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1 Problem

The electromagnetic fields far from any antenna can be conveniently described as the sum
of the radiation fields of a series of oscillating point multipoles, of which the leading term
is a dipole in many cases of practical interest. The form of the fields associated with the
nth multipole is independent of the details of the physical layout of the antenna (other than
that the layout determines the magnitudes of the multipole moments). However, close to the
antenna the electromagnetic fields include quasistatic components as well as radiation terms.
A well-known argument due to Hertz [1, 2] gives the fields in the near and far zone of an
ideal point dipole. In this and companion notes [3, 4] we explore examples in which analytic
expressions can be given for the near and far zone fields of antennas of finite dimensions.

Here, the task is to describe the electromagnetic fields, and the Poynting vector [5],
produced by oscillating currents of angular frequency ω that flow along the generators of
a pair of opposing, perfectly conducting cones of half angle θ0 and length a. For a short
antenna, ka = kω/c � 1. The cones have a common axis and meet at their vertices, as
shown in the figure below (from [6]). The cones are excited by a voltage V = V0e

−iωt applied
across the gap between the two vertices. The resulting current along the surface of the cone
is assumed to be independent of the azimuth around the cones. The currents are fed from
the center of the antenna (tips of the cones) by, say, a coaxial feed line.

2 Solution

This problem is based on the work of Schelkunoff [6, 7] who noted that a difficulty in analytic
modeling of linear antennas with finite-diameter wires is the resulting large capacitance
between the pair of wires where they attach to the feed lines. The approximation of conical
rather than cylindrical wires permits analytic calculations to proceed at only a modest loss
of realism.1

We note immediately that a perfect conductor can only support an electric field perpen-
dicular to its surface. Hence, the Poynting vector cannot be perpendicular to the surface of

1A brief discussion of biconical antennas is given in sec. 12.07 of [8].
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a perfect conductor. Net electromagnetic energy can flow past the surface of perfect con-
ductor, parallel to that surface, but net energy cannot be emitted or absorbed by such a
surface. Of course, a perfect conductor is a perfect reflector, so it can absorb and emit equal
amounts of energy.

Hence, we can expect that the Poynting vector of the biconical antenna can emerge only
from the feed point (at the tips of the cones) which is connected to the external power source.
In this view, the antenna serves to guide the radiation away from its axis, but is not itself
the primary source of the radiation.

The guiding occurs as the antenna conductors absorb and re-emit energy that emanates
from the feed point. One could ask for a description of only the re-emitted energy without
including the primary source. This appears to be the common approach in discussions of
linear antennas [4], which leads to various ambiguities in the analysis (in this author’s view).
The present problem follows the lead of Schelkunoff in seeking an inclusive description of
the flow of energy from the feed point outwards.

A conductor with finite conductivity can support a very small electric field parallel to
its surface, and hence a Poynting vector perpendicular to the surface. However, the usual
direction of the Poynting vector in “real” conductors is into the conductor, to provide the
energy lost to Joule heating in the interior. See, for example, sec. 8.1 of [9].

Hence, we expect that the analysis below for a perfect conductor also gives a good
approximation to the fields and Poynting vector in an antenna built with materials of large
but finite conductivity.

The most novel feature of this note for those familiar with textbook discussion of dipole
radiation may be the appearance of the “zero mode” (sec. 2.4.2) in the near zone of a linear
antenna. In a sense, the conductors of the antenna form a kind of cavity or transmission line
(for r < a) that has a fundamental mode which cannot propagate into free space.

2.1 A Wave Equation for the Vector Potential

We will work in a spherical coordinate system (r, θ, φ) whose origin is at the common vertex
of the two cones and whose z axis coincides with that of the cones. The solution will be based
on the use of potentials for the electromagnetic fields. The time-dependent currents I(r, θ0, t)
flow on the surface of the cones with no azimuthal variation, resulting in time-dependent
accumulations of surface charge density σ(r, θ0, t). Both the scalar potential V and the
vector potential A will be nontrivial. However, we can anticipate that the magnetic field
lines will be purely transverse to the radial direction, B = Bθθ̂ + Bφφ̂ because the currents
that generates the field are radial. Indeed, if the currents have no azimuthal variation, then
we expect Bθ = 0, but it is convenient to defer use of this insight until eq. (5).

Our first goal is a wave equation for the potentials A and V for transverse magnetic
(TM) waves in spherical coordinates.

The magnetic field has zero divergence,

0 = ∇ ·B =
1

r sin θ

(
∂(sin θBθ)

∂θ
+

∂Bφ

∂φ

)
, (1)
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so there is a scalar function Φ such that,

Bθ =
1

r sin θ

∂Φ

∂φ
, Bφ = −1

r

∂Φ

∂θ
. (2)

Since the magnetic field is also the curl of the vector potential, we can write,

B = Bθθ̂ + Bφφ̂ = ∇ × A =
θ̂

r

(
1

sin θ

∂Ar

∂φ
− ∂(rAφ)

∂r

)
+

φ̂

r

(
∂(rAθ)

∂r
− ∂Ar

∂θ

)
. (3)

Comparison of eqs. (2) and (3) indicates that it suffices to consider the vector potential to
be purely radial, with Ar = Φ,

A = Ar(r, t)r̂. (4)

Furthermore, we restrict our attention to waves of angular frequency ω, and to the case
that the source currents have no azimuthal dependence. Thus, we can write the vector
potential as,

A(r, t) = Ar(r, θ)e
−iωtr̂. (5)

The usual strategy would be to deduce a wave equation for the vector potential by
working in the Lorentz gauge, where the wave equations for the potentials take on a simple
form.2 However, the behavior of the Laplacian operator in spherical coordinates on a radial
vector such as Arr̂ mars the elegance of this approach.3 Instead, we follow a procedure
of Schelkunoff [7] that leads to a sufficiently simple version of a wave equation (strictly, a
Helmholtz equation) without explicit statement of the gauge condition.

We first note that the components of the magnetic field due to the vector potential (5)
are,

Br = 0, Bθ = 0, Bφ = −1

r

∂Ar

∂θ
. (9)

The electric field is obtained from the potentials according to,

E = −∇V − 1

c

∂A

∂t
, (10)

where the scalar potential V is also independent of azimuth, and is taken to have oscillatory
time dependence,

V (r, t) = V (r, θ)e−iωt. (11)

2When the potentials obey the Lorenz gauge condition (in Gaussian units),

∇ ·A = −1
c

∂V

∂t
, (6)

the free-space wave equation for the vector potential is,

∇2A =
1
c2

∂2A
∂t2

. (7)

3From p. 116 of [10] we find that for the vector potential (5),

∇2(Ar r̂) = r̂
(
∇2Ar − 2Ar

r2

)
− θ̂

2
r2

∂Ar

∂θ
. (8)
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The components of the electric field are then,

Er = −∂V

∂r
+ ikAr, Eθ = −1

r

∂V

∂θ
, Eφ = 0, (12)

where we have introduced the wave number k = ω/c.
Additional relations between the components of the electric and magnetic fields can be

found from the fourth Maxwell equation, which in free space is,

∇ × B =
1

c

∂E

∂t
= −ikE. (13)

The r and θ components of eq. (13) tells us that,

− ikEr =
1

r sin θ

∂(sin θBφ)

∂θ
= − 1

r2 sin θ

∂

∂θ

(
sin θ

∂Ar

∂θ

)
= − 1

r2

∂2[(1 − cos2 θ)Ar]

∂(cos θ)2
,(14)

−ikEθ = −1

r

∂(rBφ)

∂r
=

1

r

∂2Ar

∂r∂θ
, (15)

using eq. (9). Substituting eq. (12) into eq. (15) we can integrate once to find,

∂Ar

∂r
= ikV. (16)

This is, in effect, the gauge condition for this problem, which differs from the Lorentz con-
dition (6).

Inserting relation (16) into the expression (12) for Er we now have,

Er =
i

k

∂2Ar

∂r2
+ ikAr. (17)

Combining this with eq. (14) we find at last the desired Helmholtz equation for scalar Ar,
from which the electromagnetic fields can be deduced,

∂2Ar

∂r2
+

1

r2

∂2[(1 − cos2 θ)Ar]

∂(cos θ)2
+ k2Ar = 0. (18)

2.2 Series Expansion of the Vector Potential

We seek a solution of the Helmholtz equation (18) that is a sum of terms of the form,

Ar(r, θ) = R(r)Θ(θ). (19)

We insert the trial solution (19) into eq. (18), multiply by r2 and divide by Ar to find,

r2 d2R

dr2
+ k2r2 +

1

Θ

d2

d(cos θ)2
[(1 − cos2 θ)Θ] = 0. (20)

As is usual for separation-of-variables techniques in spherical coordinates, we introduce a
separation constant ±n(n + 1) to obtain the radial and polar equations,

d2Rn

d(kr)2
+

[
1 − n(n + 1)

(kr)2

]
Rn = 0, (21)
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d2

d(cos θ)2
[(1 − cos2 θ)Θn] + n(n + 1)Θn = 0. (22)

Solutions to polar eq. (15) are the familiar Legendre functions,

Θn = Pn(cos θ). (23)

The Legendre functions Pn can be defined for any n real or complex (see, for example, sec. 3.6
of [7] or chap. 8 of [11]), but when the angular region of interest is 0 ≤ θ ≤ π the separation
constant n must be an integer so that Pn(±1) is finite.

We will first consider solutions over the full angular range 0 ≤ θ ≤ π (sec. 2.3), before
turning to the problem of the biconical antenna (sec. 2.4) in which θ0 ≤ θ ≤ π−θ0 for r < a.

The polar equation eq. (15) is also solved by the Legendre functions Qn, which diverge
at θ = 0 and π. Hence, we will not use these functions when considering the entire angular
region 0 ≤ θ ≤ π. As will be shown in sec. 2.4, it also suffices to use only the Pn even on the
restricted angular interval θ0 ≤ θ ≤ π − θ0.

The three lowest-order Pn for integer n are,

P0(cos θ) = 1, P1(cos θ) = cos θ, P2(cos θ) =
3 cos2 θ − 1

2
. (24)

The radial equation (21) is sometimes called the Riccati-Bessel equation, whose solutions
are kr times the so-called spherical Bessel functions of order n. The latter are related
to ordinary Bessel functions of order n + 1

2
(see, for example, secs. 5.31 and 5.37 of [8],

sec. 10.1 of [11], sec. 9.6 of [9]). At large r, we expect the electromagnetic fields to consist
of spherical waves of the form ei(kr−ωt)/r. As seen above, these fields have the form of 1/r
times derivatives of the vector potential Ar. This suggests that we use (kr times) spherical
Bessel functions of the third kind,

h(1)
n (kr) = jn(kr) + iyn(kr), (25)

where jn and yn are the spherical Bessel functions of the first and second kind, as the
asymptotic is behavior of h

(1)
n is,

h(1)
n (kr � 1)) → (−i)n+1eikr

kr
. (26)

The three lowest-order h
(1)
n are,

h
(1)
0 (kr) = −i

eikr

kr
, h

(1)
1 (kr) = −eikr

kr

(
1 +

i

kr

)
, h

(1)
2 (kr) = i

eikr

kr

(
1 +

3i

kr
− 3

(kr)2

)
.

(27)
Altogether, our expansion for the vector potential is,

Ar(r, θ, t) = kr
∞∑

n=0

Anh
(1)
n (kr)Pn(cos θ)e−iωt, (28)

where the An are Fourier coefficients to be determined.
We also note that eqs. (17) and (21) can be combined to give a simpler expression for

the radial component of the nth term of the expansion for the electric field,

Er,n =
in(n + 1)Ar,n

kr2
. (29)
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2.3 TM Fields from Point Sources

The expansion (28), when applied for all polar angles 0 ≤ θ ≤ π, represents the radiation of
a series of oscillating ideal (point) electric multipoles, for which the waves have transverse
magnetic (TM) fields.

The electromagnetic fields can be calculated from eq. (28) using eqs. (9), (14) and (15),
all of which involve the derivative ∂Ar/∂θ. For this, we note that,

dPn

dθ
=

n

sin θ
(cos θPn − Pn−1) . (30)

Hence, there is no contribution to the electromagnetic fields from the n = 0 (monopole)
term, and the lowest order multipole of significance is, as expected, the n = 1 (dipole) term.

The n = 1 (electric dipole) potential is, referring to eq. (27),

AE1
r = −A1e

i(kr−ωt)

(
1 +

i

kr

)
cos θ,

∂AE1
r

∂θ
= A1e

i(kr−ωt)

(
1 +

i

kr

)
sin θ. (31)

The dipole electromagnetic fields are (we can also use eq. (29) to obtain Er),

EE1
r = −2iA1

ei(kr−ωt)

kr2

(
1 +

i

kr

)
cos θ, (32)

EE1
θ = −A1

ei(kr−ωt)

r

(
1 +

i

kr
− 1

k2r2

)
sin θ, (33)

EE1
φ = BE1

r = BE1
θ = 0,

BE1
φ = −A1

ei(kr−ωt)

r

(
1 +

i

kr

)
sin θ. (34)

These forms agree with the standard results (see, for example, sec. 9.2 of [9]) with the
identification that A1 = −k2p where p is the peak electric dipole moment of the source.

Similarly, the n = 2 (axially symmetric electric quadrupole) fields are,

AE2
r = iA2e

i(kr−ωt)

(
1 +

3i

kr
− 3

(kr)2

)
3 cos2 θ − 1

2
, (35)

∂AE2
r

∂θ
= −3iA2e

i(kr−ωt)

(
1 +

3i

kr
− 3

(kr)2

)
sin θ cos θ. (36)

EE2
r = −3A2

ei(kr−ωt)

kr2

(
1 +

3i

kr
− 3

(kr)2

)
(3 cos2 θ − 1), (37)

EE2
θ = 3iA2

ei(kr−ωt)

r

(
1 +

3i

kr
− 6

k2r2
− 6i

k3r3

)
sin θ cos θ, (38)

EE2
φ = BE2

r = BE2
θ = 0,

BE2
φ = 3iA2

ei(kr−ωt)

r

(
1 +

3i

kr
− 3

(kr)2

)
sin θ cos θ. (39)

Sketches of the electric field lines for the time-dependent electric dipole and electric
quadrupole are shown below (from [7]). The original paper on electric dipole radiation by
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Hertz [1] has an excellent “animation” showing the development of the near field during one
cycle of the oscillation of the source.

The flow of electromagnetic energy is described by the Poynting vector,

S =
c

4π
E ×B =

c

4π
(r̂EθBφ − θ̂ErBφ). (40)

The time-average energy flow is given by,

〈S〉 =
c

8π
Re(E� ×B) =

c

8π
Re(r̂E�

θBφ − θ̂E�
r Bφ). (41)

For the dipole fields (32)-(34) we find,

〈
SE1

〉
= r̂

cA2
1

8πr2
sin2 θ, (42)

and for the quadrupole fields (37)-(39) we have,

〈
SE2

〉
= r̂

cA2
2

8πr2
sin2 θ cos2 θ. (43)

The time-average energy flow is purely radial and falls off as 1/r2 at any distance from the
point source. This is consistent with conservation of energy which is radiated from the point
source. Hence, we can say that the time-average Poynting vectors (40) and (41) describe
radiation both in the near and far zones [2].

The forms of the electromagnetic fields that we have discussed thus far have all been
transverse magnetic (TM), which we have identified with electric multipoles. For any set
of fields E and B, the dual fields E′ = −B and B′ = −E are also solutions to Maxwell’s
equations in free space. Hence, the present formalism can be transformed to describe a
family of transverse electric (TE) fields, which we identify with magnetic multipoles.

2.4 Fields of a Biconical Antenna

The field patterns of the electric multipoles found in the previous section all vanish along the
z axis. Hence, we may expect that those field patterns would be only slightly perturbed if a
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pair of conductors were placed along the z axis, one for z > 0 and the other for z < 0, either
as two thin wires or even as a pair of cones of half angle θ0. Since a perfect conductor can
only support electric fields that are perpendicular to its surface, we anticipate that the field
patterns in the presence of the conductors will include half loops of field lines that emerge
from the conductors and rejoin them less than half a wavelength away. The figures below
sketch this possibility for the case of electric dipole and electric quadrupole field patterns.

The field lines that are attached to the conductors would travel outwards along the
conductors (if the latter are long enough) in a manner reminiscent of wave propagation close
to a wire (see, for example, p. 535 of [12]). Indeed, if the conductors are extremely long, it
would be more appropriate to call this a transmission line problem than an antenna problem.

Here, we will consider examples where the length a of the axis of the cones is less than a
wavelength. If the half angle θ0 of the cones (shown on p.1) is small, we may suppose that
the fields patterns found in the previous section hold to a good approximation for r > a.
The fields in the region r < a will, to a good approximation, be the same as the fields in this
region if the conical conductors were infinitely long.

2.4.1 Expansion of the Vector Potential

We seek the appropriate modifications of the fields found in sec. 2.3 supposing the region
of interest θ0 ≤ θ ≤ π − θ0 is bounded by perfect conductors. The tangential electric field
must vanish on these conductor, i.e., Er(r, θ0) = Er(r, π − θ0) = 0. recalling eq. (14), this
boundary condition will be satisfied by requiring,

Ar(r, θ0) = Ar(r, π − θ0) = 0. (44)

Again writing Ar(r, θ) = Rn(r)Θn(θ), the Legendre functions Pn are suitable forms for the
angular functions Θn. However, since the z-axis is excluded from the region of interest, the
index n need not be an integer. We will find that for small cone angles θ0, the indices n differ
only slightly from unity. Legendre functions with indices close to an integer (i.e., n = m+Δ
where m is an integer and |Δ| � 1) obey (see p. 58 of [7]),

Pm+Δ(cos θ) ≈ Pm(cos θ)

[
1 + 2Δ ln cos

θ

2

]
. (45)
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This expression is poorly behaved as θ → π, so it is useful to note an additional relation
that is well-behaved at θ = π but poorly behaved at θ = 0,

Pm+Δ(− cos θ) ≈ (−1)mPm(cos θ)

[
1 + 2Δ ln sin

θ

2

]
. (46)

The figure below shows Pm+Δ(− cos θ) for m = 0 and 1 and Δ = 0, 0.1 and 0.2 (from [7]).

We can regard the Pm+Δ(cos θ) and the Pm+Δ(− cos θ) as separate sets of functions, and
use combinations of them in our solution. The condition (44) can be satisfied by the form,

Θn(θ) =
1

2
[Pn(cos θ) − Pn(− cos θ)], (47)

provided,
Pn(cos θ0) = Pn(− cos θ0), (48)

or by,

Θn(θ) =
1

2
[Pn(cos θ) + Pn(− cos θ)], (49)

provided,
Pn(cos θ0) = −Pn(− cos θ0). (50)

If index n were an integer, eq. (48) would imply that n is even, and eq. (50) would imply
that n is odd, but then eqs. (47) and (49) would yield Θn = 0. However, the form of the
Legendre functions when n is not an integer is such that eqs. (47)-(50) can be satisfied in a
nontrivial manner.

We restrict our attention to cones with small angle θ0. Then, according to eq. (45),
Pn(cos θ0) ≈ 1 for any n. To satisfy eqs. (48) and (50) we need Pn(− cos θ0) ≈ ±1. From
eq. (46), for θ = π − θ0 with θ0 small, we see that Pm+Δ(− cos θ0) ≈ (−1)mPm+Δ(cos θ0) ≈
(−1)m provided,

Δ = − 1

ln sin θ0

2

≈ − 1

ln θ0

2

=
1

ln 2
θ0

� 1, (51)

where m is an integer. Thus, the angular functions Θn of both forms (47) and (49) are given
by,

Θm+Δ(θ) ≈
(

1 + Δ ln
sin θ

2

)
Pm(cos θ), (52)
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where m is an integer and Δ is given by eq. (51). Note that Θm+Δ(θ0) = Θm+Δ(π − θ0) = 0
for small θ0. The figures below show ΘΔ and Θ1+Δ (from [7]).

Turning now to the radial functions Rn(r), from the analysis of sec. 2.3 these can be
written as,

Rn(r) = krh
(1)
m+Δ(kr). (53)

For small Δ, h
(1)
m+Δ(kr) is well approximated by h

(1)
m (kr). This can be inferred, for example,

from Sonine’s integral (eq. (11.4.10) of [11]).
Thus, a suitable expansion for the vector potential in the region θ0 ≤ θ ≤ π − θ0, when

bounded by perfect conductors, is,

Ar(r, θ, t) =
∞∑

n=0

Ar,n(r, θ, t) = kr

(
1 + Δ ln

sin θ

2

)
Bnh(1)

n (kr)Pn(cos θ)e−iωt, (54)

where the Bn are Fourier coefficients to be determined. As expected, this expansion is very
similar to that for a series of point electric multipoles that radiate into the entire region
0 ≤ θ ≤ π.

We note some of the symmetries of the electromagnetic fields of the modes of index n in
the expansion (54). In view of the definitions (47) and (49), the term Ar,n in the expansion
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of the vector potential obeys,

Ar,n(r, π − θ, t) = (−1)nAr,n(r, θ, t),
∂Ar,n(r, π − θ, t)

∂θ
= (−1)n+1 ∂Ar,n(r, θ, t)

∂θ
. (55)

According to eq. (29), the radial component of the electric field of the nth mode is proportional
to the vector potential, Er,n = in(n + 1)Ar,n/kr2. Hence,

Er,n(r, π − θ, t) = (−1)nEr,n(r, θ, t). (56)

Similarly, the θ component of the electric field and the φ component of the magnetic field
are proportional to ∂Ar/∂θ (or its radial derivative), so we have,

Eθ,n(r, π − θ, t) = (−1)n+1Eθ,n(r, θ, t), Bφ,n(r, π − θ, t) = (−1)n+1Bφ,n(r, θ, t). (57)

The latter relation tells us that the magnetic field circulates about the z-axis in the same
sense for both cones for odd-n modes, but in the opposite sense for the two cones for even-n
modes. Then, by Ampère’s law, the radial currents that drive these modes are in the same
direction (along a generator of the cones) for both cones in odd-n modes, but in the opposite
direction for even-n modes.

This problem concerns a center-fed biconical antenna, which implies that the currents
must be in the same direction along a generator of the two cones (since the currents in the
two conductors of the feed line are in opposite directions, so that a positive current in the
line attached to the “upper” cone leads to an “upward” current in that cone while a negative
current in the line attached to the “lower” cone leads to an “upward” current in that cone
as well). Hence, we infer that only odd-n modes are excited in a center-fed antenna.

However, as we show below, our approximations have not been sufficiently precise for
a good description of the zero mode, which proves to be strongly excited for a center-fed
biconical antenna.

2.4.2 The TEM Zero Mode

An important difference between the vector potential (54) and that of eq. (28) is that the
former supports a nontrivial mode when n = 0. Using eqs. (9), (15) and (29), we find,

A0
r(r, θ, t) = −iB0

(
1 + Δ ln

sin θ

2

)
ei(kr−ωt), (58)

∂A0
r

∂θ
= −iB0Δ cot θei(kr−ωt), (59)

E0
r = 0, (60)

E0
θ = iB0Δ cot θ

ei(kr−ωt)

r
, (61)

E0
φ = B0

r = B0
θ = 0, (62)

B0
φ = iB0Δ cot θ

ei(kr−ωt)

r
. (63)

The electric field lines are purely azimuthal, as shown in the figure below. This is a transverse
electric and magnetic (TEM) mode. The lines at a given value of r all converge onto, or
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emanate from, the conical surface where they are terminated/created by surface charges.
Hence, this mode cannot exist in the absence of a conductor, and was absent in the modes
found in sec. 2.3.

Although we have identified the existence of an n = 0 mode via our approximate vector
potential (54), the details represented in eqs. (58)-(63) are not quite correct. A formal clue
is that in free space we should have ∇ · E = 0, but according to eq. (62),

∇ · E0 =
1

r sin θ

∂(sin θE0
θ )

∂θ
= −iB0Δ cos θ

ei(kr−ωt)

r

= 0. (64)

Apparently the angular dependence of E0
θ must be 1/ sin θ, not cot θ if this is to be the only

nonzero component of the electric field.
Another clue that our characterization of the zero mode is not quite correct is obtained

by calculating the voltage difference V0 between a point a radius r on one cone and a
corresponding point on the other. Recalling eqs. (15) and (44), this is,

V0(r, t) =

∫ π−θ0

θ0

E0
θ rdθ =

i

k

∫ π−θ0

θ0

∂2A0
r

∂r∂θ
dθ =

i

k

(
∂A0

r(r, π − θ0)

∂r
− ∂A0

r(r, θ0)

∂r

)
ei(kr−ωt) = 0,

(65)
Indeed, this calculation shows that the voltage difference Vn(r, t) vanishes for every term n
of the expansion (54). But it is unphysical that the currents on the cones can arise without
any voltage differences over the cones. A nonzero voltage must arise for at least one mode,
which we now anticipate to be the zero mode.

To understand what we have overlooked, we return to the separated equation (22) for
the angular function Θ(θ) and re-examine the case when n = 0. Then, we have,

0 =
d2[(1 − cos2 θ)Θ]

d(cos θ)2
=

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
. (66)

In addition to the solution Θ0 = 1 = P0 that we previously assumed, we also can have the
solution,

Θ0 = 1 + Δ ln tan
θ

2
. (67)

For small θ this is equivalent to 1 + Δ ln sin(θ/2), which is quite close to eq. (58).
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Note that the zero-mode angular function (67) corresponds to an exact solution of the
Helmholtz equation (18) for zero separation constant (which solution can be physical only
if the z axis is excluded from the region of interest). In contrast, our approximate solution
(58) corresponds to a small but nonzero separation constant Δ(Δ + 1).

Using the form (67) for Θ0, the fields of the zero mode can be written as,

A0
r(r, θ, t) = −iB0

(
1 + Δ ln tan

θ

2

)
ei(kr−ωt), (68)

∂A0
r

∂θ
= − iB0Δ

sin θ
ei(kr−ωt), (69)

E0
r = 0, (70)

E0
θ =

iB0Δ

sin θ

ei(kr−ωt)

r
, (71)

E0
φ = B1

r = B0
θ = 0, (72)

B0
φ =

iB0Δ

sin θ

ei(kr−ωt)

r
. (73)

Inserting eq. (68) into eq. (65), the voltage at radius r in the zero mode is,

V0(r, t) = −2iB0Δ ln tan
θ0

2
ei(kr−ωt) = 2iB0Δ ln

1 + cos θ0

sin θ0
ei(kr−ωt)

≈ 2iB0Δ ln
2

θ0
ei(kr−ωt) = 2iB0e

i(kr−ωt). (74)

Thus, we can relate the coefficient iB0 that described the strength of the zero mode to the
peak voltage V0(0) that is applied across the tips of the cones,

iB0 =
V0(0)

2
. (75)

The radial current I0 on the surface of the cone follows from Ampère’s law as,

I0(r, t) =
cr sin θ0B

0
φ(r, θ0, t)

2
=

icB0Δ

2
ei(kr−ωt) ≡ I0(0)e

i(kr−ωt). (76)

Thus, the voltage and current at radius r are related by,

V0(r, t) =
4

c
ln

2

θ0
I0(r, t) =

4

cΔ
I0(r, t) ≡ Z0(r)I0(r, t), (77)

where,

Z0(r) =
4

cΔ
=

120Ω

Δ
= 120Ω ln

2

θ0
(78)

is the (transmission line) impedance of the zero mode, which is independent of position.
Recall that 1/c = 30Ω in Gaussian units.

The surface charge density σ0 at distance r from the apex of the cones is given by,

σ0(r, t) =
E0

θ (r, θ0, t)

4π
=

iB0Δ

4π sin θ0

ei(kr−ωt)

r
=

I0(0)

2πc sin θ0

ei(kr−ωt)

r
. (79)
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This is large at the tip of the cone, as is to be expected.
The Poynting vector for the zero mode is purely radial and falls off as 1/r2,

S =
c

4π
r̂Re(Eθ)Re(Bφ) =

I2
0(0)

πc sin2 θ

cos2(kr − ωt)

r2
. (80)

The flow of energy is from the feed point at the origin into the surrounding space outside
the two cones. The energy flow is highest close to the surface of the cones.4

The time-average power emitted into the zero mode is,

〈P 〉 =

∫
r2 〈Sr〉 dΩ =

I2
0(0)

πc

1

2
4π

∫ π/2

θ0

d sin θ

sin θ
=

1

2

4

c
ln

1

sin θ0
I2
0(0) ≈

1

2
Z0I

2
0(0). (81)

If we think of the fields of the zero mode as a kind of radiation, rather than as the fields of
a transmission line, then Z0 can also be interpreted as the radiation resistance of this mode.

2.4.3 The Dipole-like Mode

The dipole-like mode (n = 1) is,

A1
r(r, θ, t) = −B1

(
1 + Δ ln

sin θ

2

)
cos θei(kr−ωt)

(
1 +

i

kr

)
, (82)

∂A0
r

∂θ
= B1

(
1 + Δ ln

sin θ

2
− Δ cot2 θ

)
sin θei(kr−ωt)

(
1 +

i

kr

)
, (83)

E1
r = −2iB1

(
1 + Δ ln

sin θ

2

)
cos θ

ei(kr−ωt)

kr2

(
1 +

i

kr

)
, (84)

E1
θ = −B1

(
1 + Δ ln

sin θ

2
− Δ cot2 θ

)
sin θ

ei(kr−ωt)

r

(
1 +

i

kr
− 1

k2r2

)
,(85)

E1
φ = B1

r = B1
θ = 0, (86)

B1
φ = −B1

(
1 + Δ ln

sin θ

2
− Δ cot2 θ

)
sin θ

ei(kr−ωt)

r

(
1 +

i

kr

)
. (87)

2.4.4 Fields of a Short Center-Fed Biconical Antenna

For a short antenna, we expect the fields for r < a to be well described by a combination of
the zero mode, eqs. (70)-(73) where iB0 = V0(0)/2, and the dipole-like mode, eqs. (84)-(87).
For r > a, the fields are to a good approximation the free-space dipole fields, eqs. (32)-(34).

The Fourier coefficients A1 and B1 are chosen so that the fields will be continuous at
r = a. Thus, setting A1 = B1 insures continuity of Er to within an “error” of Δ ln 2. To
have Eθ and Bφ continuous across r = a, the 1/ sin θ dependence seen for these components
in the zero mode, but not in the free-space dipole mode, must be canceled as well as possible
by the dipole-like mode for r < a. The largest part of eq. (85) that varies as 1/ sin θ at r = a
is, for ka � 1,

− B1Δ
cos2 θ

sin θ

ei(ka−ωt)

k2a3
. (88)

4Compare with the figures on p. 15 of [4] for linear dipole antennas.
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We therefore set B1 = V0(0)(ka)2/2, which insures continuity of Eθ and Bφ to accuracy
Δ(1 + ln 2).

The fields for r < a and θ0 < θ < π − θ0 for a short (ka � 1), center-fed biconical
antenna subject to peak voltage V0(0) across the feed points is, to accuracy Δ = 1/ ln(θ0/2)
where θ0 � 1 is the cone angle,

Er(r < a, θ, t) = −iV0(0)(ka)2

(
1 + Δ ln

sin θ

2

)
cos θ

ei(kr−ωt)

kr2

(
1 +

i

kr

)
, (89)

Eθ(r < a, θ, t) =
V0(0)

2
sin θ

ei(kr−ωt)

r

{
Δ

sin2 θ

−(ka)2

(
1 + Δ ln

sin θ

2
−Δ cot2 θ

) (
1 +

i

kr
− 1

k2r2

)}
, (90)

Eφ = Br = Bθ = 0, (91)

Bφ(r < a, θ, t) =
V0(0)

2
sin θ

ei(kr−ωt)

r

{
Δ

sin2 θ

−(ka)2

(
1 + Δ ln

sin θ

2
−Δ cot2 θ

) (
1 +

i

kr

)}
. (92)

The fields for r > a are, to similar accuracy, given by eqs. (90)-(92) on setting Δ to zero.
The time-average Poynting vector for r < a is purely radial. To accuracy Δ we find,

〈S〉 =
c

8π
Re(E� × B) =

cr̂

8π
Re(E�

θBφ)

=
cr̂V 2

0 (0)

32π

sin2 θ

r2

[
(ka)4

(
1 + 2Δ ln

sin θ

2
− 2Δ cot2 θ

)
+

Δ

sin2 θ

(
a2

r2
− 2

)]
. (93)

The time-average Poynting vector for r > a is obtained on setting Δ = 0 in eq. (93).
However, the calculation (93) for the Poynting vector for r < a includes a term in 〈Sr〉 of

order Δ that varies as 1/r4. This is unphysical, and indicates that our approximations are
not sufficiently reliable for r < a for a detailed understanding of the energy flow there.

To the extent that we can ignore this blemish, our calculations confirm the expectation
that for a center-fed antenna made of perfect conductors, the energy flows radially outward
from the feed point.

This simple conclusion is agreeable, but perhaps not entirely intuitive. The existence of
oscillating currents in the conductors of the antenna implies that at every point on its surface
there are accelerating charges. These charges radiate energy, so we might expect to find a
nonzero value of the time-average Poynting vector emanating from all points on the surface
of the antenna. The requirement that the electric field be perpendicular to the surface of a
perfect conductor leads to a coherence of the radiation of the charges such that no radiation
appears to come from the bulk of the surface.

We are left with the possibility that radiation appears to come from the boundary of the
perfect conductor. In the present example, the boundary includes the tips of the cones, and
their ends at r = a. Popular cartoons of radiation from an antenna often show the radiation
as emanating from the ends of the antenna, rather than its center. However, we find no
evidence that Maxwell’s equations lead to radiation from the ends of a simple center-fed
antenna.
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2.4.5 Appendix: Radial Variation of Currents and Voltages on Finite Length
Cones

We claim that for finite-length, perfectly conducting cones, the current I(r, t) and the voltage
V (r, t) are sinusoidal functions of kr.

The forms (74) and (76) certainly satisfy the claim.
The claim can be established by recalling eq. (17) for the radial component of the electric

field, which must vanish on the surface of the perfectly conducting cones,

Er(r, θ0, t) = 0 =
i

k

∂2Ar(r, θ0, t)

∂r2
+ ikAr(r, θ0, t). (94)

Writing Ar(r, θ0, t) = f(r)e−iωt, we have,

d2f

dr2
= −k2f, (95)

which implies that f , and hence Ar(r, θ0, t), is a sinusoidal function of kr.
Recalling eq. (16) which relates the voltage to the vector potential, ikV = ∂Ar/∂r, we

have at once that the voltage V (r, θ0, t) on the cones is a sinusoidal function of kr.
As in eq. (76), the radial current I on the surface of the cone follows from Ampère’s law

and eq. (9) as,

I(r, t) =
cr sin θ0Bφ(r, θ0, t)

2
= −c sin θ0

2

∂Ar(r, θ0, t)

∂θ
. (96)

At a given angle θ, the derivative ∂Ar(r, θ, t)/∂θ has the same functional dependence on
radius r as does Ar(r, θ, t). Thus, the current I(r, t) on the surface of the cones is a sinusoidal
function of kr (times e−iωt).

In sec. 2.1 of [4], we show that the voltage and current distribution is also sinusoidal on
the surface of thin perfectly conducting wires.

We now suppose that the cones have only a finite length r = a. In this case the current
I(r) must vanish at r = a. In principle, if the cones are solid there could be small polar
currents on the spherical caps of the cones, or if the cones are hollow there could be a
small radial current on the interior of the cones. For small cone angle θ0 these currents are
negligible, so we adopt the condition,

I(r = a, t) = 0, (97)

for cones of length a.
If we know the current I(0)e−iωt at the tip of the cones of length a, then the current

I(r, t) has the form,
I(r, t) = I(0) sin[k(a − r)]e−iωt. (98)
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