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1 Problem

Deduce the form of a cylindrically symmetric plane electromagnetic wave that propagates in
vacuum.

A scalar, azimuthally symmetric wave of frequency ω that propagates in the positive z
direction could be written as,

ψ(r, t) = f(ρ) ei(kzz−ωt), (1)

where ρ =
√
x2 + y2. Then, the problem is to deduce the form of the radial function f(ρ)

and any relevant condition on the wave number kz, and to relate that scalar wave function
to a complete solution of Maxwell’s equations.

The waveform (1) has both phase velocity and group velocity equal to ω/kz. Comment
on the apparent superluminal character of the wave in case that kz < kf = ω/c, where c is
the speed of light.

2 Solution

As the desired solution for the radial wave function proves to be a Bessel function, the
cylindrical plane waves have come to be called Bessel beams, following their introduction by
Durnin et al. [1, 2].1 The question of superluminal behavior of Bessel beams has recently
been raised by Mugnai et al. [4].

Bessel beams are a realization of super-gain antennas [5, 6, 7] in the optical domain. A
simple experiment to generate Bessel beams has been described in [8].

Sections 2.1 and 2.2 present two methods of solution for Bessel beams that satisfy the
Helmholtz wave equation. The issue of group and signal velocity for these waves is discussed
in sec. 2.3. Forms of Bessel beams that satisfy Maxwell’s equations are given in sec. 2.4.

2.1 Solution via the Wave Equation

On substituting the form (1) into the wave equation,

∇2ψ =
1

c2
∂2ψ

∂t2
, (2)

we obtain,
d2f

dρ2
+

1

ρ

df

dρ
+ (k2

f − k2
z)f = 0. (3)

1These beams were described, rather briefly, in sec. 6.6, p. 360 of [3].
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This is the differential equation for Bessel functions of order 0, so that,

f(ρ) = J0(k
′ρ), (4)

where,
k′2 + k2

z = k2
f . (5)

The form of eq. (5) suggests that we introduce a (real) parameter α such that,

k′ = kf sinα, and kz = kf cosα. (6)

Then, the desired cylindrical plane wave has the form,

ψ(r, t) = J0(k
′ρ) ei(kzz−ωt) = J0(kf sinα ρ) ei(kf cosα z−ωt), (7)

which is commonly called a Bessel beam.
From the second of eq. (6) we have,

ω = ckf =
ckz

cosα
. (8)

The physical significance of parameter α, and that of the group velocity,

vg =
dω

dkz
=

ω

kz
= vp =

c

cosα
(9)

for a family of Bessel beams of varying frequency but constant α, will be discussed in sec. 2.3.
While eq. (7) is a solution of the Helmholtz wave equation (2), assigning ψ(r, t) to be a

single component of an electric field, say Ex, does not provide a full solution to Maxwell’s
equations. For example, if E = ψx̂, then ∇ · E = ∂ψ/∂x �= 0. Bessel beams that satisfy
Maxwell’s equations are given in sec. 2.4.

2.2 Solution via Scalar Diffraction Theory

The Bessel beam (7) has large amplitude only for |ρ| <∼ 1/kf sinα, and maintains the same
radial profile over arbitrarily large propagation distance z. This behavior appears to con-
tradict the usual lore that a beam of minimum transverse extent a diffracts to fill a cone of
angle 1/a. Therefore, the Bessel beam (7) has been called “diffraction free” [2].

Here, we show that the Bessel beam does obey the formal laws of diffraction, and can be
deduced from scalar diffraction theory.

According to that theory [9], a cylindrically symmetric wave f(ρ) of frequency ω at the
plane z = 0 propagatesto point r with amplitude,

ψ(r, t) =
kf

2πi

∫ ∫
ρ′ dρ′dφ f(ρ′)

ei(kf R−ωt)

R
, (10)

where R is the distance between the source and observation point. Defining the observation
point to be (ρ, 0, z), we have,

R2 = z2 + ρ2 + ρ
′2 − 2ρρ′ cos φ, (11)
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so that for large z,

R ≈ z +
ρ2 + ρ

′2 − 2ρρ′ cosφ
2z

. (12)

In the present case, we desire the amplitude to have form (1). As usual, we approximate
R by z in the denominator of eq. (10), while using approximation (12) in the exponential
factor. This leads to the integral equation,

f(ρ)eikzz =
kf

2πi

eikfzeikf ρ2/2z

z

∫ ∞

0

ρ′ dρ′ f(ρ′)eikf ρ
′2/2z

∫ 2π

0

dφ e−ikf ρρ′ cosφ/z

=
kf

i

eikf zeikf ρ2/2z

z

∫ ∞

0

ρ′ dρ′ f(ρ′)J0(kfρρ
′/z) eikf ρ

′2/2z, (13)

using a well-known integral representation of the Bessel function J0.
It is now plausible that the desired eigenfunction f(ρ) is a Bessel function, say J0(k

′ρ),
and on consulting a table of integrals of Bessel functions we find an appropriate relation [10],∫ ∞

0

ρ′ dρ′ J0(k
′ρ′)J0(kfρρ

′/z)eikf ρ
′2/2z =

iz

kf
e−ikf ρ2/2ze−ik′2z/2kfJ0(k

′ρ). (14)

Comparing this with eq. (13), we see that f(ρ) = J0(k
′ρ) is indeed an eigenfunction provided

that,

kz = kf − k′2

2kf
. (15)

Thus, if we write k′ = kf sinα, then for small α,

kz ≈ kf (1 − α2/2) ≈ kf cosα, (16)

and the wave (1) again has form (7).
Strictly speaking, the scalar diffraction theory reproduces the “exact” result (7) only for

small α. But, the scalar diffraction theory is only an approximation, and we predict with
confidence that an “exact” diffraction theory would lead to the form (7) for all values of
parameter α. That is, “diffraction-free” beams are predicted within diffraction theory.

It remains that the theory of diffraction predicts that an infinite aperture is needed to
produce a beam whose transverse profile is invariant with longitudinal distance. That a
Bessel beam is no exception to this rule is reviewed in sec. 2.3.

The results of this section were inspired by [11]. One of the first solutions for Gaussian
laser beams was based on scalar diffraction theory cast as an eigenfunction problem [12].

2.3 Superluminal Behavior

In general, the group velocity (9) of a Bessel beam exceeds the speed of light. However, this
apparently superluminal behavior cannot be used to transmit signals faster than lightspeed.

An important step towards understanding this comes from the interpretation of parameter
α as the angle with respect to the z axis of the wave vectors of an infinite set of ordinary
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plane waves whose superposition yields the Bessel beam [13]. To see this, we invoke an
integral representation of the Bessel function to write eq. (7) as,2

2Using the well-known representation of the Bessel function Jn(ρ),

Jn(ρ) =
1
2π

∫ 2π+β

β

e±i(ρ cos θ−nθ)dθ, (17)

with θ = φ − ϕ, we have,

Jn(ρ) =
1
2π

∫ 2π+β+ϕ

β+ϕ

e±i(ρ cosϕ cosφ+ρ sin ϕ sin φ−nφ+nϕ)dφ =
e±inϕ

2π

∫ 2π

0

e±i(x cosφ+y sin φ−nφ)dφ, (18)

where for r = (ρ, ϕ, z) we define x = ρ cosϕ and y = ρ sin ϕ, and we set β = −ϕ. Then, eq. (19) follows
n = 0.
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ψ(r, t) = J0(kf sinα ρ) ei(kf cosα z−ωt)

=
1

2π

∫ 2π

0

dφ ei(kf sinαx cosφ+kf sinαy sinφ+kf cosαz−ωt) (19)

=
1

2π

∫ 2π

0

dφ ei(kf ·r−ωt),

where the wave vector kf , given by,

kf = kf (sinα cos φ, sinα sinφ, cosα), (20)

makes angle α to the z axis as claimed.
We now see that a Bessel beam is rather simple to produce in principle [2]. Just superpose

all possible plane waves with equal amplitude and a common phase that make angle α to
the z axis,

According to this prescription, we expect the z axis to be uniformly illuminated by the
Bessel beam. If that beam is created at the plane z = 0, then any annulus of equal radial
extent in that plane must project equal power into the beam. For large ρ this is readily
confirmed by noting that J2

0 (kf sinα ρ) ≈ cos2(kf sinα ρ + δ)/(kf sinα ρ), so the integral of
the power over an annulus of one radial period, Δρ = π/(kf sinα), is independent of radius.

Thus, from an energy perspective a Bessel beam is not confined to a finite region about
the z axis. If the beam is to propagate a distance z from the plane z = 0, it must have radial
extent of at least ρ = z tanα at z = 0. An arbitrarily large initial aperture, and arbitrarily
large power, is required to generate a Bessel beam that retains its “diffraction-free” character
over an arbitrarily large distance.

Each of the plane waves that makes up the Bessel beam propagates with velocity c along
a ray that makes angle α to the z axis. The intersection of the z axis and a plane of constant
phase of any of these wave moves forward with superluminal speed c/ cosα, which is equal
to the phase and group velocities (9).

This superluminal behavior does not represent any violation of special relativity, but is
an example of the “scissors paradox” that the point of contact of a pair of scissors could
move faster than the speed of light while the tips of the blades are moving together at
sublightspeed. A ray of sunlight that makes angle α to the surface of the Earth similarly
leads to a superluminal velocity c/ cosα of the point of contact of a wave front with the
Earth.

Hence, we immediately see that a Bessel beam could not be used to send a signal from,
say, the origin, (0, 0, 0), to a point (0, 0, z) at a speed faster than light. A Bessel beam at
(0, 0, z) is made of rays of plane waves that intersect the plane z = 0 at radius ρ = z tanα.
Hence, to deliver a message from (0, 0, 0) to (0, 0, z) via a Bessel beam, the information must
first propagate from the origin out to at least radius ρ = z tanα at z = 0 to set up the beam.
Then, the rays must propagate distance z/ cos α to reach point z with the message. The
total distance traveled by the information is thus z(1 + sinα)/ cosα, and the signal velocity
vs is given by,

vs ≈ c
cosα

1 + sinα
, (21)
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which is always less than c. The group velocity and signal velocity for a Bessel beam are
very different. Rather than being a superluminal carrier of information at its group velocity
c/ cosα, a modulated Bessel beam could be used to deliver messages only at speeds well
below that of light.

2.4 Solution via the Vector Potential

To deduce all components of the electric and magnetic fields of a Bessel beam that satisfies
Maxwell’s equation starting from a single scalar wave function, we follow the suggestion of
Davis [14] and seek solutions for a vector potential A that has only a single component. Of
course, we must recall that only in rectangular coordinates do the components of a vector
potential that obeys the (vector) wave equation also satisfy the scalar wave equation [15].

We work in the Lorenz gauge (and Gaussian units), so that the scalar potential Φ is
related by,

∇ · A +
1

c

∂Φ

∂t
= 0. (22)

The vector potential can therefore have a nonzero divergence, which permits solutions having
only a single component. The electric and magnetic fields can be deduced from the potentials
via,

E = −∇Φ − 1

c

∂A

∂t
, (23)

and,
B = ∇ × A. (24)

For this, the scalar potential must first be deduced from the vector potential using the Lorenz
condition (22). We consider waves of frequency ω and time dependence of the form e−iωt, so
that ∂Φ/∂ct = −ikfΦ. Then, the Lorenz condition yields,

Φ = − i

k0
∇ · A, (25)

and the electric field is given by,

E = ikf

[
A +

1

k2
f

∇(∇ ·A)

]
. (26)

This electric field obeys ∇ · E = 0, since ∇2(∇ · A) + k2
f (∇ · A) = 0 for a vector potential

A of frequency ω that satisfies the wave equation (2), etc.
We already have a scalar solution (7) to the wave equation, which we now interpret as

the only nonzero component, Aj, of the vector potential for a Bessel beam that propagates
in the +z direction,

Aj(r, t) = ψ(r, t) ∝ J0(kf sinα ρ) ei(kf cosαz−ωt). (27)

We consider the three choices for the meaning of index j, namely x, y, and z, which lead
to three types of Bessel beams. Of these, only the case of j = z corresponds to azimuthally
symmetric fields, and so perhaps should be called the Bessel beam.

6



2.4.1 j = x

In this case, recalling that J ′
0 = −J1,

∇ · A =
∂ψ

∂x
= −kf sinα x

ρ
J1(kf sinαρ) ei(kf cosα z−ωt). (28)

In calculating ∇(∇ · A) we use the identity,

J ′
1(
) = J0(
) − J1(
)



. (29)

Also, we divide E and B as obtained from eqs. (24) and (26) by the factor ikf to present
the results in a simpler form. We find,

Ex =

[
J0(
)

(
1 − sin2 α

x2

ρ2

)
+ sinα

x2 − y2

kfρ3
J1(
)

]
ei(kf cosα z−ωt),

Ey =
sinαxy

ρ2

[
2J1(
)

kf

− sinαJ0(
)

]
ei(kf cos αz−ωt), (30)

Ez = −i sin 2α
x

2ρ
J1(
) e

i(kf cosα z−ωt),

where,

 ≡ kf sinαρ, (31)

and,

Bx = 0,

By = cosαJ0(
) e
i(kf cosα z−ωt), (32)

Bz = −i sinαx
ρ
J1(
) e

i(kf cosαz−ωt).

This Bessel beam that obeys Maxwell’s equations and has purely x polarization of its
electric field on the z axis, but includes nonzero y and z polarization at points off that axis,
and does not exhibit the azimuthal symmetry of the underlying vector potential. In the
limit that α = 0 this Bessel beam becomes an ordinary plane wave with x polarization of its
electric field.

2.4.2 j = y

This case is very similar to that of j = x.

2.4.3 j = z

In this case the electric and magnetic fields retain azimuthal symmetry, so that it is conve-
nient to display the ρ, φ and z components of the fields. First,

∇ ·A =
∂ψ

∂z
= ikf cosαJ0(kf sinα ρ) ei(kf cosα z−ωt). (33)
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Then, we divide the electric and magnetic fields obtained from eqs. (24) and (26) by kf sinα
to find the relatively simple forms,

Eρ = cosαJ1(
) e
i(kf cosα z−ωt),

Eφ = 0, (34)

Ez = i sinα J0(
) e
i(kf cosαz−ωt),

and ,

Bρ = 0,

Bφ = J1(
) e
i(kf cos αz−ωt), (35)

Bz = 0.

This Bessel beam is a transverse magnetic (TM) wave. The radial electric field Eρ vanishes
on the z axis (as it must if that axis is charge free), while the longitudinal electric field Ez

is maximal there.
The time-average electromagnetic energy density 〈u〉 in the Bessel beam (34)-(35) is,

〈u〉 =
|E|2 + |B|2

8π
=

(1 + cos2 α)J2
1 (
) + sin2 αJ2

0 (
)

8π
, (36)

and the time-average energy-flow (Poynting) vector 〈S〉 is,

〈S〉 =
c

8π
Re(E × B�) =

c

8π
cosαJ2

1 (
) ẑ (37)

The energy flow 〈S〉 is not equal the energy density 〈u〉 times the group velocity c ẑ/ cosα,
which is another indication that the Bessel beam should not be thought of as an ordinary
plane wave, but rather as the sum of a family of waves that make angle α to the z axis, as
discussed in sec. 2.3.

As is well known, corresponding to each TM wave solution to Maxwell’s equations in
free space, there is a TE (transverse electric) mode obtained by the duality transformation
ETE = BTM, BTE = −ETM. Hence, there exists a Bessel beam in which the electric field has
only the component Eφ = J1(
) e

i(kf cosαz−ωt), etc.
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A Appendix: Bessel Beams with Orbital Angular

Momentum

This Appendix was written in January 2008 and updated April 2009.
We look for solutions to the wave equation,

∇2A− 1

c2
∂2A

∂t2
=

[
∂2Aρ

∂ρ2
+

1

ρ

∂Aρ

∂ρ
+

1

ρ2

(
∂2Aρ

∂φ2 −Aρ

)
+
∂2Aρ

∂z2
− 2

ρ2

∂Aφ

∂φ
− 1

c2
∂2Aρ

∂t2

]
ρ̂

=

[
∂2Aφ

∂ρ2
+

1

ρ

∂Aφ

∂ρ
+

1

ρ2

(
∂2Aφ

∂φ2 − Aφ

)
+
∂2Aφ

∂z2
+

2

ρ2

∂Aρ

∂φ
− 1

c2
∂2Aφ

∂t2

]
φ̂

=

[
∂2Az

∂ρ2
+

1

ρ

∂Az

∂ρ
+

1

ρ2

∂2Az

∂φ2 +
∂2Az

∂z2
− 1

c2
∂2Az

∂t2

]
ẑ = 0 (38)

for the vector potential A in cylindrical coordinates, where the scalar wave functions Aρ,
Aφ, and Az have the form,

ψ(r, t) = f(ρ) ei(kzz−ωt±mφ), (39)

where m is a non-negative integer (so that ψ(φ = 2π) = ψ(φ = 0)). For the case that
Aρ = Aφ = 0 and Az = ψ, we obtain,

d2f

dρ2
+

1

ρ

df

dρ
+

(
k2

f − k2
z −

m2

ρ2

)
f = 0. (40)

This is the differential equation for Bessel functions of order m, so that one set of Bessel
beams are generated by the vector potential,

Aρ = Aφ = 0, Az(r, t) = Jm(k′ρ) ei(kzz−ωt±mφ), (41)

where,
kz = kf cosα, k′ = kf sinα, 
 = k′ρ. (42)

We can also consider the solution Aρ = ψ, Aφ = ±iψ, Az = 0, for which both the ρ̂ and

φ̂ terms of eq. (38) lead to,

d2f

dρ2
+

1

ρ

df

dρ
+

(
k2

f − k2
z −

(m− 1)2

ρ2

)
f = 0. (43)

Thus, a second set of Bessel beams are generated by the vector potential,

Aρ(r, t) = Jm−1(k
′ρ) ei(kzz−ωt±mφ), Aφ = ±iAρ, Az = 0. (44)

Since the Bessel function Jm is real, surfaces of constant phase (at fixed time) in the wave
functions (41) and (44) are not planes of constant z, but rather they are “screws” of pitch
2πm/kf cosα = mλ0/ cosα, where λ0 = 2π/kf = 2πc/ω. The wave vector is,

k = ∇(kzz ±mφ) = kz ẑ ± m

ρ
φ̂, (45)
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which is perpendicular to the surfaces of constant phase has lines that form helices of constant
radius ρ. The wave vector k makes angle β to the ẑ-axis given by,

tanβ = ± m

kzρ
= ±m tanα



. (46)

As for Bessel beams with zero orbital angular momentum, the dispersion relation is given
by eq. (8), i.e., ω(k) = kfc = kzc/ cos α, so the group velocity vector is again,

vg = ∇kω =
c

cosα
ẑ. (47)

A.1 Bessel Beams Based on Az

We first consider the case that the only nonzero component of the vector potential is Az

with the form (41), for which,

∇ · A =
∂ψ

∂z
= ikz Jm(
) ei(kzz−ωt±mφ). (48)

Then, we divide the electric and magnetic fields obtained from eqs. (24) and (26) by k′ to
find the relatively simple TM forms,

Eρ = cosα
Jm+1(
) − Jm−1(
)

2
ei(kzz−ωt±mφ),

Eφ =
∓im cosα



Jm(
) ei(kzz−ωt±mφ), (49)

Ez = i sinα Jm(
) ei(kzz−ωt±mφ),

and,

Bρ =
±im



Jm(
) ei(kzz−ωt±mφ),

Bφ =
Jm+1(
) − Jm−1(
)

2
ei(kzz−ωt±mφ), (50)

Bz = 0.

We can also obtain TE waves by the duality transform, ETE = BTM, BTE = −ETM.
The time-average electromagnetic energy density 〈u〉 in the Bessel beam (49)-(50) is,

〈u〉 =
|E|2 + |B|2

8π
=

sin2 α

8π
J2

m(
) +
1 + cos2 α

8π

(
m2J2

m(
)


2
+

[Jm+1(
) − Jm−1(
)]
2

4

)

=
sin2 α

8π
J2

m(
) +
1 + cos2 α

16π
[J2

m+1(
) + J2
m−1(
)], (51)

using the fact that 2mJm/
 = Jm+1 + Jm−1.
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The time-average energy-flow (Poynting) vector 〈S〉 is,

〈S〉 =
c

8π
Re(E × B�)

=
c

8π

(∓m sinα



J2

m(
) φ̂ + cosα

[
m2J2

m(
)


2
+

[Jm+1(
) − Jm−1(
)]
2

4

]
ẑ

)

=
c

8π

(∓m sinα



J2

m(
) φ̂ + cosα
J2

m+1(
) + J2
m−1(
)

2
ẑ

)
. (52)

Lines of the energy flow vector 〈S〉, like those of the wave vector k, are helices of constant
radius ρ. From eq. (52) we see that the energy-flow vector makes angle γ to the ẑ-axis
where tan γ = ∓(m tanα/
) 2J2

m(
)/[J2
m+1(
) + J2

m−1(
)]. Thus, the energy-flow vector 〈S〉
and the wave vector k are not in the same directions when index m is nonzero. For large
|m| the wave vector k (parallel to the phase velocity) and the Poynting vector 〈S〉 point in
opposite directions; lines of these vector fields form very tight, opposing helices. The group
velocity vector (47) corresponds to the energy-flow velocity averaged over the helical lines of
the Poynting vector.

The time-average electromagnetic angular momentum density 〈l〉 is,

〈l〉 = r × 〈p〉 = (ρ ρ̂ + z ẑ) × 〈S〉
c2

=
1

8πc

(±mz sinα



J2

m(
) ρ̂ − ρ cosα
J2

m+1(
) + J2
m−1(
)

2
φ̂ +

∓mρ sinα



J2

m(
) ẑ

)

=
1

8π

(±mz sinα

c

J2

m(
) ρ̂ − ρ cosα
J2

m+1(
) + J2
m−1(
)

2c
φ̂ +

∓m
ω
J2

m(
) ẑ

)
, (53)

recalling that the electromagnetic momentum density is given by p = S/c2. The transverse
components of the angular momentum density 〈l〉 integrate to zero over any transverse plane
at fixed z. The longitudinal component can be interpreted as orbital angular momentum
about the z axis. But, because the Bessel beam is the result of a superposition of converging
plane waves, the orbital angular momentum does not obey the simple relation 〈l〉 = m 〈u〉 /ω,
as would hold if the beam were comprised only of plane waves propagating in the z direction.3

A.2 Bessel Beams Based on Aρ and Aφ

We now consider the case that vector potential has the form (44), for which,

∇ · A =
∂Aρ

∂ρ
+
Aρ

ρ
+

1

ρ

∂Aφ

∂φ
= −k′ Jm(
) ei(kzz−ωt±mφ), (54)

3For comparison, so-called Gaussian-Laguerre laser beams also can carry orbital angular momentum,
but since these beams are well approximated by plane waves that are essentially radial when far from the
beam “waist”, the orbital angular momentum is given by 〈l〉 = m 〈u〉 /ω [16]. For a discussion of how Bessel
beams (and Gaussian-Laguerre beams) with high orbital angular momentum can be described in terms of
skewed bundles of straight rays in the approximation of geometrical optics, see [18].
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noting that dJm−1(k
′ρ)/dρ = −k′Jm(k′ρ)+[(m−1)/ρ]Jm−1(k

′ρ). Then, we divide the electric
and magnetic fields obtained from eqs. (24) and (26) by ±kz to find the forms,

Eρ = ±i
(
m sin2 α


 cosα
Jm(
) + cosαJm−1(
)

)
ei(kzz−ωt±mφ),

Eφ =

(
m cosα



Jm(
) − Jm−1(
)

cosα

)
ei(kzz−ωt±mφ), (55)

Ez = ∓ sinα Jm(
) ei(kzz−ωt±mφ),

and,

Bρ = Jm−1(
)e
i(kzz−ωt±mφ),

Bφ = ±iJm−1(
) e
i(kzz−ωt±mφ), (56)

Bz = −i tanαJm(
) ei(kzz−ωt±mφ),

The dual solutions, E′ = B, B′ = −E, correspond to circularly polarized Bessel beams,
which may be the most physically interesting of the four sets of solutions exhibited here.
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