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1 Problem

In 1926, Fock noted [1, 2, 3] that Schrödinger’s equation for an electric charge e of mass m
in electromagnetic fields described by potentials Aμ = (V,A) can be written, in Gaussian
units with c as the speed of light,

(−i�D)2

2m
ψ = i�D0ψ, using the “altered” (covariant) derivative Dμ = ∂μ − ieAμ/�c, (1)

which is gauge invariant only if the gauge transformation of the potentials, Aμ(xν) → Aμ +
∂μχ(xν), is accompanied by a phase change of the wavefunction, ψ(xν) → e−ieχ(xν)/�c ψ. Yang
and Mills (1954) [4, 5] may have been the first to point out that Fock’s argument can be
inverted such that a requirement of local phase invariance of the form ψ(xν) → e−ieχ(xν)/�c ψ
implies the existence of an interaction described by a potential Aμ (and charge e) which
satisfies gauge invariance and modifies Schrödinger’s equation via the altered derivative Dμ.
This led to a greater appreciation of the significance of potentials in the quantum realm.

Separately, Aharonov and Bohm (1959) [6, 7] discussed an electron that moves only
outside a long solenoid magnet (where B = 0 to a good approximation; see the sketch below,
from [6]), and which accumulates a different phase in its wavefunction depending on which
side of the magnet it passes.1 The resulting interference pattern, which depends on the
(gauge-invariant) magnetic flux in the solenoid (that can be related to the vector potential
A in whatever gauge is used), has been observed in subsequent experiments [12]-[24].2

The quantum interference effect in the Aharonov-Bohm experiment is impressive, but
there are already disconcerting issues in purely classical considerations thereof. It is often

1The concept of the Aharonov-Bohm effect was to some extent anticipated in considerations of effects in
electron microscopy [8]-[11].

2This result is often misinterpreted as evidence that the vector potential A is “observable” in the quantum
realm. A better statement is that there exist quantum-electrodynamic effects on the behavior of an electron
which moves only in a region of zero external electric and magnetic field, but where the vector potential (in
any choice of gauge) is nonzero. Note that the observed result relates directly to the magnetic field Bsoloenoid

although this field is zero at the electron; the paradox is more that the observed quantum effect seems to be
action-at-a-distance (as bothered E-P-R in another context [25]) between the solenoid and the electron.

A more careful discussion of the Aharonov-Bohm effect was given by Aharonov in Chap. 4 of [26].
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remarked that there is no classical effect on an electron that passes outside a long solenoid
magnet, where Bsolenoid = 0.3 However, the current density that generates the solenoid field
is affected by the magnetic field of the moving electron (even assuming that the electric
charge density associated with the current density is zero).

Problem: Deduce the force on a solenoid of radius a about the z-axis that carries
azimuthal surface current density Kφ = I per unit length, when an electron of velocity
v = v ŷ is at position (x, y, z) = (b, vt, 0), where v � c and |b| � a.4

That is, Newton’s third law is not obeyed by this configuration!
Issues like this were noted by Ampère in the 1820’s and led him to doubt the existence

of isolated, moving electric charges, which view put particle physics on hold for 60 years (in
England but not in Germany). Only after Poynting (1884) [27] developed the notion that
electromagnetic fields can support a flux of energy (and hence also contain momentum [28,
29, 30]), did (English) physicists have the confidence to reconsider the concept of elementary
charged particles.5,6

In retrospect we note that the issue of apparent violation of Newton’s third law could have
been resolved earlier, based on Faraday’s insight that what we now call the Coulomb-gauge
vector potential A(C) (called the “electrotonic state” by Faraday7) can be associated with
“electromagnetic momentum”, as formulated mathematically by Maxwell [38]. In Gaussian
units, the electromagnetic momentum associated with a charge distribution � that is im-
mersed in a vector potential A(C) (in the Coulomb gauge8) is given (for quasistatic motion)
by,

PEM =

∫
�A(C)

c
dVol. (2)

The Faraday-Maxwell form (2) is a classical effect of the solenoid on the electron, but it does
not imply that the vector potential is observable in classical electrodynamics. Rather, we

3Aug. 28, 2022. If the solenoid is made of a conductive material, the electron induces a charge separation
on the surface of the solenoid, giving it an electric dipole moment. Then, the electric dipole field exerts a
classical force on the electron. As such, demonstrations like that in [20, 21], which used a superconducting
solenoid, do not represent the Aharonov-Bohm effect in its purest form.

Experiments using electron microscopes, such as [13]-[15] use electrostatic focusing of the electron beam,
and so are also not considered by “purists” to have studied the “true” Aharonov-Bohm effect.

4Assume that the magnetic field of the electron is not “shielded” by the solenoid, which shielding would
imply additional currents that create additional magnetic field external to the solenoid that lead to a force
on the moving electron.

5An important first step was taken by Thomson in 1881 [31, 32] based on considerations of kinetic energy
of a moving charge.

6Germans since Weber (1846) [33] had considered theories of “point” electric charges.
7Faraday first speculated on an electro-tonic state in Art. 60 of [34]. Other mentions by Faraday of the

electrotonic state include Art. 1661 of [35], Arts. 1729 and 1733 of [36], and Art. 3269 of [37].
8The Coulomb-gauge vector potential A(C) is “rotational” (or “solenoidal” or “transverse”), meaning

that ∇ · A(C) = 0. In a general gauge, the vector potential can be written (using Helmholtz’ theorem [40])
as A = Airr +Arot where ∇×Airr = 0 and ∇ ·Arot = 0. Then, a gauge transformation A → A′ = A+∇χ,
V → V ′ = V − ∂χ/∂ct, where V is the electric scalar potential and χ is the gauge-transformation function,
implies that A′

irr = Airr + ∇χ and A′
rot = Arot if ∇2χ �= 0, but A′

irr = Airr and A′
rot = Arot + ∇χ if

∇2χ = 0 (for example, if χ = xy. That is, contrary to the claim of eq. (B.16), p. 17, of [41], the rotational
part of the vector potential is not gauge invariant (and the Coulomb-gauge vector potential is not unique for
a given current density). See also Appendix B of [40].
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note that it is equivalent to the Poynting-Thomson-Poincaré form, PEM =
∫

E×B dVol/4πc,
as shown, for example, in [39]. While the Faraday-Maxwell form for the electromagnetic
momentum suggests that this resides with the electron, the Poynting-Thomson-Poincaré
form suggests that it resides in the electromagnetic fields. This classical ambiguity is a
preview of the Aharonov-Bohm effect that an electron can be affected by an electromagnetic
field elsewhere than at the electron.

Problem: Use eq. (2) to deduce the electromagnetic momentum of the electron +
solenoid when the electron is at (x, y, z) = (b, vt, 0), and from this show that dPEM/dt
is equal and opposite to the force on the solenoid found previously.

This seems to be a satisfactory resolution to the issue of momentum conservation, but
a disconcerting result remains. Suppose the electric charge were at rest; then the electro-
magnetic momentum (2) is nonzero, while the solenoid is at rest also and seems to contain
no net momentum. Hence, we have an example of a system at rest which seems to contain
nonzero total momentum!

Peculiarities of this sort were dramatized by Shockley in 1967 [42],9 and remain an arcane
aspect of classical physics, where some systems contain “hidden” momentum [47] (such that
systems “at rest” indeed have zero total momentum). One can give a plausible classical model
of the “hidden” momentum as residing in the electrical current in the present example [48].
Perhaps the main significance of the “hidden” momentum for the Aharonov-Bohm effect is
to remind us that even in a “classical” view, the electron is “entangled” with the solenoid,
although the magnetic field of the solenoid happens to be zero at the location of the electron.
While the field of the solenoid has no “classical” effect on the electron, the electron does have
a “classical” effect on the solenoid, so the two objects should not be regarded as independent
entities. In this context, it should be pleasing, rather than disturbing, that in the quantum
realm the solenoid has an effect on the electron.10

Extended Problem: Comment also on energy and angular momentum in this system.

In the author’s view, the Aharonov-Bohm effect (and the related debate about the “ob-
servability” of potentials [51]) misses the point that the role of the potentials (which must
obey gauge invariance), combined with the notion of local phase invariance, is to deter-
mine the form of the interactions of elementary particles. It is the nonobservability of the
potentials, because they are subject to gauge transformations, which leads the potentials
to be included in the altered derivative Dμ, eq. (1), that makes them so important in the
development of the theory of elementary particles and fields.11

A claasical anolog of a sublte aspect of the Aharonov-Bohm effect is discussed in [53].

9These peculiarities were previously noted by J.J. Thomson in 1904 [32, 43, 44, 45], but were little
discussed by others for many years. A partial awareness of classical “paradoxes” in the Aharonov-Bohm
effect appeared in [46].

10This theme was developed by Aharonov for the “dual” example in which a loop of current (magnetic
dipole) interacts with a line charge parallel to the axis of the loop [49]. See also [50].

11For a similar commentary, which includes demonstration that the Aharonov-Bohm effect vanishes in a
suitable classical limit, see [52].
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2 Solution

2.1 Momentum

The magnetic field Be at position x of an electron of charge −e and velocity v at position
xe is (in Gaussian units, and for v � c),

Be(x,xe) =
v

c
× Ee(x,xe) = −ev ×R

cR3
, where R = x− xe. (3)

The force of this magnetic field from an electron at (x, y, z) = (b, vt, 0) on a solenoidal
(surface) current density Kφ(r = a, φ, z) = I per unit length is,

F =

∫
K × Be

c
dArea

= −Iev
c2

∫ ∞

−∞
dz

∫ 2π

0

a dφ
(− sinφ, cosφ, 0) × {ŷ × [(a cosφ, a sinφ, z) − (b, vt, 0)}

[(a cosφ− b)2 + (a sinφ− vt)2 + z2]3/2

= −aIev
c2

∫ ∞

−∞
dz

∫ 2π

0

dφ
(− sinφ, cos φ, 0) × (z, 0, b− a cos φ)

(a2 + b2 + v2t2 − 2ab cosφ− 2avt sinφ+ z2)3/2

= −aIev
c2

∫ 2π

0

dφ

∫ ∞

−∞
dz

[cosφ(b− a cosφ), sinφ(b− a cos φ),−z cos φ]

(a2 + b2 + v2t2 − 2ab cosφ− 2avt sinφ+ z2)3/2

= −2aIev

c2

∫ 2π

0

dφ
[cosφ(b− a cos φ), sin φ(b− a cosφ), 0]

b2 + v2t2 − 2ab cosφ− 2avt sinφ+ a2

≈ − 2aIev

c2(b2 + v2t2)

∫ 2π

0

dφ [cosφ (b− a cosφ) , sinφ (b− a cos φ) , 0]

(
1 +

2ab

b2 + v2t2
cosφ+

2avt

b2 + v2t2
sin φ

)

= − 2πa2Iev

c2(b2 + v2t2)

(
−1 +

2b2

b2 + v2t2
,

2bvt

b2 + v2t2
, 0

)

= − 2πa2Iev

c2(b2 + v2t2)

(
b2 − v2t2

b2 + v2t2
,

2bvt

b2 + v2t2
, 0

)
. (4)

This force is very small, being of order 1/c2, and clarification of its possible effect on the
system is more of “academic” than practical interest. Note that πa2I/c is the magnetic
moment per unit length along the solenoid

The uniform magnetic field Bsolenoid = B ẑ inside the solenoid has magnitude B = 4πI/c,
as follows from Ampère’s law. This field can also be deduced from a (coulomb-gauge) vector
potential A(C) whose only nonzero component in a cylindrical coordinate system (r, φ, z) is

A
(C)
φ (r), where B = ∇ × A(C) implies for a loop of radius r that,

∮
A(C) · dl = 2πrA

(C)
φ =

∫
∇ × A(C) · dArea = B · dArea =

4π2I

c

⎧⎨
⎩

r2 (r < a),

a2 (r > a).
(5)
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Outside the solenoid, the magnetic field is zero (in the limit of an infinite solenoid), while
the vector potential can be taken as the form,12

A
(C)
φ (r > a) =

2πa2I

cr
, A(C)(r > a) =

2πa2I

cr2
(−y, x, 0), (6)

which also follows from the static form,

A(C)(r) =

∫
J(r′) dVol′

c |r − r′| . (7)

According to eq. (2) of Faraday and Maxwell, the system of electron plus solenoid has
electromagnetic momentum,13

P
(1)
EM = −eA

(C)(b, vt, 0)

c
= − 2πa2Ie

c2(b2 + v2t2)
(−vt, b, 0) . (8)

The time derivative of this is,

dPEM

dt
= − 2πa2Iev

c2(b2 + v2t2)

[
−1 +

2v2t2

b2 + v2t2
,

−2bvt

b2 + v2t2
, 0

]

=
2πa2Iev

c2(b2 + v2t2)

[
b2 − v2t2

b2 + v2t2
,

2bvt

b2 + v2t2
, 0

]
= −F = −dPmech

dt
, (9)

on comparison with eq. (4). Thus,

dPtotal

dt
=
dPEM

dt
+
dPmech

dt
= 0, (10)

and the total momentum of the system is constant in time. The electrical current in the
solenoid carries momentum, but näıvely we expect that the total mechanical momentum of
a current loop would be zero; however, this is not the case if the current loop is subject to
an external electric field, as in the present example.

12Other choices for the vector potential A are possible. In particular, use of the Poincaré gauge leads to
an A that is nonzero only in a region that depends on the (arbitrary) choice of origin [54], so that while it can
be said that the charge interacts “locally” with the vector potential, the location of the “local” interaction
is not uniquely determined.

Even the Coulomb-gauge vector potential is not unique, as the restricted gauge transformation A′(C) =
A(C) + ∇χ, V ′(C) = V (C) − ∂χ/∂ct with ∇2χ = 0 generates new potentials also in the Coulomb gauge (see
sec. IIIC of [55]). For example, χ = ±Bxy/2 leads from eq. (6) to the Coulomb-gauge potentials (often
attributed to Landau) for an infinite solenoid, A(C)(r > a) = 2πI

c

[
y
2

(
1 ∓ a2

ρ2

)
x̂ ± x

2

(
1 ± a2

ρ2

)
ŷ
]
.

One might argue that the currents which generate the infinite solenoid are purely azimuthal, so the vector
potential should respect this symmetry, as is the case for eq. (6). However, this usage of symmetry is not
part of the usual notion of electromagnetic potentials.

13The form PEM = −eA(C)/c for the electromagnetic momentum is not generally gauge invariant. How-
ever, if the current density is static, and (unlike for an infinite solenoid) nonzero only in a bounded region,
and one insists that the vector potential vanish at infinity, then rotational part of the vector potential, Arot,
equals the “standard” Coulomb-gauge vector potential of eq. (7). See Appendix B.1 of [40]. That is, the
form PEM = −eA(C)/c is gauge invariant in a limited sense.
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The unbalanced force of the moving electron on the solenoid serves to change its “hidden”
internal mechanical momentum, while the bulk of the solenoid remains at rest as the electron
passes by.14,15

For completeness, we evaluate the electromagnetic momentum according to the Poynting-
Thomson-Poincaré prescription (ignoring the self-field-momentum of the moving electron),

P
(2)
EM =

∫
Ee × Bsolenoid

4πc
dVol ≈ 1

4πc

∫ ∞

−∞
πa2 dz

−e(−b,−vt, z)
(b2 + v2t2 + z2)3/2

× 4πI(0, 0, 1)

c

= −πa
2Ie(−vt, b, 0)

c2

∫ ∞

−∞

dz

(b2 + v2t2 + z2)3/2
= −2πa2Ie(−vt, b, 0)

c2(b2 + v2t2)
, (11)

as in eq. (8).
It turns out [39, 63] there is a third way that the electromagnetic momentum can be

computed (for quasistatic examples) based on the Coulomb-gauge electric scalar potential
V (C) and the current density J,

P
(3)
EM =

∫
V (C)J

c2
dVol =

∫
V

(C)
e K

c2
dArea

= −Ie
c2

∫ ∞

−∞
dz

∫ 2π

0

a dφ
(− sinφ, cos φ, 0)

[(a cosφ− b)2 + (a sinφ− vt)2 + z2]1/2

= −aIe
c2

∫ ∞

−∞
dz

∫ 2π

0

dφ
(− sinφ, cos φ, 0)

(z2 + b2 + v2t2 − 2ab cos φ− 2avt sinφ+ a2)1/2

≈ −aIe
c2

∫ ∞

−∞

dz

(z2 + b2 + v2t2)1/2

∫ 2π

0

dφ (− sinφ, cos φ, 0)

(
1 +

ab cosφ+ avt sinφ

z2 + b2 + v2t2

)

= −πa
2Ie(−vt, b, 0)

c2

∫ ∞

−∞

dz

(z2 + b2 + v2t2)3/2
= −2πa2Ie(−vt, b, 0)

c2(b2 + v2t2)
. (12)

The fact that electromagnetic momentum can be computed several different ways reminds
us that even in “classical” systems the subsystems should be regarded as “entangled” rather
than “independent”.

2.2 Energy

The system of electron plus solenoid has an interaction field energy,

UEM,int =

∫
Ee · Esolenoid + Be ·Bsolenoid

4π
dVol ≈ πa2I

c

∫ ∞

−∞
Be(0, 0, z) dz (13)

=
πa2I

c

∫ ∞

−∞

evb

c(b2 + v2t2 + z2)3/2
dz =

2πa2evbI

c2(b2 + v2t2)
= e

v

c
· Asol =

∫
Je · Asol

c
dVol,

14All this is rather subtle, and apparently not well known, as a paper based on this example was recently
published in Phys. Rev. Lett. claiming that the Lorentz force law must be wrong. For discussion by the
author of this dismal issue, see [57].

15For a discussion of the character of the “hidden” mechanical momentum in a current loop, see [48, 62].
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since Esolenoid = 0 and Bsolenoid = 4πI ẑ/c with magnetic flux Φsol = πa2Bsolenoid. That is, the
electromagnetic interaction field energy (which can have either sign) is greatest in magnitude
when the electron is closest to the solenoid.

Where is the compensating energy such that the total energy of the (isolated) system is
conserved?

In the Aharonov-Bohm effect it is tacitly assumed that the magnetic field of the solenoid
does not change with time, and it is typically implied that this is because that field is due to
permanent magnetism. For example, the uniform surface current density Kφ = I considered
on p. 2 could be due to a cylinder of radius a with uniform magnetization density M = I ẑ/c.
In this case, there is an additional interaction energy,

UM,int = −
∫

M · Be dVol ≈ −πa
2I

c

∫ ∞

−∞
Be(0, 0, z) dz = −UEM,int, (14)

such that the total interaction energy is zero.16,17

However, it could be that the solenoid is made of a conductive material and the surface
currents are maintained constant by a battery. In this case, the battery does work on the
currents (and vice versa) such that the sum of the field energy and that of the battery
remains constant. One way to see this is to take the time derivative of eq. (13),18

dUEM,int

dt
=

∫
∂Be

∂t
· Bsolenoid

4π
dVol = − c

4π

∫
∇× Ee · Bsolenoid dVol

= − c

4π

∫
Ee · ∇× Bsolenoid dVol = −

∫
Jsolenoid ·Ee dVol, (15)

using the identity that ∇ · (E × B) = B · (∇ × E) − E · (∇ × B). That is the change in
the interaction field energy is opposite to the work done by the field Ee on the currents. To
keep the currents constant, the battery must do work on them opposite to that done by Ee,
which means that the change of energy of the battery equals the work done by Ee on the
currents, which is opposite to the change in the field energy.

We might worry that the “hidden” momentum invoked in sec. 2.1 is associated with a
“hidden” energy that should be considered here. However, as discussed in [48], “hidden”
mechanical momentum can be thought of as arising because the total energy of the charge
carriers of the current in an external electric field remains constant; if the electric potential
energy of the charge rises, the kinetic energy (and momentum) decreases, etc.

16A delicacy is that if the solenoid does not move, no work is done on it by the field Be, so eq. (14) does
not obviously represent a stored energy. However, in case of a permanent solenoid magnet, the meaning
of the interaction energy (13) is also doubtful in that one cannot well represent permanent magnetism by
a classical current density J. That the energies (13) and (14) cancel for a permanent solenoid magnet is a
“classical” accommodation of an ultimately quantum phenomenon.

See also secs. 5.7 and 5.16 of [58].
17Mar. 3, 2022. An argument was made in [59] that the interaction field energy is only given by our

eq. (13), which is time dependent, and hence the kinetic energy/velocity of the electron must also be time
dependent such that total energy is conserved. This argument was disputed in [60, 61], but the compensating
term (14) for the case of a permanent magnet was not displayed, which had left it open to some views that
the argument of [59] might still be valid.

18This argument was suggested by D.J. Griffiths.

7



2.3 Angular Momentum

The force (4) of the electron on the solenoid is associated with a torque,

τ =

∫
r × K × Be

c
dArea

= −Iev
c2

∫ ∞

−∞
dz

∫ 2π

0

a dφ
r × (− sinφ, cosφ, 0) × {ŷ × [(a cosφ, a sinφ, z) − (b, vt, 0)}

[(a cosφ− b)2 + (a sinφ− vt)2 + z2]3/2

= −aIev
c2

∫ ∞

−∞
dz

∫ 2π

0

dφ
r × (− sinφ, cos φ, 0) × (z, 0, b− a cos φ)

(a2 + b2 + v2t2 − 2ab cosφ− 2avt sinφ+ z2)3/2

= −aIev
c2

∫ 2π

0

dφ

∫ ∞

−∞
dz

(a cosφ, a sinφ, z) × [cosφ(b− a cosφ), sinφ(b− a cosφ),−z cos φ]

(a2 + b2 + v2t2 − 2ab cosφ− 2avt sinφ+ z2)3/2

= −aIev
c2

∫ 2π

0

dφ

∫ ∞

−∞
dz

(−bz sinφ, bz cosφ, 0)

(a2 + b2 + v2t2 − 2ab cosφ− 2avt sinφ+ z2)3/2
= 0. (16)

Since the solenoid exerts no force/torque on the electron, the total torque on the system is
zero and we expect its angular momentum to be constant in time.19

The system of uniformly moving electron plus constant-field solenoid contains both field
and mechanical angular momentum. The mechanical angular momentum of the electron is
constant in time.

It is delicate to compute the field angular momentum, in that the calculation requires
assigning a location to the field momentum. The three prescriptions, (8), (11) and (12)
which gave the same value for the total field momentum suggest different locations for it,
and hence lead to different values for the field momentum.

The field angular momentum can be computed from eq. (8) as,

L
(1)
EM = re × P

(1)
EM = −re × eA(C)

c
= −(b, vt, 0)× 2πa2Ie(−vt, b, 0)

c2(b2 + v2t2)
= −2πa2Ie ẑ

c2
, (17)

which is constant in time. Using eq. (11) we find,

L
(2)
EM =

∫
r × Ee ×Bsolenoid

4πc
dVol

≈ 1

4πc

∫ a

0

r dr

∫ 2π

0

dφ

∫ ∞

−∞
dz (r cosφ, r sinφ, z) ×
−e(r cosφ− b, r sinφ− vt, z)

[(r cosφ− b)2 + (r sinφ− vt)2 + z2]3/2
× 4πI(0, 0, 1)

c

= −Ie
c2

∫ ∞

−∞
dz

∫ a

0

r dr

∫ 2π

0

dφ
[z(r sinφ− b), z(r cos φ− b), rb cosφ+ rvt sinφ− r2]

(z2 + b2 + v2t2 − 2rb cos φ− 2rvt sinφ+ r2)3/2

≈ −Ie
c2

∫ ∞

−∞
dz

∫ a

0

r dr

∫ 2π

0

dφ
(0, 0, rb cos φ+ rvt sinφ)

(z2 + b2 + v2t2)3/2

(
1 + 3

rb cos φ+ rvt sinφ

z2 + b2 + v2t2

)

19In the case where the solenoid is a cylinder of uniform magnetization density M the net torque of the
electron’s magnetic field on the magnetization is zero (although there is a bending moment).
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= −Ie
c2

∫ ∞

−∞

dz

(z2 + b2 + v2t2)5/2

∫ a

0

r dr 3πr2(b2 + v2t2)

= −πa
4Ie(0, 0, 1)

c2(b2 + v2t2)
= − πa4Ie ẑ

c2(b2 + v2t2)
, (18)

which varies with time. For completeness, we use eq. (12) to obtain,

L
(3)
EM =

∫
r × V (C)J

c2
dVol =

∫
r × V

(C)
e K

c2
dArea

= −Ie
c2

∫ ∞

−∞
dz

∫ 2π

0

a dφ
(a cosφ, a sinφ, z) × (− sin φ, cos φ, 0)

[(a cosφ− b)2 + (a sinφ− vt)2 + z2]1/2

= −aIe
c2

∫ ∞

−∞
dz

∫ 2π

0

dφ
(−z cosφ,−z sinφ, a)

(z2 + b2 + v2t2 − 2ab cos φ− 2avt sinφ+ a2)1/2

≈ −a
2Ie

c2

∫ ∞

−∞

dz

(z2 + b2 + v2t2)1/2

∫ 2π

0

dφ (0, 0, 1)

(
1 +

ab cosφ+ avt sinφ

z2 + b2 + v2t2

)

= −2πa2Ie(0, 0, 1)

c2

∫ ∞

−∞

dz

(z2 + b2 + v2t2)1/2
= L

(1)
EM

∫ ∞

−∞

dz

(z2 + b2 + v2t2)1/2
, (19)

which diverges.
Only the field angular momentum (17) is constant in time.
It is surprising that the form (18) is time dependent, since it might seem the most basic

form of for the field angular momentum. The computation in eq. (18) ignored the magnetic
field outside the long solenoid, although this field is not strictly zero, just extremely small.
It turns out that while the “return flux” outside the solenoid can be ignored in computations
of the field momentum, this is not the case when calculation the field angular momentum
where the field momentum density is multiplied by the vector r. A more careful computation
[64] of L

(2)
EM shows that it is the same as L

(1)
EM, i.e., constant in time.

Indeed, a general result (Appendix B of [64]) is that for quasistatic systems, L
(1)
EM = L

(2)
EM

(for suitably careful evaluation of the latter) but that the form L
(3)
EM differs from these two.

Hence, we identify the field angular momentum in the present example with the result of
eq. (17).20,21

20Additional subtleties arise when we consider “hidden” momentum and “hidden” angular momentum.
We found in sec. 2.1 that the solenoid must contain (small) “hidden” mechanical momentum that is equal and
opposite to the time-varying field momentum (11). Associated with this “hidden” mechanical momentum
is “hidden” mechanical angular momentum, but the computation of the latter is also delicate as there is no
requirement that the sum of the “hidden” mechanical and field angular momenta be zero. See, for example,
sec. 4.15 of [47].

21Even more subtleties arise if one considers the present example in the rest frame of the electron, such
that the solenoid is in motion. In this frame the solenoid appears to have an electric dipole moment [65], and
the field of the electron exerts a torque on this moment (whereas there is no such torque in the lab frame).
This “paradoxical” torque on an object with a magnetic moment that moves in an electric field is associated
with the changing “hidden” mechanical angular momentum of the system, as discussed in [57] for a closely
related example.
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A Appendix: The Electric Aharonov-Bohm Effect

(Aug. 25, 2022)
The first example considered by Aharonov and Bohm was not the now-familiar case of

an electron passing a long solenoid magnet, as on p. 1 above, but an electron that passes
through two long, hollow, conducting tubes, as sketched below (from [6]).

There are no “external” electric or magnetic fields anywhere, except where the electron is
near the center of a tube, during which time a charge separation is applied between the two
tubes. This results in no “external” force on the electron in the limit of very long tubes,22

but, in the Coulomb gauge, there exist nonzero (time-dependent) scalar and vector potentials
at the position of the charge. Hence, there is a quantum phase difference between the two
paths, ABDF and ACEF, of the electron given by (in Gaussian units; see p. 486 of [6]),

Δφ =
e

�

∮
ABDFECA

(
V dt− A

c
· dl

)
. (20)

Aharonov and Bohm supposed that the contribution of the vector potential to the phase
difference could be neglected in this example (in the Coulomb gauge), and implied that an
observation of the phase difference (via a shifted diffraction pattern on a screen at F) would
provide evidence that the scalar potential V is “physical”.23

However, we could also work in the Gibbs gauge,24 where the scalar potential V is zero
everywhere, and the phase difference is computed from the vector potential only. That is,
the electric Aharonov-Bohm effect does not provide evidence that the scalar potential is a
“physical effect”.

And as mentioned in footnote 12 above, the freedom to choose different gauges, leading
to different values of the vector potential at the position of the electron, means that the

22However, there is an “induced” force on the electron due to the surface charge density on the conducting
tubes induced by the electron itself. This force exists both when the electron is outside the tubes, and also
inside them unless the electron’s path is exactly down the center of a tube.

23An experiment claiming to have observed the electric Aharonov-Bohm effect [66]-[70] did not use con-
ducting tubes, but a long bimetallic wire that had a static surface charge distribution associate with the
contact potential between the two half cylinders of aluminum and platinum. Hence, there was an electrostatic
force on the electron as it passed around the wire. This shifted the single-slit diffraction pattern as well as
the double-slit pattern, and so is not considered by many to be a true demonstration of the Aharonov-Bohm
effect. However, it seems to this author that any experiment on the electric Aharonov-Bohm effect will
involve nonzero “classical” forces on the electron.

Another experiment that was sensitive to the electric Aharonov-Bohm effect [71] did not claim to have
made a clear separation between “quantum” and “classical” effects.

Studies of a magneto-electric Aharonov-Bohm effect were reported in [72].
24First considered by Gibbs in 1896 [73], and now sometimes called the temporal gauge. See, for example,

sec. VIII of [74].

10



vector potential should also not be regarded as “physical” or “observable”. The observable
Aharonov-Bohm effects depends only on certain differences in the potentials, i.e., on the
“physical” electric and magnetic fields. Of course, it remains disconcerting that quantum
effects such as the (magnetic) Aharonov-Bohm effect can be “nonlocal” in the sense that the
electron’s quantum behavior is affected by E and B fields at points other than the location
of the electron (which goes against the classical view of Faraday and Maxwell of “local” field
theory).25
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