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1 Problem

The Harlem Globetrotters can balance a basketball stably on a finger by spinning the ball.
That stability is possible if the basketball acts like a gyroscope and precesses, rather than
falling off the finger.

Consider a sphere, of mass m and radius a with moment of inertia I about its center, that
rolls without slipping on a fixed sphere of radius b. Derive, and decompose into components,
the (vector) equations of motion.

Show that the total angular velocity ω obeys ω · d1̂/dt = 0 = 1̂ · dω/dt, where 1̂ points
outward along the line of centers of the two spheres and makes angle θ to the vertical, ẑ,
and hence,

ω = ω1 1̂ +
a+ b

a
1̂ × d1̂

dt
, (1)

where ω1 = ω · 1̂ = constant, and that,

(
I +ma2

) a+ b

a
1̂ × d21̂

dt2
+ I ω1

d1̂

dt
+mga 2̂ = 0. (2)

Note that 1̂ rotates about ẑ at rate φ̇ and about 2̂ = 1̂× ẑ at rate θ̇ (be careful with signs).
After obtaining the 3 component equations of motion, first consider steady motion, θ̇ =

0, φ̇ = Ω = constant, to show that ω1 must satisfy,

ω1 >
2

I

√
mg(a + b) (I +ma2) cos θ0, (3)

for steady motion.
The spinning sphere will fall off the fixed sphere if the force of contact between them

vanishes. Show that this happens (during steady motion) if,

Ω2 >
g cos θ0

(a+ b) sin2 θ0

. (4)
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Consider nutations about steady precession,

θ = θ0 + ε sinαt, φ̇ = Ω + δ sinαt, (5)

for small constants ε and δ to show that α2 > 0 for large enough ω1, in which case the
nutations are stable.

For a basketball of radius a = 12 cm, which is a hollow sphere with I = 2mq2/3, balanced
vertically on a finger of radius of curvature b ≈ 1 cm, the spin required for gyroscopic stability
is greater than 6 revolutions per second, which seems higher than in videos of “balanced”,
spinning basketballs. That is, their stability is due to active stabilization by horizontal
motion of the support finger rather than gyroscopic effects.

One of many YouTube videos on how to spin a basketball,
https://www.youtube.com/watch?v=lLxUq6nhkb4

in which the spin seems to be only 1-2 revolutions per second.

2 Solution

This problem is the Example on p. 354, §415 of E.A. Milne, Vectorial Mechanics (Metheun;
Interscience Publishers, 1948), http://kirkmcd.princeton.edu/examples/mechanics/milne_mechanics.pdf

We consider a sphere, of mass m and radius a with moment of inertia I about its center,
that rolls without slipping on a fixed sphere of radius b. We use a set of principal axes (but
not body axes) about the center of the sphere of radius a, where 1̂ points outward along the
line of centers of the two spheres and makes angle θ to the vertical, ẑ. Also, 2̂ = 1̂× ẑ/ sin θ
(which is always horizontal), and 3̂ = 1̂ × 2̂ (which lies in the vertical plane of 1̂ and ẑ).

The center of the sphere of radius a is at position r = (a+ b) 1̂ with respect to the center
of the fixed sphere of radius b, which we take as the origin of coordinates in the lab frame.
Then, the velocity of the center of the sphere of radius a is,

v =
dr

dt
= (a+ b)

d1̂

dt
. (6)

2.1 Rolling Constraint

The (nonholonomic) constraint of rolling without slipping is that the point of contact on the
spinning sphere of radius a with the sphere of radius b is instantaneously at rest in the lab
frame,

vcontact = 0 = v + ω × a = (a + b)
d1̂

dt
− aω × 1̂, (7)
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where ω is the total angular velocity of the sphere radius a in the lab frame, and a = −a 1̂
is the vector from the center of the sphere of radius a to the point of contact.1

2.2 Vector Equations of Motion

The force and torque equations of motion of (center of) the sphere of radius a are,

m
dv

dt
= m(a + b)

d21̂

dt2
= F−mg ẑ, F = m(a + b)

d21̂

dt2
+ mg ẑ, (9)

dL

dt
= I

dω

dt
= τ = a× F = −ma(a+ b)1̂ × d21̂

dt2
−mga 1̂ × ẑ. (10)

From eq. (7) we have that,

ω · d1̂
dt

= 0, (11)

while from eq. (10) we have that,

1̂ · dω
dt

= 0. (12)

Hence,

d

dt
(ω · 1̂) =

dω1

dt
= 0, (13)

and ω1 = ω · 1̂ is constant.
Also, we can multiply eq. (7) by 1̂ to find that,

ω = ω1 1̂ +
a+ b

a
1̂ × d1̂

dt
,

dω

dt
= ω1

d1̂

dt
+
a + b

a
1̂ × d21̂

dt2
, (14)

and then rewrite the equation of motion (10) as,

(
I +ma2

) a + b

a
1̂ × d21̂

dt2
+ I ω1

d1̂

dt
+mga 1̂× ẑ = 0. (15)

1At this point in the analysis we could also note that v = −(a + b)φ̇ sin θ 2̂ + θ̇ 3̂ where φ̇ is the angular
velocity of the center of the spinning sphere about the z-axis. Then (6) implies eq. (28) below. We could
also use eq. (7) to find,

1̂× (ω × a) = −a ω − ω1 a = −1̂× v = (a + b) θ̇ 2̂ + (a + b) φ̇ sin θ 3̂, ω = ω1 1̂− a + b

a
θ̇ 2̂− a + b

a
φ̇ 3̂, (8)

where ω1 = ω · 1̂, in agreement with eq. (26) below.
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2.3 Steady Motion

For steady motion, with θ = θ0 = constant, the spinning sphere, and the triad of principal
axes, precess about the vertical at constant angular velocity Ω = ω123 = Ω ẑ, and hence,

d1̂

dt
= ω123 × 1̂ = Ω × 1̂ = Ω ẑ × 1̂, (16)

d21̂

dt
= Ω × d1̂

dt
= Ω × (Ω× 1̂) = (Ω · 1̂)Ω −Ω2 1̂ = Ω2(cos θ0 ẑ − 1̂). (17)

1̂ × d21̂

dt
= Ω2 cos θ0 1̂ × ẑ. (18)

Then, all terms in the equation of motion (15) are proportional to 1̂ × ẑ, and we have,

(
I +ma2

) a + b

a
Ω2 cos θ0 − I ω1 Ω +mga = 0, (19)

Ω =
Iω1 ±

√
I2 ω2

1 − 4 (I +ma2) (a + b)mg cos θ0

2 (I +ma2) a+b
a

cos θ0

=
ω1 ±

√
ω2

1 − ω2
1,“min”

Iω2
1,“min”/2mga

, (20)

where for steady precession at rate Ω to exist, we must have,

ω1 ≥ ω1,“min” =
2

I

√
mg(a + b) (I +ma2) cos θ0, (21)

which (not surprisingly) limits steady motion to angle θ0 < 90◦.
The spinning sphere remains in contact with the fixed sphere only if the outward force

of contact, F · 1̂, is positive. From eqs. (9) and (17), we have for steady motion,

F = m(a+ b)
d21̂

dt2
+mg ẑ = m(a + b)Ω2(cos θ0 ẑ − 1̂),+mg ẑ, (22)

F · 1̂ = mg cos θ0 +m(a+ b)Ω2(cos2 θ0 − 1) = mg cos θ0 −m(a+ b)Ω2 sin2 θ0. (23)

Hence, the spinning sphere flies off the fixed sphere if,2

Ω2 >
g cos θ0

(a+ b) sin2 θ0

. (24)

In particular, if ω1 is ω1,“min” of eq. (21), the spinning sphere flies of when,

ma2 sin2 θ0

(I +ma2) cos2 θ0
> 0, (25)

so only at θ0 = 0 can there be steady motion with ω1 = ω1,“min”.
That is, the true minimum of ω1 for steady motion in contact with the fixed sphere is

the root of the quartic equation obtained by combining eqs. (20) and (24). A numerical
study3 indicates that spinning sphere always flies off for Ω with the positive root in eq. (20),
while for the negative root, steady motion in contact with the fixed sphere is possible for any
θ0 < 90◦ for large enough ω1 (much larger than ω1,“min” of eq. (21) as θ0 approaches 90◦).

2For θ0 = 0, the spinning sphere will never fly off.
3http://kirkmcd.princeton.edu/examples/basketball.xlsx
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2.4 Comments

For a basketball of radius a = 12 cm, which is a hollow sphere with I = 2ma2/3 (k = 2/3),
balanced vertically (θ0 = 0) on a finger of radius of curvature b ≈ 1 cm � a, the minimum
ω1 required for gyroscopic stability is about 6 revolutions per second.4 This seems higher
than the rotation rates of spinning basketballs in online videos,5 so it seems likely that their
apparent stability is due to active stabilization by horizontal motion of the supporting finger,
rather than gyroscopic stabilization.

2.5 Equations of Motion for Variable θ and φ̇

To discuss nutation about steady motion, we note that the angular velocity ω123 of the
principal axes consists of the term −θ̇ 2̂, together with their rotation φ̇ ẑ = φ̇(cos θ 1̂ −
sin θ 3̂).6 Also, the total angular velocity ω of the sphere of radius a consists of the “spin”
angular velocity ωs of the sphere about axis 1̂ relative to the principal axes, together with
(a+b)/a times the angular velocity ω123 of the principal axes relative to the lab frame (which
subtle relation is inferred from eqs. (14) and (27)). Hence,

ω123 = φ̇ cos θ 1̂ − θ̇ 2̂ − φ̇ sin θ 3̂, ω = ωs 1̂ +
a + b

a

(
φ̇ cos θ 1̂ − θ̇ 2̂ − φ̇ sin θ 3̂

)
. (26)

The time rate of change of the principal axes is related by,

d̂i

dt
= ω123 × î, (27)

d1̂

dt
= (φ̇ cos θ 1̂ − θ̇ 2̂ − φ̇ sin θ 3̂) × 1̂ = −φ̇ sin θ 2̂ + θ̇ 3̂, (28)

d2̂

dt
= (φ̇ cos θ 1̂ − θ̇ 2̂ − φ̇ sin θ 3̂) × 2̂ = −φ̇ sin θ 1̂ + φ̇ cos θ 3̂, (29)

d3̂

dt
= (φ̇ cos θ 1̂ − θ̇ 2̂ − φ̇ sin θ 3̂) × 3̂ = −θ̇ 1̂ − φ̇ cos θ 2̂. (30)

d21̂

dt2
= (−φ̈ sin θ − φ̇ θ̇ cos θ) 2̂ + θ̈ 3̂ + φ̇

2
sin2 θ 1̂ − φ̇

2
sin θ cos θ 3̂ − θ̇

2
1̂ − θ̇ φ̇ cos θ 2̂

= (φ̇
2
sin2 θ − θ̇

2
) 1̂ − (φ̈ sin θ + 2θ̇ φ̇ cos θ) 2̂ + (θ̈ − φ̇

2
sin θ cos θ) 3̂, (31)

1̂ × d21̂

dt2
= (φ̇

2
sin θ cos θ − θ̈) 2̂ − (φ̈ sin θ + 2θ̇ φ̇ cos θ) 3̂. (32)

Using eqs. (28) and (32), and recalling that 1̂ × ẑ = sin θ 2̂, we see that the equation of
motion (15) has nonzero 2̂- and 3̂- components,

(
I +ma2

) a + b

a
(φ̇

2
sin θ cos θ − θ̈) − I ω1φ̇ sin θ +mga sin θ = 0, (33)

4According to eq. (20), the Ω corresponding to this minimum ω1 is 3ω1/4, which describes the rotation
of the mathematical triad 1̂-2̂-3̂. However, ω1 (not Ω) describes the rotation of the physical sphere, as visible
to observers of spinning basketballs.

5Many videos include remarks that higher spin makes the ball more stable.
6We could continue using the triad 1̂, ẑ, 1̂× ẑ as in eq. (15), but since 1̂ and ẑ are not orthogonal, the

algebra is somewhat more intricate.
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(
I +ma2

) a + b

a
(φ̈ sin θ + 2θ̇ φ̇ cos θ) − I ω1θ̇ = 0. (34)

For steady motion, θ = θ0 = constant, θ̇ = 0, φ̇ = Ω = constant, eq. (34) is trivial, while
eq. (33) leads to eq. (19).

2.6 Nutations

We now consider nutations of the form,

θ = θ0 + ε sinαt, φ̇ = Ω + δ sinαt, (35)

sin θ ≈ sin θ0 + ε cos θ0 sinαt, cos θ ≈ cos θ0 − ε sin θ0 sinαt, (36)

for small constants ε and δ. Then, to first order in ε and δ, eq. (34) becomes,

(
I +ma2

) a + b

a
(α δ sin θ0 cosαt+ 2α εΩcos θ0 cosαt)− αεI ω1 cosαt = 0, (37)

δ = ε
Iω1

(I +ma2) a+b
a

sin θ0

− 2εΩcos θ0

sin θ0

, (38)

and eq. (33) becomes, recalling eq. (19) for the 0th-order terms,

(
I +ma2

) a+ b

a
[(Ω2 + 2Ω δ sinαt)(sin θ0 + ε cos θ0 sinαt)(cos θ0 − ε sin θ0 sinαt) + εα2 sinαt]

−I ω1 (Ω + δ sinαt)(sin θ0 + ε cos θ0 sinαt) +mga(sin θ0 + ε cos θ0 sinαt) = 0, (39)(
I +ma2

) a + b

a
(εΩ2 cos 2θ0 + 2δΩsin θ0 cos θ0 + εα2)

−I ω1 (εΩcos θ0 + δ sin θ0) + εmga cos θ0 = 0, (40)

α2 = −Ω2 cos 2θ0 − 2Ω cos θ0
I ω1

(I +ma2) a+b
a

+ 4Ω2 cos2 θ0

+
I ω1

(I +ma2) a+b
a

(
Ωcos θ0 +

I ω1

(I +ma2) a+b
a

− 2Ω cos θ0

)
− mga cos θ0

(I +ma2) a+b
a

(41)

= Ω2(1 + 2 cos2 θ0) +
I2 ω2

1

(I +ma2)2 (a+b
a

)2 − 3I ω1 Ωcos θ0

(I +ma2) a+b
a

− mga cos θ0

(I +ma2) a+b
a

. (42)

For sufficiently large ω1, α
2 > 0, and the nutations exist as ongoing, small oscillations.

However, the condition for this is not simple.
We can extract a somewhat simpler condition if we restrict our attention to the “mini-

mum” ω1 for steady motion, as found in eq. (21) above. For this case, the associated Ω is
given by eq. (20), and is called Ωmin here,

Ωmin =
I1 ω1,“min”

2 (I +ma2) a+b
a

cos θ0

. (43)

Using this in eq. (42), we have (after some algebra),

α2 =
I2 ω2

1,“min”

4 (I +ma2)
2 (a+b

a

)2
cos2 θ0

− mga cos θ0

(I +ma2) a+b
a

. (44)
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Since cos θ0 ≤ 1, this condition for stable nutations is slightly weaker than the condition (21)
for the existence of steady motion. That is, whenever steady motion is possible, nutations
about this motion are stable.

A Appendix: A Lagrangian Approach

We consider a use of Lagrange’s method, with coordinates θ, φ = angle of 2̂ to the x-axis,
and ψ = angle of rotation of the sphere about the 1̂ axis.

The center of the sphere of radius a is at distance a+ b from the origin = center of fixed
sphere of radius b, and hence the velocity of its center can be written as v = (a + b)(θ̇ 3̂ −
φ̇ sin θ 2̂). The kinetic energy of the center-of-mass motion is,7

Tcm =
mv2

2
=
ma2

2

(a + b)2

a2

(
θ̇

2
+ sin2 θ φ̇

2
)
. (45)

The kinetic energy of rotation is, recalling eq. (26) and noting that ωs = ψ̇,

Trot =
I ω2

2
=
I

2

(
ψ̇ +

a + b

a
φ̇ cos θ

)2

+
I

2

(a + b)2

a2

(
θ̇

2
+ φ̇

2
sin2 θ

)
, (46)

and the potential energy is V = mg(a + b) cos θ. The Lagrangian is,

L = Tcm + Trot − V =

I

2

(
ψ̇ +

a + b

a
φ̇ cos θ

)2

+
(I +ma2)

2

(a + b)2

a2

(
θ̇

2
+ sin2 θ φ̇

2
)
−mg(a+ b) cos θ. (47)

The Lagrangian does not depend on ψ, so ∂L/∂ψ̇ = I
[
ψ̇ − ((a+ b)/a)φ̇ cos θ

]
= I ω1 is a

conserved generalized momentum, and ω1 is constant, as found above.
The equation of motion for coordinate θ is,

∂L
∂θ

= −I ω1
a + b

a
φ̇ sin θ +

(
I +ma2

) (a+ b)2

a2
φ̇

2
sin θ cos θ +mg(a+ b) sin θ

=
d

dt

∂L

∂θ̇
=
(
I +ma2

) (a + b)2

a2
θ̈, (48)

(
I +ma2

) a + b

a

(
φ̇

2
sin θ cos θ − θ̈

)
− I ω1 φ̇ sin θ +mga sin θ = 0 (49)

in agreement with eq. (33).
The equation of motion for coordinate φ is, recalling that ω1 is constant,

∂L
∂φ

= 0 =
d

dt

∂L

∂φ̇
=

d

dt

[
a + b

a
I ω1 cos θ +

(
I +ma2

) (a + b)2

a2
sin2 θ φ̇

]

= −a+ b

a
Iω1 θ̇ sin θ +

(
I +ma2

) (a + b)2

a2

(
φ̈ sin2 θ + 2θ̇ φ̇ sin θ cos θ

)
, (50)

(
I +ma2

) a + b

a

(
φ̈ sin θ + 2θ̇ φ̇ cos θ

)
− Iω1 θ̇ = 0, (51)

7As a check, we note that the rolling constraint (7) can be written as v = a× ω = −a 1̂× ω, and hence
the kinetic energy of the motion of the center of mass is Tcm = mv2/2 = ma2(ω2 −ω2

1)/2. Using eq. (26) we
again obtain eq. (45).
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as found above in eq. (34).
The difficult step in the Lagrangian method is arriving at eq. (26) for the total angular

velocity ω, for which the vectorial method, and awareness of the rolling constraint, is helpful
(as discussed in footnote 1 above).

B Appendix: Lamb’s Analysis for Small θ

It was noted in sec. 41, p. 101 of H. Lamb, Higher Mechanics (Cambridge U. Press, 1920),
http://kirkmcd.princeton.edu/examples/mechanics/lamb_higher_mechanics.pdf

that if we restrict our attention to motion in which angle θ is very small (as for balanced,
spinning basketballs), we can give an analysis using only x-y-z coordinates.

The center of the spinning sphere is at r = (x, y, z) where r = a+b. The rolling constraint
(7) can then be written as,

v = ṙ = (ẋ, ẏ, ż) = a × ω =
a

a+ b
(z ωy − y ωz, x ωz − z ωx, y ωx − xωy), (52)

noting that a = −ar/(a+ b) and ω = (ωx, ωy, ωz).
The general equations of motion are,

mr̈ = F−mg ẑ, I ω̇ = a × F = − a

a + b
r × F. (53)

For motion with small θ, we have that z ≈ a + b, Fz ≈ mg, and ωz ≈ constant. The
constraint relation (52) reduces to,

ẋ = aωy − aωz

a + b
y, ẏ = −aωx +

aωz

a+ b
x, (54)

and the equations of motion (53) reduce to mẍ = Fx, mÿ = Fy and,

I ω̇x = aFy − mga

a + b
y = maÿ − mga

a + b
y, I ω̇y = −aFx +

mga

a + b
x = −maẍ+

mga

a + b
x. (55)

Using eq. (55) in the time derivative of eq. (54), we find,

ẍ = a ω̇y − aωz

a + b
ẏ = −ma

2

I
ẍ+

mga2

I(a + b)
x− aωz

a+ b
ẏ, (56)

(
I +ma2

) a + b

a
ẍ+ I ωz ẏ −magx = 0, (57)

ÿ = −a ω̇x +
aωz

a + b
ẋ = −ma

I
ÿ − mga2

I(a+ b)
y +

aωz

a+ b
ẋ, (58)

(
I +ma2

) a + b

a
ÿ − I ωzẋ−magy = 0. (59)

Lamb noted that it is clever to introduce the complex variable ζ = x + iy where i =
√−1

here. Then, eqs. (57) and (59) combine into the form,

(
I +ma2

) a + b

a
ζ̈ − iI ωz ζ̇ −mag ζ = 0. (60)
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We seek oscillatory behavior with ζ ∝ eiαt, which implies that,

(
I +ma2

) a + b

a
α2 − I ωz α+mag = 0, (61)

α =
Iωz ±

√
I2 ω2

z − 4 (I +ma2) (a + b)mg

2 (I +ma2) a+b
a

. (62)

This oscillatory behavior (nutation) exists for,

(
I +ma2

) a+ b

a
α2 − I ωz α +mag = 0, (63)

ωz >
2

I

√
(I +ma2) (a + b)mg, (64)

which is the same condition found in eq. (21) for θ0 = 0, where ω1 = ωz.
Lamb noted that if the real values of eq. (62) are α±, then the trajectory of the center

of the spinning sphere has the form,

x = A+ cos(α+t+ β+) + A− cos(α−t+ β−), y = A+ sin(α+t+ β+) + A− sin(α−t+ β−),(65)

which describe an epicyclic curve.
He also considered a velocity-dependent friction somehow acting only on the center of

the sphere, for which the mathematics is analytically tractable and implies that one of the
oscillations, with angular frequency α+ or α−, is exponentially damped, while the other
grows exponentially until the spinning sphere flies off the fixed one.

While Lamb’s analysis is not as general as that of the vectorial approach in sec. 2 above,
the interesting case of small θ is considerably easier it to pursue with it.8

8Lamb deduced the general equations of motion for this problem in his sec. 67, p. 160, but did not discuss
their solutions there.
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