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1 Problem

Discuss the vertical and horizontal stability of a beachball levitated by a vertical jet of air.
This demonstration is familiar to denizens of science museums and hardware stores.

As a complete solution is difficult, you may restrict your discussion to a simplified ex-
ample. Consider a beachball of radius a in a jet such that the Reynolds number is a few
hundred. Then, to a good approximation the air flow is incompressible and laminar. Viscous
drag can be ignored. The high-speed-drag coefficient CD can be taken as 2.

The diverging (but divergence-free) flow from the jet can be modeled by noting that the
(vertical) momentum flux1 in the jet is ρairv

2
z . If the jet has some effective cone angle, its

area expands with height z as z2, where z = 0 is the position of the nozzle of the vertical jet.
Thus, to conserve the momentum flux, vz(z) ∝ 1/z. The transverse profile of the jet, vz(r),
may be taken as Gaussian (or parabolic) in radius r of a cylindrical coordinate system.

You may also make the unrealistic approximation that the air flow is unperturbed by the
beachball.

2 Solution

(July 31, 2021) While the solution offered below is perhaps näıvely satisfying, it ignores
viscosity (friction/kinetic-energy dissipation), which has a nontrivial effect in gas/liquid jets.
As remarked by Weltner [2], the static pressure in the air jet is actually the same as outside
the jet, and the observed “trapping” of a sphere in the jet is better thought of as due to
the Coanda effect (that friction/viscosity leads to fluid flow lines being “attracted” to solid
surfaces).2 Indeed, the air jet need not be vertical to “trap” a sphere, which effect is not
expected in the Bernoulli’s-law analysis given below.

Unfortunately, consideration of the Coanda effect does not lead to such a simple analysis
as that presented below.

Other discussions of this and related problems include [11]-[15].

2.1 Brief Discussion

The beachball is subject to three forces: gravity, high-speed drag and pressure-gradient
forces. Gravity is downwards. The drag force is in the direction of the flow velocity v, hence
upwards and away from the axis of the vertical jet. The pressure-gradient force points in

1Momentum flux = momentum/area/time = momentum density × velocity.
2Coanda published his early efforts only as patents [3]-[7], which are now generally acknowledged as

describing the “Coanda effect”, as well as proposing the first (turboprop) jet engine. See also [8]-[10].
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the direction of lower pressure, i.e., the direction of higher v2 according to Bernoulli’s law;
hence, downwards and towards the axis of the jet.

For levitation to occur, the high-speed drag force must be large enough to counteract
gravity and the pressure-gradient force. If so, we anticipate that vertical motion in the vicin-
ity of the equilibrium point is stable. The situation for horizontal motion is less clear,since
the (large) drag force destabilizes the equilibrium.

In the model discussed below, we find that the equilibrium is stable against vertical
perturbations if the jet is reasonably well collimated.

2.2 The Model

We work in cylindrical coordinates (r, z) with the z axis vertical.
In this problem, we are concerned with the flow on or near the z axis, where vr � vz.

While a first approximation will suffice for vr, we need a second approximation for vz. To
second order, the dependence of vz on radius r can be approximated by a Gaussian, or by a
parabola,

vz ≈ A

z
e−r2/2β2z2 ≈ A

z

(
1 − r2

2β2z2

)
, (1)

where A is a constant of dimensions length × velocity and β is the root-mean-square cone
angle of the jet. For what it’s worth, the jet momentum that crosses a surface of constant z
each second is Jz =

∫
2πrdr ρav

2
z(r, z) = πρaA

2β2 where ρa is the density of air.
We determine vr by requiring that ∇·v = 0, which holds assuming air to be incompress-

ible. Thus,
1

r

∂(rvr)

∂r
= −∂vz

∂z
≈ A

z2

(
1 − 3r2

2β2z2

)
, (2)

which integrates to,

vr ≈ Ar

2z2

(
1 − 3r2

4β2z2

)
. (3)

Our model is a simplified version of Schlichting’s (1933) solution for the laminar flow
from a circular nozzle [1],

vz =
A

z

1

(1 + Br2/z2)2 ≈ A

z

(
1 − 2Br2/z2

)2
, (4)

vr =
Ar

2z2

1 −Br2/z2

(1 + Br2/z2)2 ≈ Ar

2z2

(
1 − 3Br2/z2

)2
. (5)

Our model agrees with the approximate form of Schlichting’s on identifying B = 1/4β2.
In the present problem, we only need the first approximation for the radial velocity profile,

vr ≈ Ar

2z2
. (6)

2



2.3 The Three Forces on the Ball

2.3.1 Gravity

Fg = −mgẑ = −4

3
πa3ρbgẑ, (7)

where ρb is the density of the ball.3

2.3.2 High-Speed Drag

Fdrag =
CD

2
ρaπa2v2v̂, (8)

where ρa is the density of the air and velocity v is evaluated at the center of the ball using
the eqs. (1) and (6). We take CD/2 = 1 in our regime.

2.3.3 Pressure-Gradient Effects

We again suppose that the ball does not perturb the pressure distribution. The net force in
some direction u on the ball due to the pressure variation can be calculated using a spherical
coordinate system centered on the ball, with angle θ measured with respect to the u-axis,

F∇P = −a2

∫ 1

−1

d cos θ

∫ 2π

0

dφ P (a, θ, φ) cos θ. (9)

We ignore the dependence of P on φ and approximate

P (a, θ, φ) ≈ P (0) + P ′(0)a cos θ + ... (10)

where the derivative is with respect to u = a cos θ. Then,

F∇P = −4

3
πa3P ′ + ... (11)

We relate pressure to velocity by Bernoulli’s equation (ignoring the gravitational pressure
difference),

P +
1

2
ρav

2 = P0, (12)

where P0 is the atmospheric pressure far from the jet. Hence,

F∇P,u =
2

3
πa3ρa

∂v2

∂u
+ ... (13)

3We neglect the buoyant force 4πa3ρbgẑ/3 on the ball, supposing that ρa � ρb.
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2.4 The Equilibrium Point

Clearly, an equilibrium point lies on the z axis above the jet, so we take u = z and write,

Fz(z) = Fg + Fdrag,z + F∇P,z = −4

3
πa3ρbg + πa2ρav

2 +
2

3
πa3ρa

dv2

dz
(14)

Along the axis, the flow is given by (1) as v2 = A2/z2, so,

Fz(z) = −4

3
πa3ρbg +

πa2A2ρa

z2
− 4πa3A2ρa

3z3
. (15)

The equilibrium height z0 then satisfies,

1

z2
0

(
1 − 4a

3z0

)
=

4aρbg

3A2ρa

. (16)

The lefthand side of this equation must be positive, so the equilibrium height z0 must be
greater than 4a/3 above the jet nozzle. If the ball is too heavy, it just falls onto the nozzle in
our approximation. In practice, as the ball comes very close to the nozzle, the perturbations
in the flow cannot be ignored, and an equilibrium might still be possible.

2.5 Vertical Oscillations about Equilibrium

As usual, we expand,
Fz(z) = F ′(z0)(z − z0) + ... (17)

If F ′(z0) is negative then the vertical motion is stable, with oscillations about equilibrium
at frequency ω =

√−F ′(z0)/m. From (15) we find,

F ′(z0) = −2πa2A2ρa

z3
0

(
1 − 2a

z0

)
. (18)

It appears that the vertical equilibrium is stable only for z0
>∼ 2a, a slightly stronger condition

than (16) that the equilibrium exist.

2.6 Stability of Horizontal Motion

The horizontal force on the ball in the plane z = z0 is,

Fr(r, z0) = Fdrag,r + F∇P,r = πa2ρavvr +
2

3
πa3ρa

∂v2

∂r
, (19)

using (8) and (13). We are only interested in small perturbations away from the axis r = 0,
so we keep terms in Fr only to order r/z, corresponding to order r2/z2 in v2. Then,

v2 = v2
z + v2

r ≈ A2

z2

(
1 − r2

β2z2
+

r2

4z2

)
, (20)

∂v2

∂r
≈ −2A2r

β2z4

(
1 − β2

4

)
, (21)
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from (1-6), and,

vvr ≈ A2r

2z3
. (22)

Combining (19-22),

Fr(r, z0) ≈ −4πa3A2ρar

3β2z4
0

(
1 − β2

4
− 3β2z0

8a

)
. (23)

In our model, β is the cone angle of the jet, so β <∼ 1; otherwise we could hardly speak of a
jet. Hence, the term β2/4 will not cause instability by itself. The term 3β2z0/8a could lead
to instability if z0 � a, i.e., for equilibrium points very far above the jet nozzle. Since βz0 is
the radius of the jet at height z0, we must have βz0

>∼ a for the ball to be within the jet, so
the model is meaningful. If we take βz0 ≈ 2a as the working regime, then 3β2z0/8a ≈ 3β/4.
Furthermore, (23) indicates that there would be horizontal stability for any value of β less
than 1, i.e., for all reasonable jets.

The frequencies of the horizontal and vertical oscillations are typically not the same, and
result in a “jumpy” appearance to the motion of a levitating beachball. For z0 � a and
βz0 = ka, the ratio of frequencies is,

ωhoriz

ωvert
≈ 1

k

√
2z0

3a
. (24)

This can be close to unity, for example, with z0 = 6a and βz0 = 2a.
Among the possibilities for the orbit of the horizontal oscillations is a circle.
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