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Let us flrst contemplate what we mean by "instantaneous axis". We consider the disk
rotatlng about a fixed axis with contant_ﬂ. connected to the origln by the massless rod.
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As to this motion, we can think of the movement of the point A. The location of A, say r

— -can be written-as-two-parts, -

"the center to A. Now, we diffréntiate 111 and get;

or by 1_1) considering the rotation about the momentary "W 2 \
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where -4 represents the vector from O to center of the dlSk and 7 is the vector from

o %f:r 7}; . _di j’.ﬂ\j—gs )

The condltlon of the rolling without sllpplng gives,

TURZ ade ad b= -R [€3)
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where R=Rﬁ, eince th-distance moved by the-disk should be provided by -the -rolling. By {3)-

we get,
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That means point A momentarily stops. ™ Since a cérie has basically the same kinematicsy

we can immediately _see that the points contacting ground form "{nstantaneous axis", i.e.,

we can momentarlly v1ew the motlon as the rotatlon about thls momentarﬂy flxed axis.
Now, we have—two methods of viewing -the-same-motions " g ——— e — -

The velocity v of the point B can be obtained either = = ) .

by i) con51der1ng the rotation about the given axis z,

 Ferabas x 4~u;]a-\arJYud Qw!ﬂﬂ 9

i.e.,

axis x, i.e.,

_ .. By equating_two equations, we get
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2. We assume a usual car has the reflection symmetry with respect to the central surface |

when viewed from front. Consequently, we can represent the car as shown below, where

relevant forces are shown, >~ =
cM >

g : e e

where 'F- ?;. are frlctlonal forces and ﬁ; ' »represent normal forces exerted by the road

Now, we have three equatlons, namely,

Taf=Md - 7 Newton's law along the Yoad — —— — ~U} -~ ———
ﬁ + ab* MZ»:c . ; Newton's law vertical to the yoad_ _ __ 2
A\_,"’»XN"’?;XH;"‘"IX?‘?*’)"E;, =0 )

ax NS

; Angular momentum equation if we rega_rd C.M. as a reference pomt In (3) ' we used
the fact that Z vanishes since the-car-does not-rotate with respect+to M, - - — ——

The first task we should do is to flnd the minimum value of '25 (a ax) (NOthé that

a<0 in my convention). Rewriting (1),1{2} and (3), we have,

Mas —F—Fs :
N+ N = Mg T . S

LNy g e ~hiFrFRy=e 44 _‘5——13 °, N| N 3 ete)
Moz — 'C\ (2N - LQat) = — &4 Mg -+ '——Nz . L -5 B

Theoretically, although we are given the.swne of NandNy, we can freely change the ratio
of N. and Nu by changing the efficiency of the rear and front brakes (e.g. we can use the

diffrence between rolling friction coefficient and slipping friction coefficient). Thus,

we can interpret Wlras an independent varable having the range of — . ...

0 <€ N <Mq : s

 Notice that only pomtlve M. is physically relevant., Thus, the maximum braking is

——achieved when -—N ey withtheMa— = '-g-ﬁq:._"The—reason—xmy we need @ good brake on

wheels to get maximum deceleratlon. As long as deceleration isconcerned, in which T-'.-’c Fa

~ should be positive, the condition under which the car would leave the road is Wa*©,
- {not NF-Q-) sim—mew%edsmsupmrtﬁmmﬁomdj --In—thisecaser {4} ¢gives, ———
Ryvrs Bagome ey

if we'assume the simple rnodel of frlctloﬁ;i“force, na_mely, 'F“-ur-wh -../u, F..a.....Q (6)

hecomes ~
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since N;,..o and Nl -‘—M1 .




3. The forces glven to the mass are

oy :
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Usmg the angular momentum equation, ( iV F)

A S-S xp.t,\.xcwé)-#méﬂawe

and the Newton's law, - — -
2 A "
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we have

= % gind . : 2 N
2= r.ﬁ_m-dn 1: w.«m—iof I o

since

Y —_— o e .,,,,A R .‘ . — — . —
- ) = W w/g;mcta
Multiplying by dX and integrating wields ;M)

v J-._ Lo > L a2 _
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where we used the fact pte=e.

Using (3},
t= hv%(jam.-j,_auu o . L

Initially F>0 (cor_npres_smn) and as Agets larger, F<0 (tensmn) The critical angle

is given by

T =0 , 3 tos«-= -3*4%-5049

4. (a) The total mechanical energy of the system can be written as,

Tt T T _\— Ha 2. - i
Brsveta phast- 2903

since since we regard the cable in two portions which represent y and X. 1In

this case the total energy should be conserved. Since x+y=l, X=~y, we can write E
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By taking time derivative, we get, . i
A r o oo - 3 = ‘
'a'}E-"”“d‘d—--%-‘a‘d~° = 9 %‘d
The solution of above equation is
9= 2 p([F#) +beoq(-[E )
Using two initial conditions, ¥(0)=0 and y(0}=1, we get
60-b=o | astb= 8 =S o=b =—5_—°‘ I o S

Y= E(ep([Ex) +ep]E ©) L

(b) The total momentum of the cable is
¥4 Y . o . S
Y=%49Y ¢
Since the only external force which can contributes is gravittion force T * (é—‘g) ;we
can use the formula 4
4 . __ o oL .
Prox = 5 (%99) = Fear -5 94 L5y > 9
Multiplying both sides by ydy-and integrating gives, —_—
9Y O‘(z’éﬁ =qudd - -
2 s
z‘d”‘d 19 f—)vtoﬁ- =3 ‘f“jj-LduJ
since ¥(0)=0 and y(O) lo , we have,
9 = J"& N
tj = 3 g—:j (\" at .
The total energy of the system is (
E= 19y - 959 (D
352 eu-5) - 2Lyt

nre 275 29
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In fact, since ol > and :jp,Qo ' j‘}g(o . The simple interpretation of this

decreasing of energy is obtained by using

9= %— G- -%—“:-) i
é;?‘-\-s;%t'd"v%:—f Md‘d)‘dz-" 92 o -
dm above is the bit of the cable which would partlclpat in the motion during dt, -
Initially it was at rest and suddenly got kinetic energy -;-_Jiu é};during dt.
Since there's no source for the kinetic energy, it must be originated from the total
mechanical energy of the system. Thus the total energy is decreased by the rate
specified above.- In conclusion, the missing. energy has gone to supply the kKinetic

energy of the new-comexr (dm) by an :melastlc _process.
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We calculate the total energy of the system . oo
/s e R
5‘, T )AL (&) & L kxty Emi™ 23 length & Hine k.

where T ~ is the line density of the spring and the velccity of the spring element
! -
at & is % % since the lefthand side of the spring is fixed and the righthand sigde is - -

moving vgith the velocity of ,Q, . Now,

E=ftwma + 4mi"+ 4 kx?
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since 2 T g_(Q;{'*?O) = - B
The energy of the simple haITnOnic oscillator is given by — - — —- - - -
E""‘M'x-i-l_hr | B | (2

with E’conserved. The period of (2) is ,’\' oA 'h . In our case, energy is conserved

and by analogy,
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First, 'we consider the torque regarding O as a reference point. Then,
IW= -)%Mg at t=0, X=0, ¥=o )
where (X 1is the angle the rod makes with the horizontal lme, -é‘-__denotes the distance

to M and I 1s the moment of "inertia, which is calculated to be,

5 xFa . ] I . , - o
T=M -5 = 3ML )
52 o o | N
for the uniform rod. From the Newton's law,
T -Mg=my -
S:ane ‘we can regard the motion of the rod as a rotation about O momentarily,
. TS - -
W= -3 ol
Consequently, T T S, T T
i

“ oMo _ 3 -
T= Mg emy = M- 5 d =Mg~ zMg= Mg, R
where {1) and {2} has been used. Notice that this calculation is valid only

momentarily.,



7. (a) If v>>s, we can assume that air molecules are frozen, i.e. static. Thus durlng dt

"the sphere sweeps the volume of Avax

Thus, 4”4 "ﬂAUAk molecules get momentum VA4 from the sphere which means the drag force

T Famg s S AT -
{b) If w<s, theemmt_ofihe mass of _the_aa_z;mlecu}es which collides with the sphere

durlng dt is

Aty xGon - PASH ——y ;4'_—;_—‘

- from IPR and the same amount ~from R9L: ﬂzrfomver—case —the —= (ﬁ:_———
____gain in momentum_ 1s L L
.__e AS 4% (545 -\;5‘? ﬁr‘
while, in the latter ‘case, the gain in momentum is o T
_LpASaR (0-S) S e ———

Thus, the drag force 1s

Favg = $% pASaH CU~5) + S paser(ows) Y /ax =

(c) Consider a frame in which. the sphere looks static.. _Then, _ _
T= QRO ML) 2 Dy /0
where # is the drag forc?e? The meaning of the éboVe_equatlon is that during dt,
-~p Frh A of airmol bStuCR -to—the sphere ,—gammgv—«afmntum.—wotaee +that-4n-my——
convention fi is the outward normal vector from the surface of the sphere. Thus,
in the averaging process which is denoted as < >w‘$in the above equation, we should
add only those contribufions from the air molecules i which has negz:ntwe-’z ﬁ
. The molecules getting. away from the sphere can not _stlckj:o_u;._lnjle_of_this_facj:JW

we. can deflne the averaging process like this,

H ”r_ﬁ(o
<‘.-‘>NW - -...———-l'l ;An‘ x trert \L C
s i R # ¥ s oo

sin_c_e___:é. is randomly distributed. Notice also the diffrence between &’ and s_. and the

fact that the averaging integral appearing above is performed in "velocity space",

rather than usual space.
e —__In-the-lab frame,—all-we have-to-do-is-to change —l

T [ Cpem RO B e

» 240
-—Thus,




Carefully observe the diagram below in velocity space. ¢ €< V)
A
i 7

. 5M m’,rm’uq&g ve.lo;i—fj Jfa-{f.vfd‘ r_adf_us .r

The averaging integration introduced before should bés_e\_;alda_ﬁed__at_ the I

circle spanned by all possible s, which is clearly a Jphere. For a given & , .

we should add all the contrlbutlon from the sphere as long as, L
(J+ 3 5)- hae » Uog + Sepsm €O =  (es® é--—f“”“

Thus, if --;,.‘-Ht'("' P dasK >-S- no & contributes., If - S 2 P e CA)-

GO L D Lest - ¢
all & contributes. 1In th:Ls case, the averaging integral becomes

e
)-?'-:- ¢wJ €T+ A P4 8)2asiibde  (due-othe wiadonld symieeny abouk 4 )

) L s is congipnk
£ (Y (T480 8 ¢TxD) gy (k= tos B)

3§ (seosprvema)(Scosp B+ vl) ‘6‘“"‘“*1"“""‘” yotationdd 5 ’

)

= 4 g‘ (§ XF Vs> sxR +v0dx = & 528+ o cosx O o
$
r 1f -5 Ceosk <L, only -\ < cos® <‘"£""‘ contributes. Thus, .- (2)

‘0'
-2 s

§%’-"% S '5“7" L&i*\’@i?‘)éf‘fu-&UO)d?C
-« _

=X ( ,_4_’:(\— -‘—;i cosdol ) xvs “"‘“ (&’2- c.;'-ou-w) A

-J—(_E_‘L( Teestol =) 4 Vreodn (i -cw-c-om))u

Now we should perform the spatial integration on the sphere shown below

The straightforward calculation gives,

—
\T/ ;.w.f r* :mos Aot R o) c)vie*a rokptienad gplancery abouk U3 (Y= %)
I
7 o\j(-‘s*mo 90)+l1{,[(~£\-;,¢)ws 2 (S-0)h

- 9))‘7]‘7\7’}
--bdcmma\% - g (VL (A vy U.\,u_’y(,l
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Now the drag force-can be written as,-

2 4 A
Fings pF = -ph Lo 3552050
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In case of s>v, the whole calculation is similar to those given above. 1In this case, |
all & contribute%gand the result of the velocity space averaglng is given by,.

ratl o
(just like case (2))

S G 1.(_?_ (-5 2 o5t 3 U (& Ceaty-1) A 4 LY “m’uqno‘mc»——,"-’wu »NO

Now we perform the spatial mtegretlonﬁ _sij.?:elghtiferfqardly and get,
Y- o2< S v? Sin¥ Aot XCD’) (K> cosw)

> :,-u—* $ j‘ :ix L { ‘-'(,l -,,3 )fx .,ru-‘x’-(—u-:w"-l)-& £ (,fac‘-u)-w"xa_-. \f’rx)}

Thus in this case, the drag force is glven by,

-Eo\ﬂ-g - pALE o:-t;‘*g_-—-')’ o S
The governing equation in this case is given py,
WA % T 4 dty = g
By transforming v=v’+ :?:,'_ ; Wwe get egquation for vf
A ﬁ. Ve ~hrs’ -
By the direct integratiou‘c‘;f the above, soluticn we get,

Ve Tk + Cepl— L%)

Using the boundary condition v=0 at t=0 we get the complete solution. |
Vs iR Ll gesp— 25 H)
By expanding exponent1a1 funtion using the Taylor series e \+x1§4-- ¢ We get
9F (V= T2 K v er)
Thus,éd‘“—‘_ﬁl. This is simply the free falling somewhat draged by € term., If t is

sufficiently large, we can neglect the exponential term in our solution. Thus, the

terminal velocity is given by,
- w - N - _ - — = - — e — . — —_— =
AVA-- '—Lkr.,,_ 2 Utenind (
which is portional to inverse r square. __ _ = - o ) o
(b) By dlfferentlatmg mass m= -M"P w1th respect to tlme, we get

am—‘ﬁ o?r @ adxr— -:: r—;r.g-w'k cid

In this case, our governing equation is given by,

‘T*cmo) 4 kr2y = mg
~ We rewrite our in the form showil below. =

_g(f)rzuzo') +5 zr,\og—&vd = fCHV) 4+ HP‘@P‘? et

(C 4 ured)
Above form is equlvalent to the form shown below which is directly integrable. (

( Ardy rie v X 0 \—-33%-0‘ ::+-3-"-P9 3

x =3 A seody /i 4
? Ao v) = 43 %P
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Now, ung%Y;% +47a,o  sevbz BT X
_ — (-] o
u k)= dos ok S 4nP oy B (Vo — 4npg aptt o )& (h’*%p o )3 kIt

Th sFeda\ case, Yo= 0o =0, we gek
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(@) A simple way to observe this system is to observe the cylinder moving

with jerk. In this picture, the cylinder moves from the left and abruptly

stops and falls over. From the momenf it stops, we can visulaize motion as a
rotation about a fixed point., We regard the point as a reference point measuring
anjular momentum. By doing this, although the translational motion has been
abruptly stopped.by the frictional impulse type force, the angular momentum
shoulchontlnuous at the time the cylinder stops since the direction of the frictional
force 1s Eﬁgﬁ:ﬁ to the direction from the reference point to the point of action,
i.e., there is no impulse type torque. If this initial angular momentum

was large enough to slant the cylinder as shown below, it will fall down.

‘LQ- A e?-(g .2
—— . =
e
. .
referamce poink reference povk
The initial angular momentum is easily calculated to be,

LM Ex3 ) = mlvcoso

whichzan be equated with ) {
Tw 5 I~ mamadk of wmartia of cylinder wirdh respect <o redevewce poiuct.

to yield the initial angular velocity ¢« , with respect to the refence point.
Jw s MQuwss ., » (b= Mivcse

Using energy conservation, we get the condition, ¢ see {1a. 2)

-l£1w‘+(‘499 o058 = Pormionl Buogy (RE) + MeL |, RE 20.
FTOS 2 MR Clmees®) 5 Ut 2 (£%)- dg ‘;‘:::
The moment of inertia is calculated to be,
.I__tL~+u4ﬁ>“mkz

Thus, we have the desired result,
9 (54 cos2e) C |— ore)

LA Ly T
s+ B
{b)} The conditlon for the cylinder to fly off the ground is the normal force exerted
by the ground vanishes. The Newton's law vertical to the plane is given by,
My = T g e 2P

where T is the normal force andA§ is calculated as follows,
V= Rewesd, Yedsnd g | Gz Rest $* - Romp ¥
Using the energy conservation,
LIg* + MgR wsg = Be {
with the total energy E_, = mgl (In the case when the equality of the (a) holds,
the cylinder stops when the diagoanl line of the cylinder is vertial to the plane.
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Thus, we hae the total eMergy chawn phove,d, we ek
F 2 Mgl (I cos)

B*j A'i’{"ce\‘ﬂn‘b\kt\"‘a ‘t}'\t’- akove nesul-k w“-el/. TESPCJ.C'I; o -t:’ we %e*
298P = FMPR smP g o % = "“352 sing

Bg puttivg these vesults nbo (1), we 4eh che Q(Fregﬂm fr Norwal Jorce,
T= Mg - M,Qcos';é 2 W98 - cosP) - o 22 su
- Mg MQ ( = HM_ ~2 o8 4 3eas’PB — | )

Consequantly, the condition T=o \/ieir)u.,
3 o> —2cosep 4 S8 3-4-405"9

cosF = -L(\'-t) “""’D) 'L(.l'.\:—‘S:MB)

~ For he bosehenk of the cAivder 1o lgpe the g duxﬂ'wﬁ Hs rye, the solution sbove chould
‘o '

exists behocan ©< ¢ £ 0, This gives Us de resuly
ces0 2 -3‘- + £ Sn6

ek, The comenk o nertia cah be calouleted 1y Ly Jdirece tegration o 31 wstng pavallel wxic eheom

1% perpadicalar s theoram Pwt;@t—ly. .
10, (a) U\;avu& dhe definition of -l;_,, I

L= ‘? m ;% 0 cr‘\-re, v.-yrmat-gu ‘é\' t

= 2Mrtw s @ R (h=rls, brreipw ) | ; "

_ .
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where & 15 ghown 1 dhe Pighx Higure. \OM -

_(_Ei —’ s 2 \-“‘wc:ose %’G (see die Nal\k -‘}\au.hr) 2 >
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by T4 the Ye«g,uwwl tergue is {uﬂ»\ue«l luj Bl %ﬂabeoﬁw;s T N
6¢ shown, the divection of die foree should be as showh. T e
The M%h‘twa\.e s 2

2Fd= 2 Mrtltas Bon® = N

e Moteteiean®

A
() TH 4he wheels o break See fown dhe bearngs, ther’s ko extorna torgue, /At that tine,

the anguler momtesotn chotld be contivueus, Thus, the resltng inotion is the vototion

abovk B agis wiréh -e)ne.tuqq_niwh of W,
MW’ e ZMy> s @, B = we ®
e .

2R 2T
Thus, <he Fe«ﬁod of the motian ¢ = 37 T Gefe

(,d) T S]?hb\”’sm\ Fa'avr condingie, che of the masses ocelerapon g Given by,
d=¢ 'r'--rc's"-rm*&;'zﬁz)?-«- Cr'® 42%8 —psing wse P*) &4 (PANSHE 4 L v SUBF +Lvws0b 5
Cine e wmass s free & vwonte A¢ lcw& ay s conazrned, drere’s wo fovze 8 directicy,
Thus G*e=0. Moreover, O= ‘} - o, 5.5:"*5, ¥ = cmstank, C—Ohf&{uady, we have
.@—I- 51»«@.:05@00:"—'-0. ch
If & s sugl], om0, we o-‘-medwwtdf get

P+ ot O =0

’Tlm,c &= ofdﬂé«'\’cs 6~’°°‘-‘"‘ ©=c, wid« e dw\gu\nr -ﬁrcguwﬂg Lo,
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