ − Ar sin θs

[
(cos θs − k2)θ̈s − sin θs θ̇

2

s

]
,

using eq. (17). This relation was previously found in eq. (37).

A.4 Relax the Constraint that the Cylinder 1 Touches the Plane

y = 0

If we imagine that the constraint (61) is relaxed, then we need three coordinates, y1, φ1 and
θ to describe the system.

Constraints (58)-(60) are still enforced, so the kinetic and potential energies of the system
are given by eqs. (11) and (3) with the additional terms,

ΔT =
m1 + m2

2
ẏ2

1 −m2r sin θ ẏ1θ̇, ΔV = (m1 + m2)g(y1 − r1). (90)

The Lagrangian L = T1 + T2 − V does not depend on φ1, so it is useful to identify the
canonical momentum,

pφ1
=

∂L
∂φ̇1

= [(1 + k1)m1 + (1 + k2)m2]r
2
1φ̇1 + (cos θ − k2)m2r1rθ̇ = r1Px + L1 +

r1

r2

L2. (91)

The derivatives of the constraint equation (61) are,

∂f4

∂φ1

= 0,
∂f4

∂θ
= 0,

∂f4

∂y1

= 1. (92)

The extended Lagrange method for this case involves a single multiplier λ4 associated
with the touching constraint (61), such that the four Lagrange equations are,

dpφ1

dt
= λ4

∂f3

∂φ1

= 0, (93)

d

dt

∂L
∂θ̇

− ∂L
∂θ

= λ4
∂f4

∂θ
= 0, (94)

d

dt

∂L
∂ẏ1

− ∂L
∂y1

= λ4
∂f4

∂r
= λ4. (95)

The force λ4 associated with the constraint f4 that the lower cylinder touches the plane
y = 0 is related by,

F4 = λ4 =
d

dt

∂L
∂ẏ1

− ∂L
∂y1

= (m1 + m2)ÿ1 − m2r
(
sin θ θ̈ + cos θ θ̇

2
)

+ (m1 + m2)g. (96)

This makes physical sense only after the constraint (61) is enforced, such that ÿ1 = 0, and
the constraint force is just the normal force upward on cylinder 1,

F4 = N1 = (m1 + m2)g − m2r
(
sin θ θ̈ + cos θ θ̇

2
)

= (m1 + m2)g + m2ÿ2, (97)

which was previously found as N1 in eq. (27).
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A.5 Relax All Constraints

If we imagine that all constraints (58)-(61) are relaxed, then we consider the six coordinates
x1, y1, φ1, φ2 θ and r.

The kinetic energy is now,

T =
m1 + m2

2
(ẋ2

1 + ẏ2
1) +

m1k2r
2
1

2
φ̇

2

1 +
k2m2r

2
2

2

(
φ̇

2

2 − 2φ̇2θ̇ + θ̇
2
)

+
m2

2

(
ṙ2 + r2θ̇

2
)

+m2ṙ(ẋ1 sin θ + ẏ1 cos θ) + m2rθ̇(ẋ1 cos θ − ẏ1 sin θ), (98)

and the potential energy is,

V = −m2gr(1 − cos θ) + (m1 + m2)g(y1 − r1). (99)

The Lagrangian L = T − V does not depend on coordinates x1, φ1, or φ2, so we identify the
canonical momenta,

px1 =
∂L
∂ẋ1

= (m1 + m2)ẋ1 + m2(ṙ sin θ + r cos θ θ̇) = Px, (100)

pφ1
=

∂L
∂φ̇1

= m1k1r
2
1φ̇1 = L1, (101)

pφ2
=

∂L
∂φ̇2

= m2k2r
2
2(φ̇2 − θ̇) = L2, (102)

The extended Lagrange method for this case involves four multipliers λ1-λ4 associated
with the four constraints (58)-(61), such that the six Lagrange equations are,

dpx1

dt
= λ1

∂f1

∂x1
+ λ2

∂f2

∂x1
+ λ3

∂f3

∂x1
+ λ4

∂f4

∂x1
= λ1, (103)

dpφ1

dt
= λ1

∂f1

∂φ1

+ λ2
∂f2

∂φ1

+ λ3
∂f3

∂φ1

+ λ4
∂f4

∂φ1

= −r1λ1 − r1λ2, (104)

dpφ2

dt
= λ1

∂f1

∂φ2

+ λ2
∂f2

∂φ2

+ λ3
∂f3

∂φ2

+ λ4
∂f4

∂φ2

= r2λ2, (105)

d

dt

∂L
∂θ̇

− ∂L
∂θ

= λ1
∂f1

∂θ
+ λ2

∂f2

∂θ
+ λ3

∂f3

∂θ
+ λ4

∂f4

∂θ
= r1λ2, (106)

d

dt

∂L
∂ṙ

− ∂L
∂r

= λ1
∂f1

∂r
+ λ2

∂f2

∂r
+ λ3

∂f3

∂r
+ λ4

∂f4

∂r
= λ3, (107)

d

dt

∂L
∂ẏ1

− ∂L
∂y1

= λ1
∂f1

∂y1

+ λ2
∂f2

∂y1

+ λ3
∂f3

∂y1

+ λ4
∂f4

∂y1

= λ4, (108)

using the derivatives (65), (74), (83) and (92). We can combine eqs. (103)-(105) to find,

d

dt

(
px1 +

pφ1

r1
+

pφ2

r2

)
=

d

dt

(
Px +

L1

r1

L2

r2

)
= 0, Px +

L1

r1
+

L2

r2
= 0, (109)

for a system that starts with φ1 = φ2 = θ = 0. This form is suggestive, but its content is
only understandable if one writes it out in detail, as in eq. (12), which integrates to (20).
Then, we have a description of the motion in terms of a single variable, θ.
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We now enforce the constraints, and evaluate the multipliers.
The force λ1 associated with the constraint f1 that the lower cylinder rolls without

slipping on the plane y = 0 is related by eq. (103),

λ1 =
dpx1

dt
= (m1 + m2)ẍ1 + m2

(
r cos θ θ̈ − r sin θ θ̇

2
)

, (110)

after setting ṙ = 0, which is the force F1 found in eq. (26).
The force λ2 associated with the constraint f2 that the upper cylinder rolls without

slipping on the lower cylinder is related by eq. (105),

F2 = λ2 =
1

r2

dpφ2

dt
= k2m2r2(φ̈2 − θ̈) = k2m2(r1φ̈1 − rθ̈), (111)

which was previously found as F21 in eq. (28).15

The force λ3 associated with the constraint f3 that the upper cylinder touches the lower
cylinder is related by eq. (107),

λ3 =
d

dt

∂L
∂ṙ

− ∂L
∂r

= m2(ẍ1 sin θ + ẋ1 cos θ θ̇) − m2

(
ẋ1 cos θ θ̇ + r θ̇

2
)

+ m2g cos θ

= m2

(
ẍ1 sin θ − r θ̇

2
+ g cos θ

)
, (112)

on setting r̈ = 0 and ẏ1 = 0, as this expression makes physical sense only after constraints
(60)-(61) are enforced.

The force λ4 associated with the constraint f4 that the lower cylinder touches the plane
y = 0 is related by eq. (108),

F4 = λ4 =
d

dt

∂L
∂ẏ1

− ∂L
∂y1

= (m1 + m2)ÿ1 − m2r
(
sin θ θ̈ + cos θ θ̇

2
)

+ (m1 + m2)g. (113)

This makes physical sense only after the constraint (61) is enforced, such that ÿ1 = 0, and
the constraint force is just the normal force upward on cylinder 1,

F4 = N1 = (m1 + m2)g − m2r
(
sin θ θ̈ + cos θ θ̇

2
)

= (m1 + m2)g + m2ÿ2, (114)

which was previously found as N1 in eq. (27).

We return to the description of the motion, and note that since the Lagrangian does not
depend on time, energy is conserved. After enforcing the constraints (58)-(61), and using
the integral (20) of the conserved quantity (109), we arrive at the expression (22) for the
(conserved) energy as a function of angle θ only. The time derivative of this expression16 (as
well as Lagrange’s equations) provides a second-order differential equation for θ, which can
in principle be integrated to describe the motion in detail, as discussed in sec. 2.1.

Thus, the method of relaxing constraints and adding Lagrange multipliers eventually
recovers the description of the motion that was obtained more directly via the basic method
of Lagrange, which utilizes only the minimum number of independent coordinates (2 in this
example).

15The forces F1 and F12 could also be determined via eqs. (104) and (106).
16This approach is called the principle of vis viva in sec. 141 of [15].
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