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1 Problem

In optics, Babinet’s principle [1] for complementary screens is that the sum of the wave
transmitted through a screen (usually considered to be “black” except for its apertures),
plus the wave transmitted through the complementary screen, is the same as if no screen
were present. An electromagnetic version of this principle was given by Booker [2], who
considered perfectly electrically conducting screens and argued that the electromagnetic
fields in the case of the complementary screen (labeled with a ′) that appear in Babinet’s
principle should be the dual fields −B′ and E′ rather than the nominal fields E′ and B′. That
is, if the fields that would exist in the absence of the screen are labeled with the superscript
i (for incident), the incident fields in the complementary case are taken to be E′i = −Bi and
B′i = Ei.1 Then, the electromagnetic version of Babinet’s principle for the fields on the side
of the screen away from the sources is,

Eaway + B′
away = Ei

away, Baway − E′
away = Bi

away. (1)

Also, the fields on the same side of the screen as the sources are related to the scat-
tered/reflected fields Esr and Bsr if the perfectly conducting screen had no apertures by,

Esame side − B′
same side = Esr

same side, Br
same side + E′r

same side = Bsr
same side. (2)

Justify these claims.
It suffices to consider the electromagnetic fields incident on the screen as being a plane

electromagnetic wave of angular frequency ω, as a general wave field can by synthesized from
such plane waves.2 Note that the fields dual to a plane electromagnetic wave with linear
polarization are those obtained on rotating the direction of the polarization by 90◦.

2 Solution

2.1 Dual Fields

Maxwell’s equations were extended by Heaviside [4, 5, 6], starting in 1885, to include the
possibility of magnetic charges and currents,

∇ · E = 4πρ, ∇ · B = 4πρ′, ∇ × E = −4π

c
J′ − 1

c

∂B

∂t
, ∇× B =

4π

c
J +

1

c

∂E

∂t
, (3)

1We can also take the dual incident fields to have the opposite signs, in which case eqs. (1)-(2) hold on
reversing the signs of the complementary fields.

2See, for example, [3].
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where ρ and J are the densities of electrical charge and current, and ρ′ and J′ are the densities
of hypothetical magnetic charge and current. The form of these equations is such that if E
and B are solutions when only electrical charges and currents are present (ρ′ = 0 = J′), then
if only magnetic charges were present, and with values equal to the electrical charges and
currents in the previous case, the electromagnetic fields E′ and B′ obey the duality relations,

E′ = −B, B′ = E. (4)

2.2 No Screen vs. a Conducting Plane

A simple example is a plane electromagnetic wave traveling in empty space. There are no
scattered fields in this case, and the incident fields are the total fields,

E = Ei = E0 ei(kz−ωt) x̂, B = Bi = E0 ei(kz−ωt) ŷ, Es = 0 = Bs. (5)

A complementary situation is to have the entire plane z = 0 occupied by a perfectly electri-
cally conducting screen. Then, the total fields vanish for z > 0, and the scattered fields in
this regions are equal and opposite to the incident fields,

E′i = E0 ei(kz−ωt) x̂, E′(z > 0) = 0, E′s(z > 0) = −E′(z > 0), (6)

B′i = E0 ei(kz−ωt) ŷ, B′(z > 0) = 0, B′s(z > 0) = −B′(z > 0). (7)

The fields (5)-(7) satisfy what we might näıvely expect Babinet’s principle to be for electro-
magnetism,

E(z > 0) + E′(z > 0) = Ei(z > 0), B(z > 0) + B′(z > 0) = Bi(z > 0). (8)

However, if we take the incident fields in the complementary case to be the duals of the
original incident fields,

E′i = −E0 ei(kz−ωt) ŷ, E′(z > 0) = 0, E′s(z > 0) = −E′(z > 0), (9)

B′i = E0 ei(kz−ωt) x̂, B′(z > 0) = 0, B′s(z > 0) = −B′(z > 0), (10)

the fields (5) and (9)-(10) rather trivially satisfy Booker’s version of Babinet’s principle for
electromagnetism,

E(z > 0) + B′(z > 0) = Ei(z > 0), B(z > 0) − E′(z > 0) = Bi(z > 0). (11)

This example is too simple to clarify that eq. (11) rather than eq. (8) is the proper statement
of Babinet’s principle for electromagnetism.

2.3 Solution via Smythe’s Diffraction Integrals

Booker [2] gave only a suggestive argument as to why the relations (1)-(2). An attempt at a
more detailed argument for the electromagnetic version of Babinet’s principle was perhaps
first given by Meixner [7, 8], and variants of this argument appear in [9, 10, 11] and in sec. 2.4
below.
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In this section we follow the argument of sec. 10.8 of [11], which utilizes certain diffraction
integrals due to Smythe [12, 13].3 The conducting screen S lies in the plane z = 0, the waves
are incident from z < 0, and we use Gaussian units. Then, the fields (with time-dependence
e−iωt) for z > 0 can be computed from the electric fields in the apertures of the screen,
according to,4

E(z > 0) =
1

2π
∇ ×

∮
apertures of S

ẑ ×E
eikr

r
dArea′′, (12)

B(z > 0) =
1

2π
∇ ×

∮
S

ẑ × B
eikr

r
dArea′′, (13)

where r =
√

(x − x′′)2 + (y − y′′)2 + z2, and ẑ × E = 0 next to the perfectly conducting
screen.

We can decompose the total electromagnetic fields E and B into the sum of “incident”
and “scattered” fields,

E = Ei + Es, B = Bi + Bs, (14)

where the incident fields (defined for all z) are those associated with the sources at z < 0
in the absence of the screen, and the scattered field are those due only to the charges and
currents on the screen. Relations of the forms (12)-(13) hold for both the incident and for
the scattered fields.

We now consider the case when the incident fields are the duals of the original incident
fields,

E′i = −Bi, B′i = Ei. (15)

Only if the screen were made of a hypothetical perfect magnetic conductor in the case of
the dual incident fields E′i and B′i would the scattered fields E′s and B′s be the duals of

3The theory of diffraction has its origin in Huygen’s concept of secondary wavelets, as in the left figure
below. In 1801, Young [15] supposed that the edges of apertures were sources of Huygen’s secondary wavelets,
as in the right figure below. In 1815, Fresnel [16] argued that the secondary wavelets have virtual sources
over the aperture, rather than on its edges. The mathematical formulation of scalar diffraction theory in
terms of diffraction integrals is due to Kirchhoff [17]. The approximate equivalence between Young’s and
Fresnel’s scalar diffraction theory was demonstrated by Rubinowicz [18, 19], who noted that the source of
physical scattering is not localized to the mathematical edge of an aperture, but is in the proximity of the
edge.

4See also Appendix A.3 of [24].
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the scattered fields Es and Bs. Instead, we suppose the dual fields (15) are incident on the
complementary screen S ′ that is a perfect electrical conductor. The total fields in this case
can then be written as,

E′ = E′i + E′s, B′ = B′i + B′s. (16)

Smythe’s integral relations for the dual incident fields and the complementary screen are
now,

E′(z > 0) =
1

2π
∇ ×

∮
apertures of S′

ẑ × E′e
ikr

r
dArea′′, (17)

B′(z > 0) =
1

2π
∇ ×

∮
S′

ẑ × B′ e
ikr

r
dArea′′, (18)

since the tangential component of E′ can be nonzero on the plane z = 0 only in the apertures
of the complementary screen S ′.

As mentioned in Appendix A.3 of [24], Smythe’s diffraction integrals (12)-(13) and (17)-
(18) hold separately for the incident and scattered fields (when the region of integration is
the entire plane z′ = 0). Hence, we can write,

Es(z > 0) =
1

2π
∇ ×

∮
apertures of S

ẑ × Ese
ikr

r
dArea′′, (19)

Bs(z > 0) =
1

2π
∇ ×

∮
S

ẑ × Bse
ikr

r
dArea′′, (20)

E′s(z > 0) =
1

2π
∇ ×

∮
apertures of S′

ẑ × E′se
ikr

r
dArea′′, (21)

B′s(z > 0) =
1

2π
∇ ×

∮
S′

ẑ × B′se
ikr

r
dArea′′. (22)

The forms (19)-(22) are mathematically consistent with the scattered fields in the comple-
mentary case being the duals of the scattered fields in the original case, but we cannot expect
this to be true as the complementary screen is a perfect electrical conductor, not a perfect
magnetic conductor.

To go further, it appears necessary that the scattered fields obey the symmetries,

Es
x(x, y,−z) = Es

x(x, y, z), Bs
x(x, y,−z) = −Bs

x(x, y, z), (23)

Es
y(x, y,−z) = Es

y(x, y, z), Bs
y(x, y,−z) = −Bs

y(x, y, z), (24)

Es
z(x, y,−z) = −Es

z(x, y, z), Bs
z(x, y,−z) = Bs

z(x, y, z), (25)

as assumed in all “proofs” of Babinet’s principle in the literature. For the symmetries (23)-
(25) to hold there must be no currents the flow from one side of the screen to the other, such
that the vector potential due to currents on the screen have no z-component, i.e.As

z = 0.
As first noted in [20], and reviewed in [21], there can be no currents on the edges of a plane
conducting screen as otherwise the magnetic field energy would be infinite in a finite volume
surrounding a portion of the edge, and the relations (23)-(24) do hold in general.
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According to the (anti)symmetries (23)-(24), the transverse components of the magnetic
field vanish in the apertures of the screen (while equal and opposite nonzero transverse
magnetic fields can exist close to the two sides of the conductor). In this case, the region
of integration in relations (20) and (22) can be restricted to the conductors of the screens,
whose locations correspond to the apertures of the complementary screens,

Bs(z > 0) =
1

2π
∇ ×

∮
apertures of S′

ẑ ×Bs eikr

r
dArea′′, (26)

B′s(z > 0) =
1

2π
∇ ×

∮
apertures of S

ẑ × B′se
ikr

r
dArea′′. (27)

It is claimed in sec. 10.8 of [11] that the similarity of the forms of eqs. (12) and (27), and
that of eqs. (17) and (26) permit us to conclude that,5

E(z > 0) = −B′s(z > 0), E′(z > 0) = Bs(z > 0), (28)

and so, recalling eq. (15),

B(z > 0) = Bi(z > 0) + Bs(z > 0) = −E′i(z > 0) + E′(z > 0) = E′s(z > 0), (29)

B′(z > 0) = B′i(z > 0) + B′s(z > 0) = Ei(z > 0) − E(z > 0) = −Es(z > 0). (30)

The total fields E′ and B′ are not the duals of the total fields E and B, but of the scattered
fields Es and Bs. If so, we finally obtain Booker’s electromagnetic version (1) of Babinet’s
principle,

E(z > 0) + B′(z > 0) = E(z > 0) − Es(z > 0) = Ei(z > 0), (31)

B(z > 0) −E′(z > 0) = B(z > 0) − Bs(z > 0) = Bi(z > 0). (32)

2.4 Jones’ Argument

A slightly different argument is given in sec. 9.3 of [10], following [8].
Jones begins with a justification of the symmetries (23)-(25), and then proceeds assuming

that these symmetries hold. He invokes the spirit of the image method for the case of a
perfectly electrically conducting plane with no apertures. In the case the fields for z < 0
are the same as if there were no conducting plane but image charge and current densities
existed for z > 0 according to ρimage(x, y, z > 0) = −ρ(x, y, z < 0), J image

x,y (x, y, z > 0) =
−Jx,y(x, y, z < 0) and J image

z (x, y, z > 0) = Jz(x, y, z < 0). Jones supposes these relations
also hold if the conducting plane has apertures.

As noted in sec. 2.3, the symmetries (23)-(25) imply that certain components of the
scattered fields vanish in the apertures of the screen at z = 0, namely,

Es
z = Bs

x,y = 0, Ez = Ei
z, Bx,y = Bi

x,y, in the apertures at z = 0. (33)

5In [11] the complementary incident fields are taken to be E′i = Bi and B′i = −Ei rather than those of
eq. (15), which leads to various reversals of signs compared to those in this note.
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Likewise, next to the material of the screen we can write,

Ez(0
+) + Ez(0

−) = 2Ei
z(0), Bx,y(0+) + Bx,y(0

−) = 2Bi
x,y(0), next to conductor. (34)

The claim is that in the case of the complementary, electrically conducting screen the
following fields are solutions to Maxwell’s equations,

E′(z) =

⎧⎨
⎩

−B(z) + Bi
‖(−z) − Bi

z(−z) ẑ (z ≤ 0),

B(z) − Bi(z) = Bs(z) (z ≥ 0),
(35)

B′(z) =

⎧⎨
⎩

E(z) + Ei
‖(−z) − Ei

z(−z) ẑ (z ≤ 0),

−E(z) + Ei(z) = −Es(z) (z ≥ 0).
(36)

By considering the case that the complementary screen is vacuum, for which the total fields
are the same as the incident fields, we see that the incident fields are the dual fields given
by eq. (15).6

Next to the complementary screen the fields (35)-(36) are, noting that the incident fields
are continuous at z = 0,

E′(z = 0±) =

⎧⎨
⎩

−Bs
‖(0

−) − (2Bi
z(0) + Bs

z(0
+)) ẑ (z = 0−),

B(0+) − Bi(0) = Bs(0+) (z = 0+),
(40)

B′(z = 0±) =

⎧⎨
⎩

2Ei
‖(0) + Es

‖(0
−) + Es

z(0
−) ẑ (z = 0−),

−E(0+) + Ei(0) = −Es(0+) (z = 0+).
(41)

Since the conductor of the complementary screen corresponds to the apertures in the original
screen, eq. (33) tells us that the tangential electric field E′

‖ and the normal magnetic field

B ′
z vanish next to the conductor of the complementary screen. Thus, the fields (35)-(36)

satisfy the boundary conditions at the screen in the complementary case. It is therefore
plausible that these fields are indeed solutions to Maxwell’s equations for the dual incident
fields (15) and the complementary electrically conducting screen.7 Then, the representation
of Babinet’s principle by eqs. (31)-(32) follows at once.

The fields (35)-(36) are defined for z < 0, and we find that Babinet’s principle for this
region is that stated in eq. (2),

E(z < 0) − B′(z < 0) = −Ei
‖(z > 0) + Ei

z(z > 0) ẑ = Esr(z < 0), (42)

B(z > 0) + E′(z < 0) = Bi
‖(z > 0) − Bi

z(z > 0) ẑ = Bsr(z < 0), (43)

6In this case the original screen fills the entire plane z = 0 and reflects the incident wave. Here, the
original fields obey the relations (where z is a positive quantity, and the superscript sr indicates that the
scattered fields are those for total reflection),

Esr
x (x, y,−z) = −Ei

x(x, y, z), Bsr
x (x, y,−z) = Bi

x(x, y, z), (37)
Esr

y (x, y,−z) = −Ei
y(x, y, z), Bsr

y (x, y,−z) = Bi
y(x, y, z), (38)

Esr
z (x, y,−z) = Ei

z(x, y, z), Bsr
z (x, y,−z) = −Bi

z(x, y, z). (39)

7Although Jones’ argument is not completely compelling, it seems more convincing than that of sec. 2.3.
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recalling eqs. (37)-(39) for the scattered fields in the case of total reflection by the electrically
conducting plane z = 0.8

2.5 Solution via an Integral Equation for a Scalar Field

Component

The arguments presented in secs. 2.3-4 appear to the authors to have logical gaps, so it may
be worthwhile to consider other arguments. Already in 1897 Rayleigh gave an argument
involving an integral equation for a scalar component of the electromagnetic fields [27, 28],
and came very close to enunciating the electromagnetic version of Babinet’s principle. Some
50 years later, Fox [29, 30] (who considered only sound waves) and Copson [31, 32, 33, 34, 35]
revived this theme. For the electromagnetic fields to be characterized by a single scalar field
component, the problem must be restricted to the (interesting) case of incident fields normal
to the screen, and with the apertures in the screen having edges all along one axis, say, the
y-axis, and finally with the incident fields having either Ei or Bi along the y-axis. Then,
following lengthy preliminary arguments, one finds the electromagnetic versions (1)-(2) of
Babinet’s principle to hold.

2.6 Solution via Analysis of Edge Scattering

A different approach is used in [36], where following the spirit of Young [15] rather than
Fresnel [16], the scattered waves are considered to have their source along the edges of
the apertures. As remarked on p. 161 of [19], in the approximation of edge currents (which
conflicts with the comments on the bottom of p. 4 above), there exist phase changes between
the diffracted wave on the two sides of screen, from which the electromagnetic version of
Babinet’s principle can be deduced [36].

2.7 Examples of Babinet’s Principle

The only two cases for which “exact” results have been obtained which obey the electro-
magnetic form of Babinet’s principle are Sommerfeld’s famous solution [37, 38, 39] for the
diffraction of electromagnetic waves by a conducting half plane, and the transmission of
waves through a conducting planar grating [40, 41], although this principle was not noticed
in the original studies.

Two laboratory demonstrations of the electromagnetic Babinet’s principle are reported
in [42, 43].
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