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1 Problem

A cylindrical capacitor of inner and outer radii a and b is coaxial with a solenoid magnet
of radius greater than b, as shown in the figure below. The magnetic field of the solenoid
has magnitude B in the lab frame. A fine wire shorts the inner and outer conductors of the
capacitor, as shown.

Deduce the charge Q per unit length along the axis that would be observed on the outer
cylinder of the capacitor in the following two cases:

1. The capacitor is rotating about its axis in the lab frame with angular velocity ω, while
the solenoid is at rest in the lab frame.

2. The capacitor is at rest in the lab frame, but the solenoid is rotating with angular
velocity ω about its axis in the lab frame.

In each case, analyze the problem both in the lab frame and in a frame that rotates with
angular velocity ω. You may assume that ωb � c where c is the speed of light, and that any
magnetic field due to the rotation of the capacitor is negligible.

2 Solution

This problem is based on an experiment by Barnett [1] that was meant to address the
question of whether the magnetic field lines of a solenoid magnet rotate when the magnet
rotates about its axis. See also [2]. It will also illustrate a remark by Schiff [3] that care
must be taken when discussing electrodynamics in rotating frames, because the effect of the
“distant stars” is to introduce “fictitious” charges and currents into the problem.
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2.1 The Capacitor Rotates in the Lab Frame

2.1.1 Analysis in the Lab Frame

As the fine wire of the capacitor rotates through the magnetic field B of the solenoid, the
Lorentz force causes an effective radial electric field,

Er,eff =
v

c
B =

ωrB

c
, (1)

in Gaussian units. As a result, there is a voltage difference across the capacitor given by,

V =

∫ b

a

Er,eff dr =
ωB

c
(b2 − a2). (2)

Since the capacitance per unit length of the cylindrical capacitor is,

C =
1

2 ln(b/a)
, (3)

the charge per unit length on the capacitor electrodes is,

Q = CV =
ωB(b2 − a2)

2c ln(b/a)
. (4)

2.1.2 Analysis in the Rotating Frame

According to eq. (9) of the Appendix, the magnetic field B′ observed in the rotating frame
is the same as the magnetic field B in the lab frame, and the electric field E′ observed in the
rotating frame is given by,

E′ = E +
v

c
× B, (5)

where v is the lab-frame velocity of the point of observation, which is at rest in the rotating
frame. The term v/c×B in E′ is due to the “fictitious” charge density ω ·B′/2πc = ω ·B/2πc
that appears in the Maxwell equation (21) in the rotating frame. This leads to a radial electric
field in the rotating frame,

E ′
r,eff =

v

c
B =

ωrB

c
= Er,eff , (6)

so the rest of the analysis in the rotating frame is identical to that in sec. 2.2.1 for the lab
frame.

2.2 The Solenoid Rotates in the Lab Frame

2.2.1 Analysis in the Lab Frame

In the second experiment, the capacitor is at rest in the lab frame, so there is no v × B
force on the charges in the capacitor, and hence no charge separation. Thus, we predict that
Q = 0, as was confirmed by Barnett in his experiment [1].

There is an interpretation of Faraday’s law of induction that EMF ’s are generated when
part or all of a circuit cuts magnetic field lines. By this hypothesis, if the magnetic field
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lines were rotating together with the solenoid, then the fine wire, although at rest, would be
cutting field lines, and an EMF should be generated, and a charge separation detected on
the capacitor. Since no such separation occurs, one can conclude that magnetic field lines
do not rotate together with the solenoid.

The original motivation of Barnett’s experiment [1] appears to have been to confirm the
above interpretation.

2.2.2 Analysis in the Rotating Frame

The solenoid is at rest in the rotating frame, but the capacitor has angular velocity −ω here.
We again neglect any possible effect of the capacitor on the magnetic field, so again

magnetic field in the rotating frame B′ is that same as the lab-frame field B of the solenoid.
Again, there appears to be an effective (“fictitious”) charge density ρ′

eff = ωB/2πc inside the
solenoid, which implies a radial electric field (in the rotating frame) of magnitude ωrB/c.

The important difference between this case and the previous is that now the capacitor
and the fine wire are rotating with angular velocity −ω in the rotating frame. Hence, there
is a v′/c × B′ = −v/c × B force on charges in the capacitor,1 as if there is an additional
radial electric field of magnitude ωrB/c. The direction of this effective field is opposite
to that caused by the “fictitious” charge distribution (because the angular velocity of the
capacitor in the rotating frame is the negative of the angular velocity of the rotating frame
with respect to the lab frame). Thus, these two radial components of the electric field cancel
in the rotating frame.

The inner and outer conductors of the cylindrical capacitor can now be at the same
potential with no charge separation. That is, we predict that Q = 0 from the analysis in the
rotating frame, in agreement with the analysis in the lab frame.

A Summary of the Principles of Electrodynamics in a

Rotating Frame

For reference, we reproduce the principles of electrodynamics in the frame of a slowly rotating
medium where ε and μ differ from unity.2,3

The (cylindrical) coordinate transformation is,

r′ = r, φ′ = φ − ωt, z′ = z, t′ = t, (7)

where quantities in observed in the rotating frame are labeled with a ′. The transformations
of free charge and current density are,

ρ′
free = ρfree, J′

free = Jfree − ρfree v, (8)

1As noted in eq. (9), the Lorentz force law has the same form in the rotating frame as in the lab frame.
2This Appendix is from sec. 2.2.5 of [4].
3This case is discussed most thoroughly by Ridgely [5, 6], but primarily for the interesting limit of steady

charge and current distributions.
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where v (with v = ωr � c) is the velocity with respect to the lab frame of the observer in the
rotating frame at distance r′ = r from its axis. The transformations of the electromagnetic
fields are,

B′ = B, D′ = D +
v

c
× H, E′ = E +

v

c
× B, H′ = H. (9)

The transformations of the electric and magnetic polarizations are,

P′ = P− v

c
× M, M′ = M, (10)

if we regard these polarizations as defined by D′ = E′ + 4πP′ and B′ = H′ + 4πM′.
The lab-frame bound charge and current densities ρbound = −∇ ·P and Jbound = ∂P/∂t+

c∇ × M transform to,

ρ′
bound = −∇′ · P′ − 2ω · M′

c
+

v

c
· ∇′ × M′, (11)

J′
bound =

∂P′

∂t′
+ c∇′ × M′ + v(∇′ · P′) +

v

c
× ∂M′

∂t′
+ (P′ · ∇)v − (v · ∇)P′. (12)

Force F is invariant under the transformation (7). In particular, a charge q with velocity
vq in the lab frame experiences a Lorentz force in the rotating frame given by,

F′ = q

(
E′ +

v′
q

c
× B′

)
= q

(
E +

vq

c
× B

)
= F, (13)

where v′
q = vq −v. Similarly, the Lorentz force density f ′ on charge and current densities in

the rotating frame is,

f ′ = ρ′E′ +
J′

c
× B′ = (ρ′

free + ρ′
bound) E′ +

J′
free + J′

bound

c
× B′. (14)

Maxwell’s equations in the rotating frame can be written as,

∇′ · B′ = 0, (15)

∇′ · D′ = 4πρ′
free,total = 4π (ρ′

free + ρ′
other) , (16)

∇′ × E′ +
∂B′

∂ct′
= 0, (17)

∇′ × H′ − ∂D′

∂ct′
=

4π

c
J′

free,total =
4π

c
(J′

free + J′
other) , (18)

where ρ′
free = ρfree and J′

free = Jfree − ρfreev are the free charge and current densities, and the
“other” charge and current densities that appear to an observer in the rotating frame are,

ρ′
other = −v · J′

free

c2
+

ω · H′

2πc
− v

4πc
· ∂D′

∂ct′
, (19)

J′
other = ρ′

freev +

(
D′

4π
· ∇

)
v − (v · ∇)

D′

4π
− v

4πc
× ∂H′

∂t′
. (20)
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The “other” charge and current distributions are sometimes called “fictitious” [3], but we
find this term ambiguous. For an example with an “other” charge density ω ·H′/2πc in the
rotating frame, see [1].

Maxwell’s equations can also be expressed only in terms of the fields E′ and B′ and
charge and current densities associated with free charges as well as with electric and magnetic
polarization,

∇′ · E′ = 4πρ′
total, (21)

and,

∇′ × B′ − ∂E′

∂ct′
=

4π

c
J′

total, (22)

where,

ρ′
total = ρ′

free −
v

c2
· J′

free − ∇′ · P′ +
ω′ · H′

2πc
− v

4πc
· ∂D′

∂ct′
= ρ′

free,total − ∇′ · P′

= ρ′
free + ρ′

bound + ρ′
more , (23)

ρ′
more = − v

c2
·
(
J′

free +
∂P′

∂t′
+ c∇′ × M′

)
+

ω′ · B′

2πc
− v

4πc
· ∂E′

∂ct′
, (24)

J′
total = J′

free +
∂P′

∂t′
+ c∇′ × M′ + ρ′

freev +

(
D′

4π
· ∇

)
v − (v · ∇)

D′

4π
− v

4πc
× ∂H′

∂t′

= J′
free,total +

∂P′

∂t′
+ c∇′ ×M′

= J′
free + J′

bound + J′
more , (25)

J′
more = v

(
ρ′

free − ∇′ · P′ − 2ω′ · M′

c
+

v

c
· ∇′ × M′

)

+

(
E′

4π
· ∇

)
v − (v · ∇)

E′

4π
− v

4πc
× ∂B′

∂t′
. (26)

The contribution of the polarization densities to the source terms in Maxwell’s equations in
much more complex in the rotating frame than in the lab frame. Because of the “other”
source terms that depend on the fields in the rotating frame, Maxwell’s equations cannot be
solved directly in this frame. Rather, an iterative approach is required in general.

The constitutive equations for linear isotropic media at rest in the rotating frame are,

D′ = εE′, B′ = μH′ − (εμ − 1)
v

c
× E′, (27)

in the rotating frame, and,

D = εE + (εμ − 1)
v

c
× H, B = μH − (εμ − 1)

v

c
× E, (28)

in the lab frame. The lab-frame constitutive equations (28) are the same as for a nonrotating
medium that moves with constant velocity v with respect to the lab frame.
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We can also write the constitutive equations (27) for a linear isotropic medium in terms
of the fields B′, E′, P′ and M′ by noting that D′ = E′ + 4πP′ and H′ = B′ − 4πM′, so that,

P′ =
ε − 1

4π
E′,

M′ =

(
1 − 1

μ

)
B′

4π
−

(
ε − 1

μ

)
v

c
× E′

4π
=

(
1 − 1

μ

)
B′

4π
− εμ − 1

μ(ε− 1)

v

c
× P′. (29)

Similarly, the constitutive equations (28) in the lab frame can be written to order v/c as,

P =
ε − 1

4π
E +

(
ε − 1

μ

)
v

c
× B

4π
=

ε − 1

4π
E +

εμ − 1

μ − 1

v

c
× M,

M =

(
1 − 1

μ

)
B

4π
−

(
ε − 1

μ

)
v

c
× E

4π
=

(
1 − 1

μ

)
B

4π
− εμ − 1

μ(ε− 1)

v

c
× P. (30)

Ohm’s law for the conduction current JC has the same form for a medium with velocity
u′ relative to the rotating frame as it does for a medium with velocity u relative to the lab
frame,

J′
C = σ

(
E′ +

u′

c
× B′

)
= σ

(
E +

u

c
× B

)
= JC, (31)

where σ is the electric conductivity of a medium at rest.
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