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1 Problem

A device for measuring the magnitude of AC current in a wire is based on a helical coil
(solenoid) wound with N turns each of area A. The length L of the coil obeys L2 � A. The
return lead passes back along the axis:1

[Alternatively, wind a second coil outside the first, back from right to left.]
The coil is then bent so as to surround a wire that carries an alternating current I(t) =

I0 cos ωt.

What is the voltage V (t) induced at the leads of the bent solenoid coil? Show that this
voltage is independent of the exact shape of the coil, and independent of the position of
the current-carrying wire. Give a physics reason why the return wire should pass down the
center of the coil.

This problem is based on a classroom demonstration of “displacement current” by Carver
and Rahjel [3]. Other such demonstrations include [4]-[10], of which [6] also used a Rogowski
coil. Apparently, Hertz considered his experiments in [11] to be the first demonstration of
the displacement current, albeit at high frequencies.

1Devices of this type were first described by [1, 2], and are sometimes called Rogowski coils.
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2 Solution

The changing current in the wire causes a changing magnetic field, which induces an electric
field, according to Faraday. The voltage V at the leads to the amp clamp coil is,

V =

∮
E · dl = −1

c

dΦM

dt
, (1)

where the magnetic flux link by the amp clamp is,

ΦM =
∑

small loops

∫
B · dA ≈

∮
large loop

dN

dl
dl B · l̂A ≈ NA

L

∮
large loop

B · dl =
4π

c

NA

L
I(t). (2)

We have used Ampère’s law in the last step of eq. (2), assuming it to hold in its static form
for low-frequency currents as well. For current I = I0 cosωt in the wire, the voltage in the
amp clamp is therefore,

V (t) =
4πNAωI0 sin ωt

c2L
. (3)

Note that we do not have to include a term in ΦM due to flux linked by the large loop
– because of the return wire down the center of the small loops the amp clamp does not
link any flux due to magnetic field lines perpendicular to the plane of the clamp. Rather,
the use of Ampère’s law in eq. (2) shows that the clamp links flux only for wires that pass
through the clamp, and that the amount of this flux linkage is independent of the position
of the wire relative to the clamp. Further, the amount of flux linked is independent of any
possible tilt of the wire with respect to the plane of the clamp.

Mathematical footnote: It may be instructive to make an explicit calculation of the flux
linked by the amp clamp due to a wire perpendicular to the plane of the clamp at distance a
from its center. The clamp has radius R. We first consider a small loop of area A such that
the radius vector R to this loop makes angle θ to the vector a that points from the center
of the loop to the wire.

The flux dΦ through this loop due to current I in the wire is,

dΦ = B · A =
2IA

cr
r̂ · R̂, (4)
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where the distance from the wire to the loop is,

r =
√

R2 − 2aR cos θ + a2. (5)

Since r = R − a, we have,

r̂ · R̂ =
R − a

r
· R̂ =

R − a cos θ

r
, (6)

And the flux linked by the small loop is,

dΦ =
2IA

c

R − a cos θ

R2 − 2aR cos θ + a2
. (7)

The total flux linked by the amp clamp is obtained by integration over θ, noting that the
number of turns in interval dθ is Ndθ/2π,

Φ =

∫
dΦ =

NIA

πc

∫ 2π

0

dθ
R − a cos θ

R2 − 2aR cos θ + a2
. (8)

We recognize this integral as one suitable for evaluation by contour integration. In particular,
we consider the integral around a loop of radius R of the complex function f(z) = 1/(z−a).
The function f has a simple pole at z = a with residue 1, so if a < R the integral is simply
2πi, while if a > R the integral is zero. On the circle of radius R we write z = Reiθ, so that,

∮
dz

z − a
=

∫ 2π

0

iReiθdθ

Reiθ − a
= iR

∫ 2π

0

dθ

R − ae−iθ
= iR

∫ 2π

0

dθ

R − a cos θ + ia sin θ

= iR

∫ 2π

0

dθ
R − a cos θ − ia sin θ

R2 − 2aR cos θ + a2
=

⎧⎨
⎩

2πi, a < R,

0, a > R.
(9)

Thus, ∫ 2π

0

dθ
R − a cos θ

R2 − 2aR cos θ + a2
=

⎧⎨
⎩

2π/R, a < R,

0, a > R,
(10)

and eq. (8) yields

Φ =
2NIA

cR
=

4πNIA

cL
, a < R, (11)

and Φ = 0 for a > R.
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