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We'consider the motion of he chimney as a whole, Regarding O as a

reference point, from the torque equation, we get
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where we used the fact that the moment of inertia of a thin bar is o mg
I— Ml /3. I will show you two methods of solving the remaining
problem.

METHOD 1.

Let us consider the small {infinitesmal) piece of chimney as

shown right. We directly apply D ‘Alembert's method to the

plece. F1r£ the force balance along the perpendicular | <
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where F;.denotes the shear. By expanding the argument of Fu and using (1), we get
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The above tion can easily be integrated to give,
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Using the boundary condition, Fy=0 at xul, we determine
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Consequently, e
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Now, we consider the torque palance of the piece about the y Mo
&
center of mass of the piece. From the flgure right, we get +/f¢7?+;§)
I’ 9 NC'»-") + NC + T ) 5_(?0-1""")" E,_(.p; _457;‘(.’_9 .
Wi

where I represents the moment of inertia of the piece.
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From the fact that the chimeny 1s thin, we can show that @ Ak TJ

the first term is smaller than the second term by the factor
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where r is the width of the chimney. Thus we neglect the term. Then, by expansion,

we get the very simple relation.
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We integrate the above equation using (2} and have,
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where the constant can be set to 0 from the boundary condition N=0 at x=0. Thus,
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By differentiating (2) and (3}, we get

Te"c"' =0 - = 20/3
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where each % above represents the most point of break.
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ME?HOD 2.

Instead of considering the small piece of the chimney

weéconsider two large portion of the chimney shown right. ii:;g:A
Notice that the interaction between the two portions is

reéresented by F and N. By applying D'Alembert's method

tosthe lower portion of the chimney we get,
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where we used the fact that the moment of inertia of the lower portion is

I= 1/3 M x/1) 1? We also consider the roration of the upper portion regarding

its center of mass as a reference point. This consideration gives,
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where we used the fact that the moment of inertia of the upper portion about
its CM is I= 1/12 (M (1=-x)/1) (l—x)z. By using (1), we have two equations,
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for two unﬁ%owns Fo, and N. By solving the above two equations simultaneously
we get (after rather lengthy calculation!),
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In fact, there can Pe variety of other methods depending on where you put your
refence point,

Consider the figure of right side. The direction of F2
is along the line OA. Otherwise, if we regard O as a
reference point, there would be net torque which would
preak the equilibrium condition. Since we considered
tofque already, we condier the force balance. The vertial
and horizontal force balance give,
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From the figure, we find that
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Combining these results, we find that,

obf = whot + %u
From the requlrement of &(}u fyat point O, we have B s1ot
AP N e T U Fo ik & Vg ) (

and thus determlne/A‘# };;»m,can be determined by requiring the similar condition

t int A. In this case we get _
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Now, we consider the napkin ring moving with backspin.
At first, the napking has the angular velocity Vo
t—
and the translational wvelocity v.. 8ince the contact . -
0 E”w.

point O is movmg relatlve to ground, we should usge the

coefficient of the slldmg frlctlon, P The to;’;q_ue._a';di - F /“ “'3 _
force equation give, respectively, (T z#t’ X jn-sdis cosed - )
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which can be easily solved to yield,
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As time goes on, the velocit y of. the contact pomt becomes zero and rolling w1thout

|

slipping occurs. In that case,

VLo, . . L } oo .
and using (1), we can find
Vo + Fede . ———
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1f the translational velocity
Uz Va - /Lg}t
is negative at that time, our napkin ring will roll back. Thus we have the condition,
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Since our object is rigid body we have,
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By taking variation of the above equation, we get
(B=T3) (V- e

which means,
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where n is xector which is perpendicular to¥i~> . For our force £, 5 , we assume that ..
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We can interpret o7 ¢ Ppart as a translation and Jk»- part-as-a rotation. One important—

thing here is to note that the condition (1) is not _ i (f-)
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4. 1 will present two methods for this problem. =
METHOD 1. Force Balancing

‘The physical reason why static equilibrium
..~ is impossible-is that -if 0 -gets-too-small,we———— — - -
should have negative T, which is impossible. F
With this fact in mind, we consider the balancing

of force at BaIT 1. This gives,” ~— ~~  ~ 7T T
Ty _stw Bor @) = (u G Gox®) S
T, s CRo-® + T, @ilio+8) = g

At ball 2, we have
M Lofo £ Ta6hd =g & T wid0) - -
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Solving above equation for N; we get,
= - 4
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Now, the requirement Nz o , we have,
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METHOD 2. The _Vir{:ua;l Wor]:c:- '
We consider the virtual displacement of ball™2
by&K . Since the contact should be maintained, the CM . .
positions for ball 1 and ball 2 is shifted vertically by

bala; (gl 2rees30€0) Tlall 237 FYs o o Ginor SN0 T

Thus the resulting -change -of—gravitational-potential-energy-is-given-by,— — -
Fw» Mgy, + FYs) oL (2X o5 I0=0) + &1 $7n30 $ing )

By équating above equation equation with 0, we get,
Y
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~__This result is same_as the one _given by method 1.  The important thing here is that
we fix © as a constant in the whole virtual displacement process.

éenerally method 2 is simpler than method 1.

5. We will solve this problem using the method of virtual work.
From the right figure, we find the length of band is,
e —— - — _— lxr?‘he — —

.- -_Thus -the total mechanical energy -is-given-by e
= 3 hianrane —Lo)” + gres®

By taking virtual change of & , we get,

— - PE =k (amrFARe —Aod 221 200 (G ~FYr$ih0 dg.=o .




s 27k cose QATsiHE — foy = *g 5in6

We note that this problem can be solved by direct force balancing. One caution
should be mentioned if one tries to use energy conservation method. In that case,

-one should verify that the kinetic energy vanishes when the band is at the static .. . .
equilibrium point,

6. Throughout {a) and (b), we try to calculate the change in vertical location
of the center of mass. If it is lowered, the gravitational potential will be changed
into kinetic energy and an instability occurs. If it is highered, we get stability,
or stable equilibrium. We note that the position shown in the problem is a
equilibrium point though if it is a stable one -is not known.- - - - - e
(a) Consider the figure below,

Due to the rolling of a dime, there has been change in contact point. Additionally
CM has been shifted from the axis OA. The two effects are added to give,
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where the initial position of CM is r+h. Thus, the instability condition gives,

&y >0 = o h
(b} As long as small rolling is concernéd, the rolling of ellipscid is equivalent to
the rolling of a sphere having radius of the radius of the turvature at the initial - —
contact point having CM h above. Thus the below figure is relavent.
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The same calculation as {a) §ivés; (see fiéure for'explanations}
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The radius of curvature is formally calculated as follows. \ (

The equation of ellipsoid is given by I
ek

l
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and the formula Vv T\\--__- Py
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“gives, (after a lengthy calculation)
ri
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Heuristic way of deriving this result is to expand the above equatlon and compare w1th

the expansion of the equation of the circle. ( X PR F )
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ANOTHER METHOD: Instead of energy conSLderatlon, 1t is posslble to con81der torque.
In this case, we compare the “horizontal displacemént of contact point and the
horizontal displacement of CM. If contact point overshoots CM, we have stable __

equilibrium., Try this method to our problem {(a) and (b)!

Consider the fiture in the right side. Torque equation - - e

directly gives, ‘
N »~asndR =T B B---rf—z—a she (D

As is well known, the simple pendulum of mass m and

length 1 satis fies the following equation.
9 3— smB

The above equatlon defines the center of oscillation as
p\:i——t
MR
The point lies along the line AM. Now, if we rehang the pendulum regarding the
center of oscillation as a pivot point, the correspondlng moment of 1nert1a is

given by (from parallel axis theorem)

I’:TCM+thll),'I+Mﬁ-;uw+wﬁ = 1—2MR1+Ml o
I
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The torgue equatlon now gives, ggrn> MR
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We find that the location_ of the new center of oscillation is exactly the previous
pivot point by comparing equation (1) and (2). Thus, the period of two pendulum

is same.
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T by circular rail, the possiblée wmotion for CM is only “circular motion with constant T
_speed. .. If we view. the whole motion from the (M, we are merely observing rod with =

- — —Ietusverify this answer using Lagrangian-method:

_From the right picture, we find the coordinate of

9.
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- - -and -another-particle's coordinates.are given by . . ..

Ol n

v .
Smce there is no external force except for the constralnt force whlch is supphed

two identical mass at the ends from the center. Since there is no external torque

in th:Ls case, this motion should be rotation with constant anqular speed.

one particle is given by

R A A I ,,,,_thg,*o‘ftl«'ol

Fron the above formula, the velocity is mmedlately ‘found by differentiation.
Kis ~LAMB R ~ gausn ™ O v Reof) f Faws¥ 63 XaT RSB R—o gmw o Yo = ~Reagtg b htorpy

Since there is no external force, the Lagrangian is simply given by o o
L=2-V=T= % L‘x”-&-f"«‘ + et 75D
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We can 1dent1fy two generalized momenta - - -
Pu = L F et
Pg = = 2.H49~ ﬁ
where the?rmer represents the orbital angular momenta of CM and the latter
represents the angular momentum of the system with respect to CM, From the L

Euler-Lagrange equation, we have
_._p_, :Llzo = ””’-e‘“i"r-?-‘“ff-*ﬁw ST
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‘whic verlfle our expectatlon. .

In plane polar coordiate the speed is given by

— _ -
\)”: ‘r +v*b

Thus, _the Lagrangian is given by . S
L2 dmo’-Ve= émér + ™)

‘since there is no external force‘.? We have set 6 > since the mass is rotating ‘with
)

———the-constant—angular-speed.— From-the-Euler-Lagrange-equation-we get, — — ——— ——-———
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The general solution of the above equation is,
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From the initial condition, r>% and X =, . at_t=0, A,B are determined.
A=z T B (O
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Thus- fﬁheifﬁ_l 1_ solution is
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——10; We consider the statit case of the righthand side figure. v
__ Force balancing_and the torque balancing regarding CM ™
of the double cylinder as a reference point give, Y [ =
I PR — [ ™
Tir, =TT ¥ " ‘\/I
- Tz o=t Pug Ta %)
T = M2 g
~____ From the above equations, we get Y,
— —
(M, mr = hanTa n ;T?-
Especially if Vi=M",, the condition reduces to o )
W, =o ‘ M2

From this fact, we understand that if R=ri m=%, our acceleration calculation should

give 0 result.

--—  -— —{pY The Newton's equation—andtorgue equation-mentioned above givey -in-dynamic-case; ——
MY, = wig + T - T
L o = t-f:r._ S VI

L maAGi=mag - T
- By solving above equation for T,and T., we get
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Thus, usmg the add1t10na1 relation (constraints),
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T T TTwe get,
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(c) The lagrangian can be directly written down as,

— = . L ‘T‘-{-U “" X, j(mz_ (K,*’Q’ + -L -f—u\, g,‘-‘-b-iq;,(_x,q-r;,)g
-— —— -We-can rewrite above~equatmus—mg—the—eeastrﬂamtsmt;9nedabe A8+
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Now The Euler—Lagrange equation gives,

{
— Wejanjctuallx verify the special case mentioned above.
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11. (a) From the figure right, we have three conditions
for static equilibrium, That is, two force equations
~tgtTsivg &+ N=o | Tewso=F |
and one torque equation regarding CM as a reference
point. 7
Ty, = 0,
From the above equation cne finds that
cosB s B o
Additionally from theR relatic’s;);. , ;Z,C_ /A.N, , we get
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{b) In dynamic case, the force equation and torque equation is given by

Frn- Tr > T = '-rj—:-:k
>

Toso — T = my
where the condition of rolling without slipping implies
il = X
By solving above equations, we get
322 T (osD~ T /5)
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If F=0, we should have,

¥ = T cosw
| 4g

D

By equating this with (1), we get

Aoy 1
- T (s> -, rry) B = - e
Sl A T = - z
{c) The construction of the kinetic part of laglangian is straightforwardly given by

_ . L . N 2 .2
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The generalized force corresponding to tension is given by,

* = P n
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where using the same method, the generalized force for friction is calculated to be,

E Soictrn = ’W O

Thus, the full equation becomes
>
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