
Bernoulli’s Equation for a Rotating Fluid
Kirk T. McDonald

Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544
(November 29, 2012; updated December 3, 2012)

1 Problem

Deduce the pressure inside a non-viscous, incompressible fluid that rotates “rigidly” about
a vertical axis with angular velocity ω, and discuss how this may be related to a version of
Bernoulli’s equation.

2 Solution

2.1 Bernoulli’s Equation in the Lab Frame

If we can ignore viscous energy dissipation in the (incompressible) fluid, and its rotational
motion is steady, then Bernoulli’s equation holds in the lab frame,1 such that,

P (r, φ, z) +
ρv2

2
+ ρgh = constant, (1)

along a streamline, where P (r, φ, z) is the internal fluid pressure in cylindrical coordinates
with the fluid rotation about the (vertical) z-axis, ρ is the mass density of the fluid, v is its
local velocity, and g is the acceleration due to gravity. For “rigid” rotation of the fluid about
the z-axis, the streamlines are simply circles of constant r and z, and Bernoulli’s equation
(1) tells us only that the pressure is constant around any such circle, but it does not provide
the relation between the pressure on different circles (r, z) = constant.

2.2 Newtonian Analysis of a Fluid Element

More information about the pressure can be obtained by consideration of the forces on a
fluid element.

Such elements move in circles of radius r with radial acceleration ar = −ω2r, and have
constant z. The fluid is axially symmetric, so the pressure is independent of angle φ for a
given r and z, i.e., P = P (r, z). The vertical force on an element of height dz and horizontal
area dA vanishes, so that,

[P (r, z)− P (r, z + dz) − ρg dz]dA = 0,
dP

dz
+ ρg = 0, P (r, z) + ρgz = constant. (2)

The radial equation of motion of an element or radial extent dr and area dA in the φ-z plane
is,

[P (r, z)− P (r + rd, z)]dA = −ρ dA dr ω2r,
dP

dr
= ρω2r, P (r, z) − ρω2r2

2
= constant. (3)

1An elegant derivation of Bernoulli’s equation is given in sec. 5 of [1], starting from Euler’s equation
(sec. 2).
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The pressure is higher at larger radii. Combining eqs. (2)-(3) we find that,

P (r, z)− ρω2r2

2
+ ρgz = constant, (4)

which has the form of the usual Bernoulli’s equation, but with the opposite sign of the term
ρv2/2 = ρω2r2/2.

If the rotating liquid has a free upper surface where the external pressure is P0, eq. (4)
for surface coordinates rs and zs is,

P (rs, zs) − ρω2r2
s

2
+ ρgzs = constant, (5)

and the surface has the parabolic form,

zs = z0 +
ω2r2

s

2g
. (6)

If the rotating liquid is in a horizontal vial with a (vertical) free surface at r0, the fluid
pressure at larger radii inside the vial has the form,

P (r) = P0 +
ρω2(r2 − r2

0)

2
, (7)

neglecting the small variation of pressure with height.

2.3 Bernoulli’s Equation in the Rotating Frame

The fluid is a rest in the frame that rotates about the z-axis with angular velocity ω, so we
expect that a version of Bernoulli’s law should hold in this frame.

Further, since the fluid is at rest we can say that any two points are connected by a
“streamline”, so we should obtain a relation for the pressure everywhere in the liquid.

The fluid has no kinetic energy in the rotating frame, but it appears to be subject to a
radial centrifugal-force density,

fr = ρω2r, (8)

that can be deduced from a potential energy density,

Vcentrifugal = −ρω2r2

2
, (9)

according to fr = −dV/dr. Recalling that Bernoulli’s equation is an expression of conser-
vation of energy in which a (gravitational or other) potential energy density appear as an
additive term, the desired version of Bernoulli’s equation in the rotating frame is,

P (r, z) + ρgz + V (r) = P (r, z) + ρgz − ρω2r2

2
= constant, (10)
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as previously found in eq. (4) via lab-frame analysis of force densities.2

In this example, Bernoulli’s equation is advantageously considered in two different frames,
in both of which the fluid motion is steady. For an example in which Bernoulli’s equation
applies only in the one of two frames where the fluid motion is steady, see [2].

2.4 Demonstrations

2.4.1 Rotating Hatboxes

Two right-circular cylinders (“hatboxes”) are rotated about a vertical axis halfway between
them, as shown below. The orange balloon is filled with helium and the black balloon with
argon. The air in the “hatboxes” is at rest in the rotating frame, and the pressure inside the
boxes increase with distance from the axis of rotation. Hence, the helium balloon “floats”
towards the axis while the argon balloon “sinks” away from the axis.3

2.4.2 Whirly Tube

When a corrugated plastic tube is whirled about, say, a vertical axis, holding the base vertical
as shown below, air is sucked in the base and flows out the whirling end, leading to possible
acoustic resonances [3].4

2(Mar. 9, 2002) If the fluid is not at rest in the rotating frame, but has velocity v at some point along
a streamline of steady flow in that frame, Bernoulli’s equation generalizes from eq. (1) to the form,

P (r, z) +
ρv2

2
+ ρgz − ρω2r2

2
= constant, (11)

See, for example, eq. (11.14), p. 766, of [4].
3Thanks to Omelan Stryzak for this demonstration.
4See [5] for a video in which a whirling tube deflates a garbage bag.
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The behavior of the whirling tubes depends on its having a relative velocity relative to the
bulk air; it would not “work” if it were place inside the rotating “hatboxes” of the previous
demonstration. The air flow is not steady in the lab frame, nor in the frame of the whirling
tube, so Bernoulli’s equation does not apply (although it is often argued that the relative
velocity of the air and the whirling end of the tube “create” low pressure there which sucks
air through the tube). As the tube rotates, the air inside the tube acquires the angular
velocity of the tube and experiences centrifugal force which drives a flow from the base (at
rest) to the whirling end. A lower-velocity return flow exists outside the tube, so that some,
but not all, of the outside air also has the angular velocity of the tube.5
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5A rotating observer of air that is at rest in the lab frame can apply Bernoulli’s equation to the streamlines
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