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1 Problem

Discuss the relation of “hidden” mechanical momentum to the so-called Abraham-Minkowski
debate1 as to the significance of the expressions E×H/4πc and D×B/4πc for “electromag-
netic” momentum (in Gaussian units), where c is the speed of light in vacuum.

2 Solution

In 1903 Max Abraham noted [3] that the Poynting vector [4], which describes the flow of
energy in the electromagnetic field,

S =
c

4π
E × H, (1)

when divided by c2 has the additional significance of being the density of momentum stored
in the electromagnetic field,2

p
(A)
EM =

E × H

4πc
(Abraham). (2)

The corresponding total Abraham momentum is,

P
(A)
EM =

∫
E × H

4πc
dVol. (Abraham). (3)

In general, D = E + 4πP and H = B − 4πM, where P and M are the densities of electric
and magnetic polarization, respectively, while Abraham (and Minkowski) considered only
linear media, where D = εE and B = μH when extending their arguments to include a
stress tensor.

All linear media except vacuum have both ε and μ different from unity. However, most
media have μ � ε, and most discussion [2] of the Abraham and Minkowski momenta assume
that μ = 1. In this idealized case, the Abraham momenta are the same as the momenta,

pEM =
E× B

4πc
, PEM =

∫
E × B

4πc
dVol. (4)

1This debate has been characterized by Ginzburg as a “perpetual problem” [1]. For a lengthy bibliography
on this topic, see [2].

2J.J. Thomson wrote the electromagnetic momentum as D × H/4πc in 1891 [5] and again in 1904 [6].
This form was also used Poincaré in 1900 [7], following Lorentz’ convention [8] that the force on electric
charge q be written q(D + v/c × H) and that the Poynting vector is (c/4π)D × H. For discussion of these
forms, see, for example, [9].
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As such, most discussion of the Abraham momentum actually concerns the momentum (4).
In 1908 Hermann Minkowski gave an alternative derivation [10] that the electromagnetic-

momentum density is,3,4

p
(M)
EM =

D × B

4πc
(Minkowksi), (5)

and the debate over the merits of these two expressions continues to this day. Minkowski
died before adding to the debate, while Abraham published several times on it [15, 16, 17].
For recent reviews, see, for examples [18, 19, 20].

A general consensus has emerged that in dielectric media (with μ = 1) the Abraham
momentum (2) is indeed the momentum stored in the electromagnetic field,5,6 while the
Minkowski momentum (5) includes the momentum of matter that interacts with the elec-
tromagnetic fields.7 This suggests that the quantity,

P
(A−M)
hidden

?
=

∫ (
p

(M)
EM − p

(A)
EM

)
dVol =

∫
D × B− E × H

4πc
dVol =

∫
P× B + E× M

c
dVol, (6)

might have the significance of mechanical momentum “hidden” within the system.8

Note that in systems where all materials have permittivity ε0 and permeability μ0, p
(A)
EM =

p
(M)
EM , so that according to eq. (6), such systems would contain no “hidden” momentum.

However, the concept of “hidden” momentum was developed to characterize unusual features
of exactly such systems.

2.1 Shockley’s Version of “Hidden” Mechanical Momentum

The term “hidden” mechanical momentum is more commonly associated with a different
context, first noted by Shockley [25], in which a system whose center of mass/energy is
at rest but for which the electromagnetic field momentum, PEM, is nonzero. The total

3Heaviside gave the form (5) in 1891, p. 108 of [11], and a derivation (1902) essentially that of Minkowski
on pp. 146-147 of [12].

4See also, for example, sec. 2.1 of [14].
5However, this author considers that the nonmechanical, electromagnetic momentum is given by eq. (4),

PEM =
∫

E× B dVol/4πc.
6When dealing with waves of angular frequency ω in a dispersive medium with index n(ω) it is useful

to introduce the quantity ng = c/vg = c dk/dω = d(ωn)/dω = n + ω dn/dω, which is sometimes called the
group-velocity index. This velocity is positive in a passive medium, but can be negative in a gain medium
[21]. The emerging consensus [13, 14, 18, 19, 20] is that the Abraham momentum density (for media with
μ = 1) corresponds to the momentum of a photon of angular frequency ω in a dielectric medium of group-
velocity index ng being �ω/cng, and is sometimes called the kinetic momentum density [13]. The Minkowski
momentum density (in a dielectric) corresponds to the momentum n2

�ω/cng of a photon of angular frequency
ω, and is sometimes called the pseudomomentum or the quasimomentum. The momentum of a photon
most often used in quantum theory is �k = n�ω k̂/c, which is often called the canonical momentum. In a
nondispersive medium with n > 0 the Minkowski momentum is the same as the canonical momentum. For
discussion of negative-index materials, see [22].

7A similar issue arises in acoustics, where one sometimes speaks of the “pseudomomentum” of sound
waves, which is analogous to the Minkowski momentum in electrodynamics. See [23] and references therein.

8This conjecture was endorsed in [24].
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momentum of such a system must be zero [26], so there must be an equal an opposite
“hidden” mechanical momentum,9

Phidden,mech = −PEM. (7)

The Abraham-Minkowski debate over the meaning of PEM indicates that the meaning
of “hidden momentum” is also ambiguous if it is only defined by eq. (7). A more general
definition of “hidden momentum” for any subsystem of a possibly larger system is given in
[28],

Phidden ≡ P− Mvcm −
∮

boundary

(x − xcm) (p− ρvb) · dArea = −
∫

f0

c
(x− xcm) dVol, (8)

where P is the total momentum of the subsystem, M = U/c2 is its total “mass”, U is its
total energy, xcm is its center of mass/energy, vcm = dxcm/dt, p is its momentum density,
ρ = u/c2 is its “mass” density, u is its energy density, vb is the velocity (field) of its boundary,
and,

fμ =
∂T μν

∂xν
, (9)

is the 4-force density exerted by the subsystem on the rest of the system, with T μν being
the stress-energy-momentum 4-tensor of the subsystem.

The definition (8) indicates that the value of the “hidden” momentum depends on the
subsystem under consideration. In the classic examples considered by Shockley and others,
the entire system was partitioned into two subsystems that occupied that same volume,
the electromagnetic fields E and B, and the “mechanical” components of the system; the
(relative) permittivity ε and the (relative) permeability μ were both unity.

For an isolated, closed system with total stress-energy-momentum tensor T μν , the 4-
divergence of the latter is zero, ∂T μν/∂xν = 0. If the system contains two subsystems A
and B which occupy the same volume, then fμ

A = ∂T μν
A /∂xν = −∂T μν

B /∂xν = −fμ
B, where

fμ
B is the 4-force density exerted by subsystem A on B. Hence, according to the last form

of the definition (8), subsystems A and B have equal and opposite “hidden” momenta.
In particular, if the entire system is partitioned into “electromagnetic” and “mechanical”
subsystems, we have that,

Phidden,EM = −Phidden,mech. (10)

For the electromagnetic subsystem the macroscopic electromagnetic energy-momentum-
stress tensor (secs. 32-33 of [29], sec. 12.10B of [30]) is, in a linear medium,10

Tμν
EM =

⎛
⎝ uEM cpEM

cpEM −T ij
EM

⎞
⎠ , (11)

9Classical systems with nonzero “hidden” mechanical momentum have moving parts, as noted in [27]. If
magnetic charges existed, a system of static electric and magnetic charges would have no “hidden” mechanical
momentum, and its total field momentum must also be zero.

10For a nonlinear medium, Minkowski’s stress tensor [10] is not symmetric, whereas Abraham’s [15] is.
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where uEM is the electromagnetic field energy density, pEM is the electromagnetic momentum
density, and T ij

EM is the 3-dimensional (symmetric) electromagnetic stress tensor. If the
tensor (11) is independent of time (as, for example, in the rest frame of a medium with
static charge and steady current distributions), then the quantity f0 in eq. (8) is,

f0 =
∂T ν

∂xν
= c∇ · pEM, (12)

for the electromagnetic subsystem, and hence,

Phidden,EM = −
∫

f0

c
(x − xcm) dVol = −

∫
x(∇ · pEM) dVol + xcm

∫
∇ · pEM dVol. (13)

The last integral in eq. (13) transforms into a surface integral at infinity that is negligible for
a system with bounded charge and current distributions. The term − ∫

x(∇ ·pEM) dVol can
be integrated by parts, with the resulting surface integral at infinity also being negligible,
such that,

Phidden,EM =

∫
pEM dVol = PEM. (14)

Then, together with eq. (10) we have that,

Phidden,EM = PEM = −Phidden,mech. (15)

For a “static” case, the “visible” mechanical momentum is zero in the rest frame of the
medium, and any mechanical momentum is “hidden”. that is,

Phidden,EM = PEM = −Phidden,mech = −Pmech, (16)

and the total momentum of the system is zero,

Ptotal = PEM + Pmech = 0. (17)

Thus, the definition (8) is consistent with concept of “hidden” momentum as discussed by
Shockley and others as explaining how/why the total momentum of an electromechanical
system “at rest” is zero.

The result (17) holds for any (valid) form of the electromagnetic field momentum density
pEM and the associated stress-energy-momentum tensor Tμν

EM , so the present considerations
of “hidden” momentum cannot resolve the Abraham-Minkowski debate. That is, if one ac-
cepts either the Abraham or the Minkowski form of the stress-energy-momentum tensor, the
definition (8) leads one to a computation of the “hidden” mechanical momentum that is con-
sistent with eqs. (16)-(17).11 One the other hand, one expects that mechanical momentum,
“hidden” or not, is uniquely specifiable for a given system, so that two different values for
the “hidden” mechanical momentum cannot both be correct. If, by some argument other
than that presented here, the value of the “hidden” mechanical momentum in a medium
with electric and magnetic polarization could be determined, this could provide a resolution
of the Abraham-Minkowski debate, as least for “static” examples.

In any case, the definition (8) is not consistent with the conjecture (6), as further illus-
trated in the examples below.

11This conclusion appears to differ from that in [36].
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2.2 Romer’s Example

Following Romer [31],12 we consider a spherical shell of radius a with free surface-charge den-
sity proportional to cos θ (with respect to the z-axis), such that the free charge distribution
has electric dipole moment pfree and the electric field Efree has the form,

Efree =

⎧⎨
⎩

−pfree

a3 (r < a),

3(pfree·r̂)r̂−pfree

r3 (r > a),
(18)

for which the tangential component of Efree is continuous across r = a.13 The system
also includes an electrically neutral spherical shell of radius b with free surface currents
proportional to sin θ′ (with respect to the z′-axis), such that the free current distribution has
magnetic dipole moment mfree, and the magnetic field Bfree has the form,

Bfree =

⎧⎨
⎩

2mfree

b3
(r < b),

3(mfree·r̂)r̂−mfree

r3 (r > b),
(19)

for which the normal component of B is continuous across r = b. The system is in vacuum.
We consider the case that a > b.
The usual argument in vacuum is that the electromagnetic-field momentum PEM can be

computed as,

PEM = P
(A)
EM = P

(M)
EM =

∫
E× B

4πc
dVol

=

∫
r<b

−pfree × 2mfree

4πa3b3c
dVol +

∫
b<r<a

−pfree × [3(mfree · r̂)r̂ −mfree]

4πa3r3c
dVol

+

∫
r>a

[3(pfree · r̂)r̂ − pfree] × [3(mfree · r̂)r̂ − mfree]

4πr6c
dVol

= −2pfree × mfree

3a3c
− pfree × mfree

a3c
ln

a

b
+

pfree × mfree

a3c
ln

a

b
− 2pfree ×mfree

3a3c
+

pfree × mfree

3a3c

=
mfree × pfree

a3c
. (20)

If a < b the result is PEM = mfree × pfree/b
3c.

This system is at rest and must have zero total momentum [26], which leads to eq. (7).
Hence, we infer that the system also contains “hidden” mechanical momentum,

Phidden,mech = −PEM =
pfree × mfree

a3c
, (21)

when a > b. However, P
(A)
EM − P

(M)
EM = 0 in this case.

12A precursor to Romer’s example, with a = b and a uniform surface-charge density, was discussed in [32],
where it is attributed to J.J. Thomson around 1904. This example has zero field momentum but the field
angular momentum is L = 2QM/2ac, where Q is the total electric charge and M is the magnetic moment
of the sphere.

13Another example of this type has been considered in [33].
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Rather than supposing the fields to be due to free charges and currents, we can consider
the cases that there exist uniform electric polarization density P = 3pfree/4πa3 for r <
a (electret), and/or uniform magnetic polarization density M = 3mfree/4πb3 for r < b
(permanent magnet). Then, the fields E and B are identical to those of eqs. (18)-(19), so
we suppose that the field-only momentum is still given by eq. (20).

So, in addition to Romer’s original examples with charge and current densities, we now
have three more variants. We consider these only for the case that a > b.

2.2.1 Electric Polarization Density and Electric Current Density

Here, ρ = 0, P �= 0, J �= 0, M = 0, and B = H.

P
(A)
EM =

∫
E × H

4πc
dVol =

∫
E × B

4πc
dVol = PEM, (22)

P
(M)
EM = PEM +

∫
r<a

P× B

c
dVol

=
mfree × pfree

a3c
+

1

c

∫
r<b

3pfree

4πa3
× 2mfree

b3
dVol +

1

c

∫
b<r<a

3pfree

4πa3
× 3(mfree · r̂)r̂ − mfree

r3
dVol

= −mfree × pfree

a3c
= −PEM. (23)

P
(A)
EM − P

(M)
EM = 2PEM = −2Phidden,mech. (24)

2.2.2 Charge Density and Magnetization Density

Here, ρ �= 0, P = 0, J = 0, M �= 0, and D = E.

P
(A)
EM = PEM −

∫
r<b

E × M

c
dVol =

mfree × pfree

a3c
− 1

c

∫
r<b

−pfree

a3
× 3mfree

4πb3
dVol = 0,(25)

P
(M)
EM =

∫
D × B

4πc
dVol =

∫
E × B

4πc
dVol = PEM, (26)

P
(A)
EM −P

(M)
EM = −PEM = Phidden,mech. (27)

2.2.3 Electric Polarization Density and Magnetization Density

Here, ρ = 0, P �= 0, J = 0, M �= 0.

P
(A)
EM = PEM −

∫
r<b

E × M

c
dVol =

mfree × pfree

a3c
− 1

c

∫
r<b

−pfree

a3
× 3mfree

4πb3
dVol = 0, (28)

P
(M)
EM = PEM +

∫
r<a

P× B

c
dVol

=
m × p

a3c
+

1

c

∫
r<b

3pfree

4πa3
× 2mfree

b3
dVol +

1

c

∫
b<r<a

3pfree

4πa3
× 3(mfree · r̂)r̂ − mfree

r3
dVol

= −mfree × pfree

a3c
= −PEM. (29)

P
(A)
EM − P

(M)
EM = PEM = −Phidden,mech. (30)
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2.2.4 Romer’s Example with Linear Media (October, 2017)

Since Abraham and Minkowski considered only linear media, where D = εE and B = μH,
it may not be so surprising that their expressions for field momentum are not particularly
relevant to examples with permanent electric and magnetic dipoles. So, we now consider
Romer’s example where the sphere of radius a has constant (relative) permittivity ε �= 1 and
the sphere of radius b has constant (relative) permeability μ �= 1.

For there to be nonzero field momentum, the electric and magnetic fields must both be
nonzero, which would not be the case if either the free surface-charge density σfree or the
free surface-current density Kfree were zero. Hence, we suppose that these densities have the
forms assumed at the beginning of this section, and that the corresponding dipole moments
are pfree and mfree. Then, bound charges and currents are induced, with the same spatial
dependences as for the free charges and currents, which lead to dipole moments pbound

and mbound, and total moments ptotal and mtotal, that are parallel to the free moments,
respectively. The (total) electric and magnetic fields have the same form as eqs. (18)-(19),
with p → ptotal and m → mtotal,

E =

⎧⎨
⎩

−ptotal

a3 (r < a),

3(ptotal·r̂)r̂−ptotal

r3 (r > a),
B =

⎧⎨
⎩

2mtotal

b3
(r < b),

3(mtotal·r̂)r̂−mtotal

r3 (r > b).
(31)

To determine the field D = εE, we note that the free and total surface-charge densities at
r = a have the forms,

σfree =
3

4πa3
pfree · r̂, σtotal =

3

4πa3
ptotal · r̂. (32)

Then, the boundary condition for D at r = a is,

4πσfree =
3

a3
pfree · r̂ = Dr(r = a+) − Dr(r = a−) = Er(r = a+) − εEr(r = a−)

=
2ptotal · r̂

a3
+

εptotal · r̂
a3

, (33)

from which we infer that,

ptotal =
3

2 + ε
pfree, pbound = ptotal − pfree =

ε − 1

2 + ε
pfree. (34)

To determine the field H = B/μ, we note that the free, bound and total surface-charge
densities at r = b all have the forms,

K =
3c

4πb3
m × r̂. (35)

Then, the boundary condition for H at r = b is,

4π

c
Kfree =

3

b3
mfree × r̂ = −H(r = b+) × r̂ + H(r = b−) × r̂

= −B(r = b+) × r̂ +
B(r = b−) × r̂

μ

=
mtotal × r̂

b3
+

2mtotal × r̂

μb3
, (36)
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from which we infer that,

mtotal =
3μ

2 + μ
mfree, mbound = mtotal − mfree = 2

μ − 1

2 + μ
mfree. (37)

We could also determine the field H = B/μ, by supposing that the magnetic fields are due
to fictitious magnetic charges, whose free, bound and total surface-charge densities at r = b
all have the forms,

σ̃ =
3

4πb3
m · r̂. (38)

The B field is determined by the total fictitious charge, while the H field is determined
by the bound fictitious charge (or alternatively by the free currents) Then, the boundary
condition for H at r = b is,

4πσ̃bound =
3
b3

mbound · r̂ = Hr(r = b+) − Hr(r = b−) = Br(r = b+) − Br(r = b−)
μ

=
2mtotal · r̂

b3
− 2mtotal · r̂

μb3
, (39)

from which we infer that,

mbound =
2(μ − 1)

3μ
mtotal, mfree = mtotal −mbound =

2 + μ

3μ
mtotal,

mtotal =
3μ

2 + μ
mfree, mbound = 2

μ − 1
2 + μ

mfree. (40)

With these expressions for the total moments in terms of the free moments, the electro-
magnetic fields can now be written as,

D =

⎧⎨
⎩

− 3ε
2+ε

pfree

a3 ,

3
2+ε

3(pfree·r̂)r̂−pfree

r3 ,
E =

⎧⎨
⎩

− 3
2+ε

pfree

a3 (r < a),

3
2+ε

3(pfree·r̂)r̂−pfree

r3 (r > a),
(41)

H =

⎧⎨
⎩

3
2+μ

2mfree

b3
,

3μ
2+μ

3(mfree·r̂)r̂−mfree

r3 ,
B =

⎧⎨
⎩

3μ
2+μ

2mfree

b3
(r < b),

3μ
2+μ

3(mfree·r̂)r̂−mfree

r3 (r > b).
(42)

For a > b, the various field momenta are, recalling from eq. (20) that the momentum
density pEM sums to zero in the region b < r < a, and that for r > a the momentum PEM

now is 3/(2 + ε)3μ/(2 + μ) times that in eq. (20), i.e., −pfree/(2 + ε)a3c × 3μmfree/(2 + μ),

PEM =

∫
E × B

4πc
dVol =

∫
r<b

−3pfree × 6μmfree

4π(2 + ε)(2 + μ)a3b3c
dVol − pfree

(2 + ε)a3c
× 3μmfree

2 + μ

= − 2pfree

(2 + ε)a3c
× 3μmfree

2 + μ
− pfree

(2 + ε)a3c
× 3μmfree

2 + μ
= − 3pfree

(2 + ε)a3c
× 3μmfree

2 + μ

=
E(r < a) ×mtotal

c
, (43)

P
(A)
EM =

∫
E × H

4πc
dVol =

∫
r<b

−3pfree × 6mfree

4π(2 + ε)(2 + μ)a3b3c
dVol − pfree

(2 + ε)a3c
× 3μmfree

2 + μ
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= − 2pfree

(2 + ε)a3c
× 3mfree

2 + μ
− pfree

(2 + ε)a3c
× 3μmfree

2 + μ
= − 3pfree

(2 + ε)a3c
×mfree, (44)

P
(M)
EM =

∫
D × B

4πc
dVol =

∫
r<b

−3εpfree × 6μmfree

4π(2 + ε)(2 + μ)a3b3c
dVol − pfree

(2 + ε)a3c
× 3μmfree

2 + μ

= − 2εpfree

(2 + ε)a3c
× 3μmfree

2 + μ
− pfree

(2 + ε)a3c
× 3μmfree

2 + μ
= −(2ε + 1)pfree

(2 + ε)a3c
× 3μmfree

2 + μ
,(45)

P
(A)
EM − P

(M)
EM = (εμ − 1)

3pfree

(2 + ε)a3c
× 2mfree

2 + μ
. (46)

For completeness, note that,

P
(DH)
EM ≡

∫
D ×H

4πc
dVol =

∫
r<b

−3εpfree × 6mfree

4π(2 + ε)(2 + μ)a3b3c
dVol − pfree

(2 + ε)a3c
× 3μmfree

2 + μ

= − 2εpfree

(2 + ε)a3c
× 3mfree

2 + μ
− pfree

(2 + ε)a3c
× 3μmfree

2 + μ
= −(6ε + 3μ)pfree

(2 + ε)a3c
× mfree

2 + μ
(47)

Hidden Momentum

Romer’s example with linear media contains “hidden” mechanical momentum associated
both with the free and bound current densities.

As discussed, for example, in [34, 35], the “hidden” momentum associated with a magnetic
moment m due to electrical currents is given by m×E/c if the electric field is uniform over the
currents. In the present example, the electric field on the both the free and bound electrical
currents (at r ≤ b) is E = −3pfree/(2 + ε)a3, so the corresponding “hidden” mechanical
momenta are,

Phidden,free =

∫
mfree ×E

c
dVol = mfree × −3pfree

(2 + ε)a3c
, (48)

Phidden,bound =

∫
mbound × E

c
dVol = mbound × −3pfree

(2 + ε)a3c

=
2(μ − 1)mfree

μ + 2
mfree × −3pfree

(2 + ε)a3c
. (49)

The total “hidden” mechanical momentum is,

Phidden,total = Phidden,bound + Phidden,bound =
3μmfree

2 + μ
× −3pfree

(2 + ε)a3c

=
mtotal × E(r < b)

c
= −PEM = −

∫
E × B

4πc
dVol. (50)

The “hidden” mechanical momentum is equal and opposite to the field momentum based
only on E and B.

In this static example, the only mechanical momentum is the “hidden” momentum (50),
and the total momentum is zero (in the frame in which the two spheres are at rest).

Note that bound “hidden” momentum (49) can exist for ε = 1, but not for μ = 1, since
bound “hidden” momentum is associated with bound electric currents (which exist in linear
media only for μ �= 1).
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Neither the Abraham momentum (44) nor the Minkowski momentum (45) are equal and
opposite to the (hidden) mechanical momentum. Hence, both of these momentum are a
combination of field momentum (based on E × B) and mechanical momentum. As such,
they do not have a crisp physical interpretation, as least for examples that contain “hidden”
mechanical momentum.

Note that the Abraham momentum can be written as,

P
(A)
EM =

∫
E ×H

4πc
dVol =

∫
E × B

4πc
dVol +

∫
E ×M

c
dVol = PEM − Phidden,bound

= −Phidden,free − 2Phidden,bound. (51)

For the present example with an idealized, linear dielectric medium, with ε �= 1 but μ = 1,
Phidden,bound = 0, and P

(A)
EM = PEM = −Phidden,free.

In the case of electromagnetic waves, rather than static fields, in and around media, it can
be that there is no “hidden” mechanical momentum, and the Abraham and/or Minkowski
momentum has more “overt” physical significance.

All the various results of this section confirm that eq. (6) is not, in general, a suitable
expression for the hidden mechanical momentum (21) of the system.

Still, it may be useful to consider another example.

2.3 Hnizdo’s Example: Uniformly Magnetized Toroid

V. Hnizdo notes that a toroid with uniform azimuthal magnetization M = M φ̂ (in cylin-
drical coordinates (�, φ, z)) has H = B − 4πM = 0 everywhere and B = 4πM inside the
toroid.14 If this toroid is subject to a radial electric field E, then E × B is nonzero inside
the toroid and parallel to z-axis while E × H is zero everywhere. If we accept that this
example contains “hidden” mechanical momentum, then the Abraham momentum cannot
be the “correct” one (in the sense of being equal and opposite to the “hidden” mechanical
momentum such that the total momentum of the system, which is “at rest”, is zero).

A body with uniform magnetization is a collection of identical Ampèrian magnetic
dipoles.15 As noted in [38], an Ampèrian magnetic dipole m in an external electric field E is a
system “at rest” with nonzero field momentum E×m/c (computed from

∫
E×B dVol/4πc),

and so this system must contain “hidden” mechanical momentum in the direction of m×E.
We infer that a collection such as Hnizdo’s example of identical magnetic dipoles, all in an
external electric field such that m×E is always in the same direction, also contains nonzero
“hidden” mechanical momentum.

Hence, it appears that neither the Abraham nor the Minkowski momenta are the “cor-
rect” field momenta in the sense of being equal and opposite to the “hidden” mechanical
momentum of such systems “at rest” that possess this.

14For uniform magnetization M, the volume density ρm = −∇ · M of “fictitious” magnetic charges is
zero. For a toroid with azimuthal magnetization, the surface density σm = M · n̂ of “fictitious” magnetic
charges is also zero (where n̂ is normal to the surface). Then, there are no sources for the H-field, which is
hence zero.

15Experimental evidence that magnetization is due to Ampèrian magnetic dipoles is reviewed in [37].
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It seems to this author that only the form
∫

E×B dVol/4πc should be called the electro-
magnetic field momentum, and that both the Abraham and Minkowski momenta represent
combinations of electromagnetic field momentum with mechanical momentum associated
with electric and/or magnetic polarization.

2.3.1 The Toroid is Also an Electret

We record two examples of radial electric fields as discussed above. First, we consider the
toroid also to be an electret with uniform radial electric polarization P = P �̂.

We suppose the toroid has a rectangular cross section a < � < b, |z| < l and that the
toroid is long, l � b. The surface density of bound electric charge is then,

σe(� = a) = −P, σe(� = b) = P. (52)

The electric field inside the long toroid, at locations not close to its ends, is approximately
radial, and follows from Gauss’ law as,

Er(a < � < b) = −4πP
a

�
, (53)

and hence the interior D-field is,

Dr(a < � < b) = Er + 4πPr = 4πP

(
1 − a

�

)
. (54)

2.3.2 The Toroid is a Cylindrical Capacitor

Alternatively, the surfaces � = a and b could be conductors, forming a cylindrical capacitor,
and the medium of the toroid could be a (linear) dielectric with (relative) permittivity ε such
that D = εE. These conductors can support densities of free charge given by eq. (52) such
that the electric field inside the toroid is again given by eq. (53). In this case, the D-field
inside the toroid is given by,

Dr(a < � < b) = εEr = −4πP
a

�
. (55)

Forces and Momenta If the Magnetization Goes to Zero

This variant permits a noteworthy phenomenon if the electrically charged conductors are
physically isolated from the magnetized toroid, and that magnetization goes to zero at some
time.

When the magnetization is M = M φ̂, the (field only) electromagnetic momentum per
unit length in z associated with the (long) system is,

PEM =

∫
E × B

4πc
dArea ≈

∫ b

a

−(4πPa/�) r̂ × 4πM φ̂

4πc
2π� d� = −8π2MPa(b − a)

c
ẑ, (56)

where ∓P is the surface density of electric charge on the conductors (at � = a− and b+). At
this time, there is an equal and opposite “hidden” mechanical momentum per unit length,

Phidden,mech = −PEM =

∫
B × E

4πc
dArea =

∫
M× E

c
dArea, (57)
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such that the total momentum of the system is zero. Equation (57) is consistent with
the earlier comment that the “hidden” mechanical momentum of a magnetic dipole m in
an electric field E is m × E/c [38], such that the volume density of “hidden” mechanical
momentum is M× E/c inside the magnetization density M.

If the magnetization drops to zero at some later time, a transient electric field is induced
when the B-field is changing, which electric field is conveniently deduced from the changing
vector potential,

Eind = −1

c

∂A

∂t
. (58)

We ignore the small additional magnetic field and vector potential associated with the tran-
sient currents, and approximate the vector potential as the quasistatic value related to the
instantaneous magnetization M(t), still supposed to be spatially uniform as it drops to zero.
This vector potential has only a z-component, related by,

B = ∇ × A, Bφ = −∂Az

∂�
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 (� < a),

4πM (a < � < b),

0 (� > b).

(59)

We take the vector potential to be zero at � = ∞, such that,

Az = 4πM

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b − a (� < a),

b − � (a < � < b),

0 (� > b).

(60)

When the magnetization drops at rate Ṁ < 0, the induced electric field is,

Eind,z = −1

c

∂Az

∂t
= −4πṀ

c

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b − a (� < a),

b − � (a < � < b),

0 (� > b).

(61)

There is no induced electric field at the outer conductor (� = b), while the field on the inner
conductor (� = a) is in the +z direction when Ṁ < 0. If the inner and outer conductors are
free to move separately, only the inner conductor will move, and in the −z direction as its
surface charge density −P is negative. The force per unit length on the inner conductor is,

Fz = 2πa(−P )Eind,z(� = a−) =
8π2ṀPa(b− a)

c
, (62)

so the (negatively charged) inner conductor takes on mechanical momentum per unit length,

Pinner conductor, z =

∫
Fz dt = −8π2MPa(b − a)

c
, (63)
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when the magnetization drops from M to zero. If the conductors are free to move, the inner
conductor has final velocity in the −z direction, while the outer conductor remains at rest.

Meanwhile, both the initial electromagnetic field momentum and the “hidden” mechan-
ical momentum have dropped to zero, so if only the inner conductor has final momentum,
there would be a violation of momentum conservation.

It remains to consider forces on the magnetized toroid while the magnetization changes.
The volume-force density fM on the (Ampèrian) magnetization M is given, for example,

in eq. (18) of [37],

fM = (M · ∇)B + M× 1

c

∂E

∂t
+ cM× (∇× M). (64)

This force density acts to change the mechanical momentum density of the toroid, which
consists of the “overt” momentum density povert = ρmassv as well as the density phidden,mech =
M × E/c of “hidden” mechanical momentum.16 In the present example, the first and last
terms in eq. (63) vanish, so the mechanical momentum of the toroid varies according to,

fM = M × 1

c

∂E

∂t
=

d

dt

(
ptoroid,overt +

M× E

c

)
,

dptoroid,overt

dt
= −∂M

∂t
× E

c
. (65)

As the magnetization M drops to zero, the overt mechanical momentum of the toroid
changes, until finally the overt mechanical momentum per unit length of the toroid is,

Ptoroid,overt =

∫
dArea

∫
dpovert

dt
dt =

∫
Minitial × E

c
dArea =

∫ b

a

M φ̂ ×−4πPa r̂

c�
2π� d�

=
8π2MPa(b − a)

c
ẑ = −Pinner conductor . (66)

Hence, the final, total momentum, Pinner conductor + Ptoroid,overt, of the system is zero, as
expected.

The force density (64) is radial in the present example, so its volume integral vanishes,
with the implication that the mechanical momentum of the toroid remains constant as the
magnetization drops to zero. If the toroid is free to move, its final velocity is in the +z
direction. Hence, the appearance of the final, “overt” mechanical momentum of the toroid
can be regarded as evidence of the initial, “hidden” mechanical momentum. This suggests
that a laboratory demonstration of the present example would be useful in convincing skeptics
of the existence of “hidden” mechanical momentum.

So, we consider some numbers for a possible demonstration experiment. We take a ≈
b ≈ 1 cm. A practical voltage across the 1-cm cylindrical capacitor might be around 1000 V
= 3.3 statvolt. This voltage is also given by V =

∫ b

a
E d� ≈ 4πP ln 2 ≈ 3P , so the surface

charge density is P ≈ 1 statCoulomb/cm2. The magnetic field inside a strong permanent
magnet is about B ≈ 1 T = 10,000 G = 4πM , so M ≈ 1000 in Gaussian units. Then, the
final, overt momentum would be ≈ 8π2MP/c ≈ 10−7 g-cm/s, and for a toroid with mass of
a few grams, its final velocity would be ≈ 10−7 cm/s, too small to be observable in a simple
demonstration.

16This argument was made implicitly by Shockley [25], and explictly on p. 53 of [39].
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Forces and Momenta If the Electric Field Goes to Zero

If the electric field of the cylindrical capacitor drops to zero but the magnetization of the
toroid remains constant, then according to eq. (65) there is no change in the “overt” me-
chanical momentum of the toroid, which therefore remains at rest as its “hidden” mechanical
momentum drops to zero.

Meanwhile, the charges on the conductors of the cylindrical capacitor experience no axial
electric field as the radial electric field drops to zero, so the conductors remain at rest.

In the final state, with zero electric field and nonzero B and M inside the toroid, there
is no mechanical momentum anywhere, “hidden” or “overt”, and the electromagnetic field
momentum is also zero.17

2.3.3 Comments

The Minkowski momenta,
∫

D × B dVol/4πc, for these two cases have the opposite signs,
yet the microscopic electromagnetic field momenta of the magnetic dipoles is the same in
both cases. This reinforces the conclusion of sec. 2.2 that the Minkowski momentum is not
the “correct” one to be equal and opposite to the “hidden” mechanical momentum (which
is the same in both cases).

2.3.4 Appendix: Toroid with Radial Magnetization and Azimuthal
Polarization

For possible amusement we consider a toroid with geometry as in sec. 2.3.1 but with radial
magnetization, M = M �̂, and azimuthal polarization, P = P φ̂. In this case there is no
free or bound electric charge densities, either in the bulk or on the surface of the toroid.
Hence, there are no sources of the electric field and E = 0 everywhere. Inside the toroid the
displacement field in nonzero, Dinterior = E + 4πP = 4πP φ̂.

There is no bulk density of “fictitious” magnetic charge associated with the radial mag-
netization, but there are “fictitious” surface magnetic charge densities given by,

σm(� = a) = −M, σm(� = b) = M. (67)

The H-field inside the long toroid, at locations not close to its ends, is approximately radial,
and follows from Gauss’ law (here ∇ · H = 4πρm) as,

Hr(a < � < b) = −4πM
a

�
, (68)

and hence the interior B-field is,

Br(a < � < b) = Hr + 4πMr = 4πM

(
1 − a

�

)
. (69)

17An example of this type was considered by J.J. Thomson on p. 348 of [6]; see also [40]. For examples with
“hidden” mechanical momentum in systems with an electric dipole in a magnetic fields due to current loops,
all “at rest”, such that various equal and opposite “overt” mechanical momenta arise as the electromagnetic
fields are brought to zero in various ways, see [41], especially secs. IV and V.

14



This case is the dual of that described in sec. 2.3.1, with the duality relations M ↔ P,
E ↔ H and D ↔ B.

If we accept that “hidden” mechanical momentum is due to the “external” electric field E
on the Ampèrian currents associated with the magnetization M, then there in no “hidden”
mechanical momentum in the example of this Appendix. This is consistent with the “field
only” momentum

∫
E × B dvol/4πc being zero. Of course, the Abraham momentum is also

zero in the case, but the Minkowski momentum is nonzero and in the −z direction.

2.4 Hidden Momentum and a Wave in a Linear Medium

This section was inspired by [24] (October, 2017).
A feature of the definition (8) is that the electromagnetic momentum (4) of a (source-free)

electromagnetic wave in vacuum has no “hidden” momentum.
For example, a plane electromagnetic wave,

E = E0 cos(kz − ωt) x̂, B = E0 cos(kz − ωt) ŷ, (70)

propagates with velocity v = (ω/k) ẑ = c ẑ, and has energy, effective mass, and field mo-
mentum densities,

uEM =
E2 + B2

8π
=

E2
0 cos2(kz − ωt)

4π
, ρeff ,EM =

uEM

c2
, (71)

pEM =
E × B

4πc
=

E2
0 cos2(kz − ωt)

4πc
ẑ = meff ,EM c ẑ, (72)

such that the density of (electromagnetic) “hidden” momentum is,

phidden,EM = pEM − ρeffv = 0. (73)

Turning to the case of an electromagnetic wave propagating inside a linear medium that
is at rest, we note that the definition (8) of “hidden” momentum applies to an entire system,
or to a subsystem thereof.

In most considerations of “hidden” momentum, one emphasizes the “mechanical” subsys-
tem, which is considered distinct from the (macroscopic) “electromagnetic field” subsystem.
This distinction is reasonably clear in examples where all material has unit (relative) per-
mittivity and permeability, as has been the case in essentially all past discussion of “hidden”
momentum, which also have been restricted to (quasi)static examples where electromagnetic
waves were neglected. In such quasistatic examples, the total “hidden” momentum is always
zero, but there can be nonzero “hidden” mechanical momentum that is equal and opposite
to “hidden” electromagnetic field momentum (see sec. 4.1.4 of [28]).18

However, in examples with waves, where the total momentum of the system can be
nonzero, it is not clear that the total “hidden” momentum must be zero.

18Nonzero total electromagnetic field momentum in a static example is always “hidden” according to
definition (8), in that the velocity vEM of the center of electromagnetic field energy is zero, and Phidden,EM =
PEM − UEMvEM/c2 = PEM.
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We now consider a plane electromagnetic wave in a linear medium, with index of refraction
n =

√
εμ, such that the (phase) velocity of propagation is v = (ω/k) ẑ = c ẑ/n,

E = E0 cos(kz − ωt) x̂ =
D

ε
, B = nE0 cos(kz − ωt) ŷ = μH. (74)

If we consider the “electromagnetic field” subsystem to consist only of the (macroscopic)
fields E and B, then the energy, effective mass, and field momentum densities are,

uEM =
E2 + B2

8π
=

E2
0(1 + n2) cos2(kz − ωt)

8π
, �eff ,EM =

uEM

c2
, (75)

pEM =
E × B

4πc
=

2nE2
0 cos2(kz − ωt)

8πc
ẑ, (76)

such that the density of “hidden” momentum is,

phidden,EM = pEM − �eff ,EMv =
E2

0 cos2(kz − ωt)

8πc

(
2n − 1 + n2

n

)
ẑ

=
n2 − 1

n

E2
0 cos2(kz − ωt)

8πc
ẑ =

εμ − 1√
εμ

E2
0 cos2(kz − ωt)

8πc
ẑ. (77)

Since the medium is at rest (in the frame of the present analysis), it has zero “overt”
mechanical momentum, but it might have “hidden” mechanical momentum associated with
the bound electric-current density,

Jbound =
∂P

∂t
+ c∇ × M =

ε − 1

4π

∂E

∂t
+ c

μ − 1

4πμ
∇ × B =

(
ε − 1

4π
− μ − 1

4πμ

)
∂E

∂t
, (78)

recalling that for a linear medium, D = E + 4πP = εE and H = B − 4πM = B/μ. The
current density (78) appears to be in the x-direction, and with zero time average, so it might
seem that there can be no net, time-average mechanical momentum associated with it.

However, the Ampèrian model of magnetization M is that it is due to “molecular cur-
rents” which flow in small (atom-sized) loops in the plane perpendicular to M (and B).
Then, the argument which led to an understanding of “hidden” mechanical momentum of
current loops in an electric field (see, for example, [34, 35]) would appear to apply to the
present case, such that for waves with wavelength large compared to the radius of an atom
(which includes optical waves) there should be a density of bound, “hidden” mechanical
momentum given by,

phidden,mechanical =
M× E

c
=

μ − 1

4πμ

B × E

c
= −μ − 1

μ
pEM. (79)

This suggests that the total density of “hidden” momentum in the system is,

phidden,total = phidden,EM + phidden,mechanical =
E2

0 cos2(kz − ωt)

8πc

(
εμ − 1√

εμ
− 2

μ − 1

μ

)
ẑ. (80)

One premise of the above argument is that the electric field E be uniform over the loop,
which implies that in the case of a wave field, the wavelength λ is large compared to the
sides h and w of the loop.
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In, addition, for the instantaneous “hidden” mechanical momentum to be m×E(t)/c, it
must be the period of the circulation of charges in the current loop be less than the period
of the external wave field. That is, the angular velocity of the circulating charges must be
larger than the angular velocity of the wave field.

We examine this requirement for a diamagnetic medium in the following subsection.

2.4.1 Diamagnetism

Diamagnetism is associated with magnetic momentum to due orbital motion of atomic elec-
trons that is induced by the external electromagnetic field.

For an order-of-magnitude estimate, we take the effective radius of the magnetic moment
to be the Bohr radius rB = λC/α, where α = e2/�c is the fine-structure constant and e is
the charge of an electron.

Then, the requirement that the external field be uniform over the magnetic moment is
that the wavelength of the external field be large compared to the Bohr radius, which is well
satisfied by optical fields.

The angular frequency of the induced orbital motion of electrons is less than vmax/rB,
where,

vmax ≈ amaxtwave ≈ eE0

m

1

ω
, (81)

where E0 is the peak electric field of the wave. For m × E(t)/c to describe the “hidden”
mechanical momentum associated with diamagnetism, we must also have,

ωorbital ≈ vmax

rB
≈ eE0

mωrB
= α

eE0

mωλC
� ω, E0 � mω2λC

αe
=

�
2ω2

e3
=

Ecrit

α

(
λC

λ

)2

, (82)

where Ecrit = m2c3/e� = 1.6× 1016 V/cm is the so-called QED critical field strength (above
which a static electric field would spontaneously produce electron-positron pairs [42]). For
optical waves, this requirement is that E0 � 104 V/cm, which is a reasonably strong field,
but which is readily achieved in laser beams.

2.4.2 Abraham and Minkowski Momenta

Assuming that the requirement (82 is satisfied, we can also consider the Abraham and
Minkowski momenta, although it is not immediately clear to which subsystem they apply.
The Abraham momentum density in the present example is,

p
(A)
EM =

E × H

4πc
=

√
ε

μ

E2
0 cos2(kz − ωt)

4πc
ẑ

=
E × B

4πc
− E× M

c
= pEM + phidden,mechanical = ptotal. (83)

Thus, it appears that the Abraham momentum is not a subsystem momentum, but the total
momentum of the system (in the rest frame of the medium).
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The Minkowski momentum density is,

p
(M)
EM =

D × B

4πc
= εpEM = ε

√
εμ

E2
0 cos2(kz − ωt)

4πc
ẑ (84)

The arguments that lead to the forms of the Abraham and Minkowski momentum both
associate with them a field-energy density,

uA,M =
εE2 + μH2

8π
= ε

E2
0 cos2(kz − ωt)

4π
, �eff ,A,M =

uA,M

c2
, (85)

such that one might consider densities of “hidden” momentum associated with the Abraham
and Minkowski momenta to be, using eq. (83) for the Abraham momentum,

p
(A)
hidden = p

(A)
EM − �eff ,A,Mv = 0, (86)

p
(M)
hidden = p

(M)
EM − �eff ,A,Mv = ε(

√
εμ − 1)

E2
0 cos2(kz − ωt)

8πc
ẑ. (87)

The results (83) and (86) for the Abraham momentum of a plane wave in a linear medium
are suggestive, but do not hold in general, as shown in sec. 2.2.4 for the case of a linear
medium, at rest, together with free electric charges and currents.

2.4.3 Canonical and Kinetic Momentum

The above discussion of “hidden” momentum has been based on the notion that it might be
possible to partition a system into “electromagnetic” and “mechanical” subsystems. While
this concept seems well motivated from a “classical” perspective, its is doubtful in the quan-
tum picture. In the latter, the interaction between electromagnetic waves and matter is
associated with quanta that are neither purely “electromagnetic” nor “mechanical,” but
which are rather “quasiparticles” of the electromechanical interaction.

Within a “classical” context, one can seek a description that will not be in great con-
tradiction with the quantum view. For this, we might start by considering a wave packet
(photon) inside the linear medium, which we take to be nondispersive for now, such that
the phase and group velocities are the same. This wave packet propagates with velocity
v = ωk = c k̂/n < c, where k is the wave vector of the packet, and it seems reasonable to
associate an effective mass meff = Upacket/c

2 with the wave packet. Then, the overt/kinetic
momentum of the wave packet is,

Pkinetic = meffv =
Upacket

cn
k̂ =

∫
upacket

c
√

εμ
dVol k̂. (88)

Regarding the wave packet as an electromechanical effect, is it plausible to identify its
energy density as,

upacket = uA,M =
εE2 + μH2

8π
≈ εE2

4π
, (89)

rather than uEM = (E2 + B2)/8π, as would be appropriate if the wave packet were purely
“electromagnetic”. Then, the kinetic momentum is,

Pkinetic ≈
∫

p
(A)
EM dVol, (90)
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recalling eq. (83). That is, the kinetic momentum of the wave packet is its total Abraham
momentum.19

In contrast, when one works in a Hamiltonian/Lagrangian formalism, one naturally con-
siders canonical momenta (in addition to kinetic momenta mv). Shortly after the original
papers of Abraham [3, 15, 16, 17] and Minkowski [10], this was done by various authors
[45, 46, 47], who identified the canonical stress-energy-momentum tensor (and hence the
canonical momentum) of an electromechanical system as the Minkowski tensor (and mo-
mentum).20

A Appendix: If Magnetic Charges Also Existed

This Appendix was suggested by P. Saldanha (October, 2017).
If magnetic charges (magnetic monopoles) existed in addition to electric charges the story

is more complex.
In particular, one would then consider magnetic charge and current densities ρm and Jm

in addition to electric charge and current densities, ρe and Je respectively (which were called
ρ and J in the main text).

As discussed in [9], Maxwell’s equations for the electric and magnetic fields E and B
would then be,

∇ · E = 4πρe, ∇ · B = 4πρm, −c∇ × E =
∂

∂t
B + 4πJm, c∇× B =

∂E

∂t
+ 4πJe. (91)

There could then be magnetic dipoles mm formed from magnetic charges and electric
dipoles pm formed from magnetic currents (in addition to electric dipoles pe formed from
electric charges and magnetic dipoles me formed from electric currents, previously denoted
without the subscript e).

Further, we should consider polarization densities Pm due to electric dipoles formed by
magnetic currents and Mm due to magnetic dipoles formed by magnetic charges (in addition
to polarization densities Pe due to electric dipoles formed by electric charges and Me due to
magnetic dipoles formed by electric currents, as considered previously).

When we spoke of “free” and “bound” charges and currents, we would then include effects
associated with magnetic charges and currents. The “free” charge and current densities will
be denoted as ρ̃e, J̃e, ρ̃m and J̃m, and are related to the total charge and current densities
(without a ˜) by,

ρe = ρ̃e − ∇ · Pe, Je = J̃e +
∂Pe

∂t
+ c∇ × Me, (92)

ρm = ρ̃m − ∇ · Mm, Jm = J̃m +
∂Mm

∂t
− c∇ × Pm. (93)

19Arguments of this type can be traced to [43] (if not earlier), while the term “kinetic momentum” was
perhaps first introduced in footnote 3 of [44].

20This insight was somewhat forgotten until rediscovered in the late 1940’s [48, 49, 50], and then redis-
covered in the new millennium [18, 52, 53].
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It is customary in macroscopic electrodynamics to use versions of Maxwell’s equations in
which only “free” charge and current densities appear. For this we introduce the fields,21

De = E + 4πPe, He = B − 4πMe, Dm = E − 4πPm, Hm = B + 4πMm, (94)

such that De and Hm, and also He and Dm, have similar forms, and,

∇ · De = 4πρ̃e, ∇ · Hm = 4πρ̃m, (95)

−∇× Dm =
∂Hm

∂t
+ 4πJ̃m, ∇ ×He =

∂De

∂t
+ 4πJ̃e, (96)

where in the absence of magnetic charges De and He are the familiar fields D and H.22

When the arguments of Abraham and Minkowski are extended to include magnetic
charges and currents, one finds [9] that the Abraham and Minkowski momentum densities
are,

p
(A)
EM =

S

c2
=

Dm × He

4πc
, p

(M)
EM =

De × Hm

4πc
, (97)

which revert to the familiar forms (2) and (4) if magnetic charges and currents do not exist.

A.1 Romer’s Example with Permanent Polarizations

We now reconsider Romer’s example [31], sec. 2.2 above, including the (hypothetical) mag-
netic charges as well as electric charges. Among the many possible variants, we only discuss
the case of no free charges or currents, as in sec. 2.2.3 above, and for simplicity we consider
only a single sphere of radius a that supports both electric and magnetic polarization.

We now have four (permanent) polarization densities to consider, Pe, Pm, Me and Mm.
We desire that the fields E due to both Pe and Pm be those of eq. (18) outside the sphere

of electric polarization, and the fields B due to both Me and Mm be those of eq. (19) outside
the sphere of magnetic polarization. As inferred from the top of p. 6, this implies that the
polarization densities associated with electric charges and currents are, for r < a,

Pe =
3pe

4πa3
, Pm =

3pm

4πa3
, Me =

3me

4πa3
, Mm =

3mm

4πa3
. (98)

However, the E and B fields inside the polarized sphere are different for the cases of electric
charges/currents and magnetic charges/currents. For polarization due to electric charges
and currents the fields are those given in eq. (18)-(19),

Ee =

⎧⎨
⎩

−pe

a3 = −4πPe

3
(r < a),

3(pe·r̂)r̂−pe

r3 (r > a),
Be =

⎧⎨
⎩

2me

a3 = 8πMe

3
(r < a),

3(me·r̂)r̂−me

r3 (r > a),
(electric charges).(99)

21See Appendix D.2 of [9] for a justification of eq. (94) via the concept of electromagnetic duality.
22The relation B = H+4πM seems to have been first introduced by W. Thomson in 1871, eq. (r), p. 401

of [56], and appears in sec. 399 of Maxwell’s Treatise [57].
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The case of magnetic dipole density Mm due to magnetic charges is analogous to the case
of electric dipole density Pe, and similarly the case of electric dipole density Pm due to
magnetic currents is analogous to the case of magnetic dipole density Me. Hence, we have,

Em =

⎧⎨
⎩

2pm

a3 = 8πPm

3
(r < a),

3(pm·r̂)r̂−pm

r3 (r > a),
Bm =

⎧⎨
⎩

−mm

a3 = −4πMm

3
(r < a),

3(mm·r̂)r̂−mm

r3 (r > a),
(magnetic charges).(100)

We now consider four cases, each with one type of electric polarization, and one type of
magnetic polarization.

In all four cases, the field momentum (4) outside the sphere is the same, and given by
last two terms of the next to last line of eq. (20),

PEM(r > a) =

∫
r>a

E × B

4πc
dVol =

m× p

3a3c
. (101)

And, in all cases the total momentum is zero, since the systems are all “at rest,” such that the
(“hidden”) mechanical momentum is equal and opposite to the electromagnetic momentum,

Pmech = Phidden,mech = −PEM. (102)

A.1.1 Pe �= 0, Pm = 0, Me �= 0, Mm = 0

This case was discussed in sec. 2.2.3 above, so we just quote the results,

PEM = −Phidden,mech =
me × pe

a3c
= −me × Ee

c
, (103)

P
(A)
EM = 0, (104)

P
(M)
EM = −PEM = Phidden,mech. (105)

A.1.2 Pe = 0, Pm �= 0, Me = 0, Mm �= 0

PEM =
mm × pm

3a3c
+

∫
r<a

E × B

4πc
dVol =

mm × pm

3a3c
+

2pm

a3
× −mm

a3

a3

3c
=

mm × pm

a3c

=
pm × Bm

c
= −Phidden,mech, (106)

P
(A)
EM =

∫
Dm × He

4πc
dVol =

∫
(E − 4πPm) × B

4πc
dVol = PEM −

∫
r<a

Pm ×B

c
dVol

=
pm × Bm

c
− pm ×Bm

c
= 0, (107)

P
(M)
EM =

∫
De × Hm

4πc
dVol =

∫
E × (B + 4πMm)

4πc
dVol = PEM +

∫
r<a

E ×Mm

c
dVol

=
pm × Bm

c
− 2pm × Bm

c
= −pm × Bm

c
= −PEM = Phidden,mech. (108)
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A.1.3 Pe = 0, Pm �= 0, Me �= 0, Mm = 0

PEM =
me × pm

3a3c
+

∫
r<a

E ×B

4πc
dVol =

me × pm

3a3c
+

2pm

a3
× 2me

a3

a3

3c
=

pm × me

a3c

=
pm ×Be(r < a)

4c
− me × Em(r < a)

4c
=

∫ (
Pm ×Be

4c
− Me × Em

4c

)
dVol

= −Phidden,mech, (109)

Also,23

P
(A)
EM =

∫
Dm × He

4πc
dVol =

∫
(E − 4πPm) × (B − 4πMe)

4πc
dVol

=

∫
E × B

c
dVol −

∫
r<a

Pm × B

c
dVol −

∫
r<a

E × Me

c
dVol + 4π

∫
r<a

Pm × Me

c
dVol

=
pm × me

a3c
− 2pm × me

a3c
− 2pm × me

a3c
+

3pm ×me

a3c
= 0, (113)

P
(M)
EM =

∫
De × Hm

4πc
dVol =

∫
E × B

4πc
dVol = PEM = −Phidden,mech. (114)

A.1.4 Pe �= 0, Pm = 0, Me = 0, Mm �= 0

PEM =
mm × pe

3a3c
+

∫
r<a

E ×B

4πc
dVol =

mm × pe

3a3c
+

−pe

a3
× −mm

a3

a3

3c
= 0, (115)

P
(A)
EM =

∫
Dm × He

4πc
dVol =

∫
(E − 4πPm) × B

4πc
dVol =

∫
E× B

4πc
dVol

= PEM = 0, (116)

P
(M)
EM =

∫
De × Hm

4πc
dVol =

∫
(E + 4πPe) × B

4πc
dVol = PEM +

∫
r<a

Pe × B

c
dVol

=
pe × Bm

c
(while Phidden,mech = 0). (117)

23(June 22, 2020) This case has subtleties discussed in Appendix B.2 of [35], so it may be useful to record
some details supposing the sphere of uniform electric magnetization Me has radius a > b, where b is the
radius of the sphere of uniform magnetic polarization Pm. Then,

PEM =
∫

r>a

E ×B
4πc

dVol +
∫

b<r<a

E ×B
4πc

dVol +
∫

r<b

E ×B
4πc

dVol. (110)

As in the computation of eq. (20), the integral over b < r < a vanishes, while the integral for r > a has the
form of eq. (101). Hence,

PEM =
me × pm

3a3c
+

(
2pm

b3
× 2me

a3

)
4πb3

3(4πc)
=

pm × me

a3c
= −Phidden,mech, (111)

∫ (
Pm × Be

4c
− Me ×Em

4c

)
dVol =

∫
r<b

(
Pm × Be

4c
− Me ×Em

4c

)
dVol−

∫
b<r<a

Me ×Em

4c
dVol

=
∫

r<b

(
3pm

4πb3
× 2me

a3
− 3me

4πa3
× 2pm

b3

)
dVol
4c

−
∫

b<r<a

3me

4πa3
× 3(pm · r̂) r̂ − pm

r3

dVol
4c

=
pm × me

a3c
. (112)

Thus, the forms for PEM found in eq. (109) do not depend on the spheres of polarization Pm and Me having
precisely the same radii.
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A.1.5 Comments

The cases reported in secs. A1.1, A1.2 and A1.3 all have charges (electric and/or magnetic) in
motion, and all have “hidden” mechanical momentum m×p/a3c, while the case in sec. A.1.4
has no charges in motion and no “hidden” mechanical momentum.

The “hidden” mechanical momenta associated with dipoles due to charges in motion can
be summarized as,

Phidden,mech(me) =
me × E

c
, Phidden,mech(pm) = −pm × B

c
, (118)

for electric and magnetic fields from both electric and magnetic charges/currents.24 Fur-
ther, these forms hold for E and B due to either electric charges/currents or magnetic
charges/currents (or both).25

This is an example of the duality transformation between cases with only electric charges/currents
and those with only magnetic charges/currents, as discussed, for example, in [27],

ρe → ρm, Je → Jm, ⇒ Ee → Bm, Be → −Em, pe → mm, me → −pm. (119)

The reverse transformation is,26

ρm → −ρe, Jm → −Je, ⇒ Em → Be, Bm → −Ee, pm → me, mm → −pe.(120)

Thus, the duality transformation of the “hidden” mechanical momentum of dipoles is,

me ×E

c
↔ −pm × B

c
. (121)

While it is intriguing that the Abraham momentum is zero in all four variants of Romer’s
example for media at rest with permanent dipole moments, recall from sec. 2.2 above that
the Abraham momentum is nonzero in the variants with “free” surface electric currents.

A.2 Romer’s Example with Linear Media (June 2020)

This section extends sec. 2.2.4 above to include the possibility of linear media with magnetic
charges and currents, which would be characterized by relative permittivity εm and relative
permeability μm. We now denote εe as the relative permittivity, and μe as the relative
permeability, of linear media with electric charges and currents.

We discuss only that case when the radii of the two spheres are the same, a, and that
the relative permittivity and permeabilities are both unity for r > a.

24For an example in which the “hidden” mechanical momentum is −pm × B/c for a loop of magnetic
current, see Appendix B of [35].

25The case presented in sec. A.1.3, in which electric and magnetic currents coexist within the same volume,
is an exception, with “hidden” mechanical momentum me ×Em/4c−pm ×Be/4c (although this does equal
me × pm/a3c). This unusual case is considered in greater detail in Appendix B.2.2 of [35].

26The identity transformation consists of a sequence of four transformations, e → m, m → e, e → m,
m → e (rather than only two, e → m, m → e).
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In eqs. (41)-(42) of sec. 2.2.4, we found the fields associated with electric charges and
currents, which can be written in the notation of the present section as,

De =

⎧⎨
⎩

− 3εe

2+εe

pe,free

a3 (r < a),

3
2+εe

3(pe,free·r̂)r̂−pe,free

r3 (r > a),
Ee =

⎧⎨
⎩

− 3
2+εe

pe,free

a3 (r < a),

3
2+εe

3(pe,free·r̂)r̂−pe,free

r3 (r > a),
(122)

He =

⎧⎨
⎩

3
2+μe

2me,free

a3 (r < a),

3μe

2+μe

3(me,free·r̂)r̂−me,free

r3 (r > a),
Be =

⎧⎨
⎩

3μe

2+μe

2me,free

a3 (r < a),

3μe

2+μe

3(me,free·r̂)r̂−me,free

r3 (r > a).
(123)

We can obtain the expressions associated with magnetic charges and currents from
eqs. (122)-(123) via the duality transformations (119) above and eq. (114) of [9],

De → Hm, He → −Dm, Dm → He, Hm → −De. (124)

We also note the duality relations for the relative permittivities and permeabilities,

De = εeE, He =
B

μe

, Dm → εmE, Hm =
B

μm

, (125)

εe → 1

μm

, μe →
1

εm
, εm → 1

μe

, μm → 1

εe
. (126)

Then,

Hm =

⎧⎨
⎩

− 3
2μm+1

mm,free

a3 ,

3μm

2μm+1

3(mm,free·r̂)r̂−mm,free

r3 ,
Bm =

⎧⎨
⎩

− 3μm

2μm+1

mm,free

a3 (r < a),

3μm

2μm+1

3(mm,free·r̂)r̂−mm,free

r3 (r > a),
(127)

Dm =

⎧⎨
⎩

3εm

2εm+1

2pm,free

a3 ,

3
2εm+1

3(pm,free·r̂)r̂−pm,free

r3 ,
Em =

⎧⎨
⎩

3
2εm+1

2pm,free

a3 (r < a),

3
2εm+1

3(pm,free·r̂)r̂−pm,free

r3 (r > a).
(128)

It is useful to recall from eq. (20) that,

∫
r>a

3(pfree · r̂)r̂ − pfree

r3
× 3(mfree · r̂)r̂ − mfree

r3

dVol

4πc
=

mfree × pfree

3a3c
. (129)

A.2.1 pe �= 0, pm = 0, me �= 0, mm = 0

This case was treated in sec. 2.2.4 above.

PEM = − 3pe,free

(2 + εe)a3c
× 3μeme,free

2 + μe

, (130)

P
(A)
EM =

3mm,free

(2μm + 1)a3c
× pm,free, (131)

P
(M)
EM = −(2εe + 1)pe,free

(2 + εe)a3c
× 3μeme,free

2 + μe

. (132)
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A.2.2 pe = 0, pm �= 0, me = 0, mm �= 0

This case is the dual of that in sec. A.2.1.

PEM =
3μmmm,free

(2μm + 1)a3c
× 3pm,free

2εm + 1
, (133)

P
(A)
EM = − 3pe,free

(2 + εe)a3c
× me,free, (134)

P
(M)
EM = −(2 + μm)mm,free

(2μm + 1)a3c
× 3pm,free

2εμ + 1
. (135)

A.2.3 pe = 0, pm �= 0, me �= 0, mm = 0

PEM =

∫
Em × Be

4πc
dVol =

∫
r<a

6

2εm + 1

pm,free

a3
× 6μe

2 + μe

me,free

a3

dVol

4πc

+

∫
r>a

3

2εm + 1

3(pm,free · r̂)r̂− pm,free

r3
× 3μe

2 + μe

3(me,free · r̂)r̂− me,free

r3

dVol

4πc

=
3

2εm + 1

3μe

2 + μe

(
4pm,free ×me,free

3a3c
+

me,free × pm,free

3a3c

)

=
3μe

(2εm + 1)(2 + μe)

pm,free × me,free

a3c
, (136)

P
(A)
EM =

∫
Dm × He

4πc
dVol =

∫
r<a

εmEm × Be/μe

4πc
dVol +

∫
r>a

Em × Be

4πc
dVol

=
εm

μe

∫
r<a

6

2εm + 1

pm,free

a3
× 6μe

2 + μe

me,free

a3

dVol

4πc

+

∫
r>a

3

2εm + 1

3(pm,free · r̂)r̂− pm,free

r3
× 3μe

2 + μe

3(me,free · r̂)r̂− me,free

r3

dVol

4πc

=
3

2εm + 1

3μe

2 + μe

(
4εm

μe

pm,free ×me,free

3a3c
+

me,free × pm,free

3a3c

)

=
3(4εm − μe)

(2εm + 1)(2 + μe)

pm,free × me,free

a3c
, (137)

P
(M)
EM =

∫
De × Hm

4πc
dVol =

∫
Em × Be

4πc
dVol = PEM. (138)

A.2.4 pe �= 0, pm = 0, me = 0, mm �= 0

This case, like that of sec. A.1.4 above, has no moving charges, so PEM = 0. We can confirm
this using,

PEM =

∫
Ee × Bm

4πc
dVol =

∫
r<a

− 3

2 + εe

pe,free

a3
×− 3μm

2μm + 1

mm,free

a3

dVol

4πc

+

∫
r>a

3

2 + εe

3(pe,free · r̂)r̂ − pe,free

r3
× 3μm

2μm + 1

3(mm,free · r̂)r̂ − mm,free

r3

dVol

4πc

=
3

2 + εe

3μm

2μm + 1

(
pe,free × mm,free

3a3c
+

mm,free × pe,free

3a3c

)
= 0. (139)
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Also,

P
(A)
EM =

∫
Dm × He

4πc
dVol =

∫
Ee × Bm

4πc
dVol = 0. (140)

P
(M)
EM =

∫
De × Hm

4πc
dVol =

∫
r<a

εeEe × Bm/μm

4πc
dVol +

∫
r>a

Ee × Bm

4πc
dVol

=
εe

μm

∫
r<a

− 3

2 + εe

pe,free

a3
×− 3μm

2μm + 1

mm,free

a3

dVol

4πc

+

∫
r>a

3

2 + εe

3(pe,free · r̂)r̂ − pe,free

r3
× 3μm

2μm + 1

3(mm,free · r̂)r̂ − mm,free

r3

dVol

4πc

=
3

2 + εe

3μm

2μm + 1

(
εe

μm

pe,free ×mm,free

3a3c
+

mm,free × pe,free

3a3c

)

=
3(εe − μm)

(2 + εe)(2μm + 1)

pe,free ×mm,free

a3c
. (141)

B Appendix: Why Does pm = −
∫

r × Jm dVol/2c ?

The duality transformation (119) contains the prescription that the dual of a magnetic-dipole
moment due to electric currents is the negative of an electric-dipole moment due to magnetic
currents,

me → −pm, (142)

which minus sign is perhaps counterintuitive. Now,

me =

∫
r × Je

2c
dVol →

∫
r × Jm

2c
dVol, (143)

so eqs. (142)-(143) imply that,

pm = −
∫

r × Jm

2c
dVol, (144)

which also is perhaps surprising.
We recall that for a magnetic dipole me associated with an electric-current density Je

that flows in a loop, say in a static situation, the Maxwell equation ∇×B = 4πJe/c implies
that,

4π

c

∮
loop

Je · dl =

∮
loop

∇ × B · dl =

∫
loop

B · dArea. (145)

That is, the direction of the magnetic field B at the center of the loop is related to the
direction of Je by the righthand rule, as sketched in the left figure below.
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This is consistent with the usual relation,

me =

∫
r × Je

2c
dVol. (146)

In the case of a loop of magnetic current density Jm, again in a static situation, the
Maxwell equation (91), ∇ × E = −4πJm/c, implies that,

4π

c

∮
loop

Jm · dl = −
∮

loop

∇ × E · dl =

∫
loop

E · dArea. (147)

That is, the direction of the magnetic field E at the center of the loop is related to the
direction of Jm by the lefthand rule, as sketched in the right figure above. This is consistent
with the relation (144), which is in turn consistent with the duality relation (142),
me → −pm.

Thus, the difference in sign between the relations (144) and (146) is due to the difference
in signs of the terms in the current densities in the Maxwell equations,

c

4π
∇× E = −

(
1

4π

∂B

∂t
+ Jm

)
,

c

4π
∇ ×B =

1

4π

∂E

∂t
+ Je. (148)

The equation for ∇×E with magnetic currents was first discussed by Heaviside in 1885
[58]. He argued (p. 448 of [58]) that just as in the equation for ∇ × B where the current
density Je and the “displacement-current density” (1/4π) ∂E/∂t have the same sign, the
current density Jm and the “magnetic-displacement-current density” (1/4π) ∂B/∂t should
have the same sign in the equation for ∇× E.27
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