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THE SOLUTION SET FOR THE PROBIFM SET 7

1.

Due to the rotational symmetry about x-axis, we can
consider only z=0 plane as shown right. Now,
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where we used a geometric relation 8=i¢ which is clear

from the figure. The total cross section is the cross Aore 27ty dg.
sect;onal area where the scattering of the incident

particles occurs. Thus, from the figure, the total cross section is z;Bz. On the

other hand, the total'cross section can be obtained from,
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Consequently, we flnd that B = a. Thus, the equation of ellipsoid at z = 0 is given by
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We dlfferentlate above equation to get, 242
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Clearly, if & = 0, then we should have A = a. Thus, we can write A =a (1 + &€&} and

all we have to do is determine &« . Putting this into (3}, we get
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where we neglected second order term in €"or higher. We differentiate above equation

andget, "
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Compéring with the given equation,
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we find ®=>% . Thus, A=a (1+£&) and B =

f
Comment: In this kind of problem, you don't have to pay attention to the second or
higher order in € . The reason will become clear from the more general consideration
listgd below. This will make the calculation less cumbersome. You might have felt
that the choice of the ellipsoid is rather arbitrary. However, this choice can be

justified rigorously. This is also shown in the below more general consideration.
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: ! ANOTHER METHOD. A RIGOROUS APPROACH

From the previous page, we have,
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We d_lfferentlate ab:)ve express;.on with respect to y and get,
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We p\lt this expression into
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ertlng(g)':‘{and multlpiymg above equatlon by dy we get,
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At y=b, dy/dx = 0 which implies Y = 0. We assume the desired function has only one

point where dy/dx = 0. Then, from the total cross section considered in the previcus page
we have Ymp = =b¥ = o>, Thus, we infer that b = a. We integrate above equation

from a to y and get, ’
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Solving above eguation for ¥, we get,
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In fact we can directly integrate this expression. But this is unnecessarily complicated.
For our purpose of small € case, we expand righthand side of the above eqguation and get,
9 L /4.2'

(3?) = (-9 Y /o>

which is easily =e&w integrated to yield Cladems
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Thls is the desired result with A = o (4 %)and B = One thing we should note is

that if we include et effect, the result is no more an ellipsoid. This is the reason

why I told you that you do not have to pay attention to ¢ terms.
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From ;the right figure, we find that the angle A
is, !
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where m is the number of the internal reflection.

Thus, as the ray goes out of the droplet, the

angle it moved is,
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Thus, the scattering angle © is given by
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Thus, differentiating (1) with respect to K gives, >
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where we used Snell's law once again. In case of water, n~4/3. Thus, we can calculate
oL via the above equaiton and and § via the Ssnell's law and & from (1). We get,
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for m = 2. The angle between the rainbow we see and
the direction to the sun is depicted in the right

flgure. As A gets loriger, n gets smaller. As : )
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gets smaller ¢ gets larger as seen from (2)
Hwever R p gets larger more fast as seen from the
Sneli s law. AS a net result, as long as m 2 1, we
can be sure that O increases. In case of m=l, the initial ® was a negative number.

'I‘hus, the light ray from a single droplet can be drawn as,
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Thus, actually what we see is
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in case of m=2, the initial. © is a positive number. -Thus, the light from the single
droplet is,
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Of course, due to the aximmetry what we see is,
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comment. There can be variety of sign convention for each angular variable. Thus, one

should be VERY careful. For example, the sign of B ,... etc.

comment. Usually m=2 rainbow is not seen simply due to the fact that there is not
enough droplets at that angle. (high altitude.) However, sometimes, it can be seen.
|
Newton's law along the vertical direction gives the equation of motion,
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Usingi X = A coswt + X, , the above equatioin can be rewritten as,
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(Notice that we are only interested in particular solutions of the above equation though
it isi not explicite in the statements of this problem.) The particular solution
produ:c:ed by the constant terms are trivially obtained to give,
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Thus, if we write %=x.+%, we get, (
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(1) can be written as,
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Thus,| if we use real functions to denote solution,
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The amplitude is given by, '
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Since the average of the oscillatiing part is 0, the average height is,
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From (1), we find the critical damping condition is g-:w. In this case the amplitude

can be written as, — — . — R g
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where x = W/t , Thus, the requirement 3(;‘*?'-0442 =0,
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4. (a) If we expand F(t) in terms of Fourier series, , the general form is given by
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Slnce F(t) is even function under t -> -t and cosine function is odd function, we get
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(b) in this case,
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From Ll:he orthogonality of each sine functions, bn = 0 except for n = 1.

|¢.Q > WW 'y L
b, = ok dr = = Sintok + st gy . 2, T L
1 ‘7"4 o $i * > ° = aL}'- e T T .

- ‘ ! - -
- t(xpz T Lsthwk g s 2k = g endgwk e,

Clearly the series in {b) converges faster since each term in the series is inversely

proporticnal to n2 whereas the terms in (a) is inversely proportional to n.

5, (a) From the note, the general formula for x{t) is given by
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where wi's w.‘-ﬁ‘. We can assume F(t) = 0 for t < 0. Then, the integral pecomes,.s.
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The graphs for §=o case and Fvéfwg case are shown below.
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The max:Lmum overshoots are obtained by requiring, 23
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Thus, 1-st overshoot has maximum when >, Ky= 7L . At this time, the the value of . is
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(b) This problem is exactly the same before t < T.
integrate,

After this time, we should
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1f damping has been very strong we can neglect the terms containing e bk factor, i.e,
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which has the graph,
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6. (a) The equation we should solve is,
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We can guess the solution of the form x = A exp(-ot). We put this intc above eguation

to get,
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(b} For .t < 0, X(t) = 0. For t>0, the Green's method gives,
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Thus, the graph i
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7. The kinetic energy of the hoop can be written —y
as the sum of its internal rotational energy and
the kinetic energy of CM. Since the hoop and the 0
rod are connected by the free pivot, the rotational
energy about CM is, R
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From the above figure, the coordiante of CM are given by,J
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Thus, the kinetic energy of CM is
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Tihs, the total Lagrangian is
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where we retained only up to second order,in amplitudes, since we are considering
Teriag
srnall oscillation. Now, Euler-Lagrange equation gives,
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Using harmonic forms b= -8 and ?‘svh‘sf above equation can be rewritten as,
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To have non-trivial solutions, we require the determinant of the above matrix to vanish.
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qomment. There is a typographical mistake in a problem set, One important fact to note
is the one frequency is larger than l%% and another is less than that. Try to understand
the simple physical picture behind this fact.

8. First, we guess the three modes.
the triangle without any rotation about its CM.

CM as shown below.

Clearly the first mode is the translation of

Another mode is the rotation about

additionally, we can choose rotation about the line connecting CM

and other end of triangle as another mode. (Or, rotation orthogonal to the second case.)

i)

v v
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In first case, the displacement from the equilibrium position (equilibrium including

gravity) , X, causes restoring force 3kx.

M = - 3ot
Thus, the frequency is,

Wiz l_g_...
e

Now we calculate the moment of inertia of the

triangle shown right.
inertia about the axis shown is,
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Using parallel axis theorem, the moment of inertia
about the axis passing through the CM is given by,
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Clearly, the moment of

Thus, the equation of motion is,
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In the second mode, the rotation shown right can be repreéented by the equation of

motion,
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Thus, the frequency is,
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By the similar fashion, another frequency is calculated to give the same result. This

result permit us to define arbitrary mode having arbitrary line about which rotation

oCccurs.

One of them, for example, would look like,
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9. The kinetic energy of the disk is the sum of
the translational energy of CM and the
rotatlonal energy about CM. Thus,
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To calculate potential energy stored in each
spring, we should know the stretched length
of the springs. The stretched length vector
of spring n is given by, referring to the

right figure,
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Thus, its magnitude square is,
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geometry of this problem, we have,
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Thus, the three frequencies of this problem are
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comment. The calculational method shown here looks a 1ittle bit cumbersome. As long
as the amount of the calculations is concerned, guessing the modes is the best. Only
to glve you many possible ways of solving problems, I chose this rather general method.

10. (a) The Lagrangian of this system is,
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Thus, the equatlons of motions are,
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We assume the oscillatory solutions, %o Y, Yttt and rrg--td :{;. Then, the condition
for non-trivial solution is to set the determinant of the matrix of the above equation

to be zero. That determinant is,
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Thus, we have three solutions,
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(b) In this case, we should add —é X. term to the Lagrangian of problem {a). Then the

exactly the same procedure gives the determinant,
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whlch reduces to,
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Thus, solving the above equations, we have three frequencies,
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