SOLUTION SET FOR PROBLEM SET 4, PH205 4

CMof vpper 1ok
We will use the coordinate system shown right. 20
, At of side rod
The kinetic energy can be decomposed into ,,,;if/‘//’/ﬁ
cem tg)
transiational motion of CM,
I L lhw)( kP yt)  mimen ebaved .
and tpe internal . motion about CM. The rotation ‘T ““P"Jﬁ=- P.

about’CM can also be decomposed into two parts.

For the uppor rod, there is no internal rotation, and the coordinate of its 52113 ot R
CPwA ca xaHe
cinge) :
. (oA 4

Thus we can 1mmedlate1y find its kinetic energy.
| 1 LY -
Now we consider one of the side rods., The coordinate of its CM can be written as ¢ *’
(Ot awso, asineg) = Thus, Can doeraal eneryy (¢ Zmors®

2

Using'the fact that its moment of inertia is I = 1/3 ma” and referring to the

fiqure above, we conclude that the rotational energy is,
4 fwre®
By symmetry, the remaining side rods will have the same kinetic energy. The same
relation holds between upper and lowér rods. Thus, the total kinetic energy is
T = mal (-f;- + Geos?0) 6 + 5obw LxPay®)
which is identical to Lagrangian in this case. In our coordinate, the coordinate of
the point where impulse is applied can be read from the figure. They read

gf‘: \j "-2-0\§“19
From the Euler-lagrange equation for impulse type force, we immenately find
_’é_'l'__) ﬁ-éh}‘f - P. ...?-LéP :?
o (ZLy=ret(le 1.4 Beesre) b= p-2-gp = ~20es0p

Initlally, © =60. Thus, above equations give, (ws"9=;‘;)

- - ’ 3
_g:-ge,; ae=—=;z%

. -’
Thus, speed of upper and lower rods v, and vy is given by
e Vi Y —2acoso b= R(% +H) i

=Y troeme s = F—55) - L

Thus, the ratio is
NS

—
—
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This problem can easily be solved using elementary method. (In fact elementary method
needs less amount of calculations. ) However, for the pedagogical purpose I will solve

this problem using Lag’pnglan method.
: ¥



We will use the coordinate system shown right. The CM
coordlnate of rod AB is given by
( rotos oy, Y+ Acm B ﬁ&.ﬁ (-asin®id, y+acwisS)

th.chI gives the translational energy
"lm (% 43" + 2aycose &)~ 149 SO, &) va> &)

The rp‘]:atlonal energy of CM is given by {( I = 1/3 ma )

J s .
I LT Zwo> bl
In ou'r coordinate system rod AB and rod BC is idential except for the subscript. Thus,
the Lagranglan can be written as,
L____ W (.91 -+ 95 54 % LXK _* 71) 4+ H"ﬁﬂ(““"ol &, 4 i 9;) —Wax{ g1w e, bt sins 9;)

The cpordlnates of a point where the impulse is applied can be written as
‘:ﬁ‘p: X 4+ O0lcs8,; ’7/},: \/+ O5in6 '

Thus ,;_ Euler Lagrange equation for impulse type force gives,
Z_‘;'. = vl — ASIWE o —BSiw (D> &5, ) -:_-P tosSK

;f _ w2y 4 0oL Bat oS0y b2 ) B P sinx

——

y c Y - in Th &
_g.';&i = i,*m" B * Moy (os, - Wk 51nSr = o[ sink «oiS ~P cos o Sih O

o . . X (
L Zpt 9;+M9M9; A LN B2 =T |

abl [
Using the initial condition 9: ©: (there's no deformation), and 8,=0 and &.=90,

we get four equations from the above four equatlons
L mc—- &Gy = P/m cos X (& /3 a6, +g Pra sinx

&3 -7—7’-';- &6, = Py sinnt 4) 443 a6 - =% = ©

(1) + (2) and (3)-(4) give
g (LIS Rty Lok  cesx= sikd
from which we conclude that of =45. (2)-(3) gives,
9 - ;';45\ =0,
Thus,  from the above equation and (4),
-9£o~e~ ,y= T as
The coordlante of A and © can be written as,
Ta A= (Wt 20081, y 2051561 [ 28 c
which' immediately yields their velocity at t=0.
Tpc (%, Yr2ab) Vo= (k2abe, §)
Thus,

:'_ .z_/..l.;-;—‘- | :
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3. The Newton s second law gives, (F = constonsd o)
’ >
F+(—M3~o) Mily ~rd )Q-l-h(u—a-we)e a
where! we used plane polar coordinates. From the torgue "/
i . w
equat:Lon {abeut pivex poird) ——— 2
b 2 9 ted F'(a eol l‘m 14 F‘
| omgsino= 3 InetB » B= T 5tk pivet. exer?
|
where weused I = {1+ 1/2) ma (parallel axis theorem) , we can also get,

_ i 6 3 = @ (1-¢tose) o'¢er = g‘%u,_w;a)
by direct :mtegratlon. Thus, for arbitrary angle € , the force can be written as
; ‘E-: MY-“ ""‘ﬂcf—ws-a)r *stuhee

1f 890, £ = % and €=-9. Thus,
. 2 P - 2 1% _Jmm
Tl Sk S 2wy o F B g T
1f ® =180, #= - §, & = - %. Consequently,
g

?"-: i+ §‘.)k-g~/ = T—‘=—3—Mg

o ,
4E Follwmg the procedure of the previous problem contained in the last problem sets,

the roll:mg without slipping speed of the billiard ball is obtained to be,
\J: 5\3-.0 e 3 ).Y'U)o

- 0
(For the ball, the force equation for CM is

and the torque equatlon about CM is :
TN o LR & g
Requiring rolling without slipping condition ylelds the time it is achieved. That is,

\)‘:&(,013 o"'/’vgt-.-.- o—fﬁ:&z-/ﬁq*

putting this into v gives the desired result.)

Cons:Lder the figure shown right. ILet us assume the

shot happens during ak , with impulse force F. ‘
Then, the force equation gives A3 o "
T cose ok = Mmav e %3
whereas the toyque equation gives A
e b sin(geint~pr &K = ;_‘ho.’-dw " —
We divide two equations to get ¢&VF Ve, SR EL) tosg = —= , $hk> :

Eadds ..."_‘_% + giwe 9""9 > - .._gz_-'.!lﬁ‘-’ = Jh i aph S~

Now we require the returmng condltlon v<£0, which mplles Ve g-;nq, Then, (1} becomes
 cosK + tip tone 2.8

“ong 2 (1~ wosR) / Sthid 7 T—:——
hc. J—————o
-\
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() Slnce there is no friction between two balls, the angular speed can not be changed
durlng the collision process. Furthermore, since the collision is elastic one, the
llnear momentum and total kinetic energy is conserved. The well-known result of this

two cmnservatlon law is that, if one ball was initially at last, the other ball stops

and the initially stopped ball moves with the same speed. (Since this obviously satisfies
energy and momentum conservatlon, we can verify our assertion.) Thus the initial

angular velocity and the speed of ball 1 after 1mpact is,

:!00 - ! (J‘)- = 2y,
Usingithe formula we derived in (a), the rolling without slipping speed is,
i\) - 5’.""* wree o J‘Oxw:z

: A )
The initial speed for ball 2 is

\TO"‘UT;\.’ we =P
Wthh implies the rolling without slipping speed, \5= é? U

W
5., The ball initially moves from left to right and bumps the
the bumper. At that time, it gets impulsive force from the
pumper and starts to rotate about the point of impact, since [L

there is no slippage at the point. Thus, if the initial | (
angular speed large enough that it can stand vertically,

i.e., "i{f the line connecting CM of the ball and the point
of 1mpact becomes perpendicular to the plane, it can jump

Using the parallel axis theorem and energy conservation

-
that condition can be expressed as, (0 1 omgle buwm A ond 4
Au":: \M-%L\ L—le,o. + -gh-o."}h.b z.—’-’— M& ws o= .__. {0 I, al‘.reca"l.)

’

puring the impact, the angular momentum about the point of fixture {point of impact)
should be continuocus sxnce there is no impulse type torque about the point. Thus,
L m Ca-hue+ T g wiod Lo, —fzum’—w

The above condition glves, for, wpe

['“-* ’I
{< -

0.—-'“ U’Mh
angd for W /e,

4 a
—-L)U. = gno\"’w = Ve 2. ’74"571 -W = Fmin

Vo 2

(o

(b) Durlng the rise of the ball, the energy is conserved. That is
£= S 16"+ kgo 030 = g ey 3 cengtes, (1> ﬁ

u,[w.& gi—he=mTER we used 'bL\c bace that  for U= Uaiu cate, e bod) tHops
wshen i+ reahes ©=0. (s=e dhe obeve Dgure G the definition of ©.)
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The normal force exerted by the step at the point of contact, N, is cobtained from the
force equation along the radial direction. Thus, (R =NF clearly)
ma ~ mod” = N-iugco:& P N‘:—hn‘ﬁ’“-i-hq.‘-ble

Using !(1), the normafforce can be written as
N= wg( -;%9 Li~cosp) + cose) = Mg (1N cesd ~10)

Notice that the ball flies off if the néZmal force becomes 0 (or negative). 2as the
ball rotates about the point of mpact, i.e. as the angle & decreases from ©Ov
(whlcn is defined by cos 8, = ) to 0, the normal force gets increase. Thus, if the
pall is to fly off, it should do that immediately after the time of impact.
Conseéuently, setting & =8 in the normal force expression and requiring it to be
negative yields the condition
lf'}..i'_:ﬂ_.jozo > h 2 %"M

A 7y =

'
1

for the ball to fly off.

In the rest frame of rocket, the energy conservation gives,
Mo = Mact <+ dm > Lo b rect namgs of ejected fuel?
Jl—cdw’c)* Ji— ur/e*
Like w1se the conservation of momentum gives,
: o = Ma dv _ A th
i 1= A/ e)* NPT

We neglect the higher order differential terms {like dv r +e. etc.) and combine

two exPre531ons to get AH4 °
s MMy = M Mudy e ——— Ma Ao = dM-u \ = ud €12
Mz M b m‘ 2 J\_-:A"_/f:i '? ¢ 1& Madv M

The space-time coordinates in two different frame is related by the Lorentz transform
A iy = Y (A vegy + V Skra)

A =Y ( Bk + %aww)
By divyiding two expressions and recalling the definition of speed, we get

e

1
Ti—u¥%es »

A‘C’:A - AW refs +\}¢*NN— =D b = U"“\:np-ﬁ .
Fay YN Ahvers + %.‘_é‘OuR i~ -;\}'U'me
In thT above et?fffflon we set Vlab =V + dV and vrest = dv.l Then,
\V+dV = g © (Wil ——J\,) V o+ C!—-—-—-)du
P
which| can be rearranged to yield
7> AV = dv
where A

Ty are
T ol= VWer
We rewrite the above expression using the exact differential. Thus,

C-d ¢ fanh —\c-}-) = dv &9
Frem | 1) & <2),

- W aM
(kb L) = &

S




Before we integrate above equation, a caution should be mentioned., Clearly
4V =V final "V initial
However, if you contemplate the definition of @M, you'll find that
i
M =M jnicial T M final
Thus , integration of the above equation becomes,
té'anhﬁl v/ic - tanh-1 0=u/c (1In My -1lnM}

sincel at the initial time, V=0 and M=M0. Taking tanh of the above equation we get,

V/c = tanh In (M?/M yu/e
i _ 2u/c 2u/c
Poo= 0 (My/M) 1) /7((M/M) +1) y’F
' . , _ _ _ = Tx
7. Con51der the figure in the right side. (Notice that
the fact that there is no friction determined the dlrectlon
of normal forces. ) From the force equation, we get
: maq ’
= - = ¥ T
Tx mX, Ty mg =mYy ol b4 .
The torque equation regarding CM as a reference point gives, :
1/3 ma2 o = a T, sin® - a Ty COs% (1) ‘ (
where we used the moment of inertia of the rod I=1/3 ma’. Since x=a coOsw and y = a sin&
- we find
T, = ma (~cospl.ol* - sin& & )
;.I’y =mg + ma ( - sink & + cos* & )
Puttihg thésg equations into (1), we get,
i/; ma2:‘>'c = —maz& - amg cos® ——-> 4/3 a = - g cosk

Integrating above equation, we get,
aoi‘l = 3/2-.g { singly - sin«K }
where we used the fact that the rod was :Lnltlally at rest, Using above eguations, TX

can be written as,

mg { - 3/2 coseX ( sinpf~ sin&X ) + 3/4 sinst cos® )
. mg cos { - 3/2 sinw, + 9/4 sintX }
When the rod loses contact, Tx = 0, Thus we get

sinf{ = 2/3 singe

T
X

n

8. I will solve this problem using the method of Lagrange multiplier. {




We use the coordinate system shown right. In this case,
we are given the constraint

>§+y=1;constant f
Now, t;he coordinate of the mass at the end of the rod is Y -
(y +asin® , a cos &)

Thus ﬁhe Lagrangian for that mass can be written as

I;qzljzm(§r2+2acoseé1}+a252')+m9(}"* /
7. O

: a sinB) v

Thus, 1t is trivial to write the total Lagrangian as,

L= 1/2 (3m) X*+ 3mg x + 1/2 m y°

2y y + mg a cos@
Thus, 'Buler-Lagrange equation gives,

+l/216+1/2m(y +2acoseey+a9")

-5;(—&‘-)_%1_ = -i.—(uu. w:s*'f-l—u.o»"é-lié) ~ kg osd =0

n

A ey : T
i ay - L 24 4 M%(WSBG) —2ig =N tagrgige mudtplies

A- — "V - b -

_g(,}k).—_&-,lu«x -9 . )
From the constraint we find % = - ¥. And initially, 8= 0 =0 =x = y with I = 1/3 ma".
Thus above eguations can be rewritten as,

-;m‘sf—‘lu%r)\ ¢
=2l + Wma® —2hg =N ¢x)
f—-h'i’-&-g'u,o\'é—»mg ¢3)
{1)-(2) and (3) are
L 5% ~9 —Ad
X +g= ifak

which{can be solved to give,
- i
a6 = 7—’@ , X=55%

In this case, » is clearly negative value of tension. (Why?) Thus,
M = = e U = - -—0—

f = =h=-dmBE+3mg=(3- 2 )mga 73%&“3-

9. We wil]l choose the coordinate shown in the figure.

IT

20 o K6 - coOrdivate of cpA 2 e,y

ﬁ/P v




10.

The angle 8 is the angle between the x-axis and the line cbnnecting two ends. of
rhombus. (Long diagonal line) The angle ¥ is the angle between the diagonal line
and the side line. It can be easily shown that these coordinates correspond to
translatlon (x and y), deformation (® ) and rotation (9 ). Furthermore, it can be
verlfn.ed that each coordinates are independent in the sense that is explained in the
problem. (cf. The explicit form of Lagrangian is

N Geragh) +-§w\a’-e + .Zu.o.&a* whae = is the has of o rod.

T ——

; =
Try t'o verify this fact!} Initially O = % . And the coordinate of the point where

the 1mpulse is applied is given by
l (dr 'i’—h(.l-&"'ﬂ\) ‘OSKSNAQ d,,no{ i ©

The 1mpulse type Euler-Lagrange equation can now be written as, (P:impalied  and &= )

-"'"L - \b (~(ra=-d) s gos ¥ + dsing ewmor )

i }a' L= FC"’““""O\) Ghn o Gin & — P esti@sR)
&
Since the cocordinates are not mixed, i.e., they are mdependent,'%]— is proportional to

initl;al value of rotation rate. 1kew1se,a.a L is proportional to deformation rate.

Thus *the no-deformation condition reduces to
. - L - -
.___bg.L':.o’ 24, SN ¥=d = d:a(!-—-&-‘zpf)’ A= o Cl— o5 XD
where we used 2# =« . Likewise, no rotation condition reduces to

%L—-C’, 2aws*a =4 A Az o (14 e0s 2R Iz A (M CoSR)
o

Durlng the time the ball is hltt:l.l’lg the rough surface, y

the equatlon of motion is, ,T——)'x.
M AU = do ok 2y ' vy
wm avy = ';":J a% ) % o T—)u,..
T AW = ~abuak P 8

whereg f is frictional force and £ y is normal force. < s

Notide that the motion along y direction is clearly
decoupled from x direction and is identical to the usual case of elastic bouncing from

the Wall. Thus, we can say that Vy = - Vy ( ' represents the "after collision") "

(The [friction involved in this case is a static friction since there is no glipping at the

poiny] of contact. Thus we should use f < }).f rather than f = ';.«.fy. We assume that
the durface is sufficiently rough so that M is very large.) Furthermore, we have the
enerqy conservatlon since the collision is an elastic one.

L owmse® + -LMU‘J + LT = MU""‘ + llmr".;.l T ? (4
2 2 z :
From {{1) and (3), we also have
T
M (ap— V) = — o (¥ ‘- s

- Lo‘o 07"2' \,7)




We rewrite (4) and (5) as follows. ( I = 2/5 ma? and k denotes 2/5)
\Y,,J_-;' U ==k (6L’ — L)

i
i.&m (o, f‘—u,; = —dtmk Catw - ot B —ww =) (U +Ohe) = -k- (oo’ sw0) (ord’+ as)

?

(
U"x’-\)"x = "4-(0!.5’- o) = i Ve’ — 037 = oo ~ U

J‘X +U"n = A& (L;’.*-w) T’ 4 ‘6\&)’: -&,o-w-l.-\J'g

- z _3 P
(‘:‘“’")_ = (““’)_(ﬁ‘ 3 (‘*"‘)
O’ 1 1k A B ‘i-g)_- e

iU«c Une +-§?~

11.

&4l =1
. & U =©
Thus, if,6 initially, o.w Vo then, after one bounce

(52)= (" ")(‘”) an

After two bounces it becomes,

(52)-(7 5) () (0)
- 2 -
\Jocy _.}? % B'Ve [ 2]

Q'Q KT

After the seccond bounce, the initial status is reproduced. Thus the graph of the

whole motion would be ( Qisenmse of rrtption.)

For the back-and-forth motion to be possible, the velocity and the sense of rotation

should be reversed after a bounce., Thus,
(%)==
'l T u'-..)
which reduces into,
D)=
$ /00

-(W)=C

2
4o tiovn =0 = Un= - Eo‘w.

) SR L
SH e
Sl Sl
—
—
=N
£ €
e
i
o

Thus,

{cf. Problem 25. loocks like a typical eigenvalue problem of the matrix.
othef eigenvalue and what corresponds to eigenvector motion? )

Iet us try to solve this problem using Lagrangian.

What is the



(»)

Reférring to the right figure, the Lagrangian can be ‘
written as,

L= dme? N L & stk T P Wa

i - ':!i i, +UA ) t."" -+ %M&d"" &, Ma—gYﬁ-m;gQ &
where we used constraint r + z = 1 ; constant. Now,

i
the' Euler-Lagrange equation gives,

ﬁ('%,t-) -4 L- fmpby=glL=o0 | v

|
i <
! -a-r 31 o & bt i:a 52 h\ =
: i(*l_}-s‘:l‘ﬁ i, %] e 4 23 ©
The first equation asserts that the initial angular é:
kS
momentumhis conserved. The second equation can be
wrftten a%, 2
(H,'{M;}\" - TM-I—FT H‘ML@_
which is the equation of motion. From the fact F = = Veff’ we get Veff by the direct
1ntegratlon. -
leo
Ve# = - W“(urs Mag) = Mgt 4+ 550
The equllllbrlum point is deternu?ed by, o Cr-rn)*
.~ bLe?
Vedf =0 = o ———— i {
"5’-_-' """ ko ~ - vetsirs 3 "w“—“(r’h)_f___v‘-
Thus the effective sprlng constant is given by, (- Vest S L T e

le,(.ﬁ ﬂ\jﬁ: = 1.ke ¢=;."i"_g_  Aett = i;m;.g

l '

From the form of the Lagrangian above, we see that the effective mass is m, +m, .

Thqs, the frequency for small radial oscillation is

N J'—m'r
! CAytiass ¢, i o]
T ] 1
(bf In terms of the relation derived above, the totalkenergy for circular motion is

given by o L
E = Zwy +M;?’r -ww?R = .Slua,oa_’r‘e ""’“"ag

The second term is a constant during the whole motion. The motion’comes‘to rest when
thé first part vanishes. The entire motion would look like a spiral one and we the
radius of the circular motion decreases due to the damping effect by the dust. From
dw= F.ds

welfind the total distance traveled by the mass is,

AE e 2 Mign S M

=z S S - "'—" b
Cwa T Z g Ty
simce the frictional force is a constanéw Assuming the orbit nearly remains circular

atlall times, we find the expression for energy hols always, approximately. Thus,
from the relatlon,
| A E- + Fogie: Ux—-,u“u%rcef—,wu% )“':-9 e

we:get, L "'of-*)bg)




‘fh‘% %vora/;m.g‘i%&g W2 @ 0\““:& :._.-,u.' 8 dx

We integrate above equation under the initial condition Xy = 0 at t =0, From the

notion that the motion stops at rO 0, we get the total trip time &%,
2(RM ) —Ye )=~ m]iy x, o= [Mate

i M~ m.g_
(cf, By dividing Shasak = F??”" °e , we see that average ﬂbving speed was
one'half of the initial 01rcu1at1ng speed, which makes sense.) N

You‘might have noticed that I have not given you the solution for optional problems
and “"chanllenge problem". The opportunity is open to you during the whole semester.
Pleése feel free to submit the solution of the problems anytime during the whole

semester. Then, I will be gladly grading them. The answers for those problems will

be given to you at the end of the semester!






