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1 Problem

If the point of application of a force F is moving with velocity v, we say that the force does

work at the rate,
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This statement readily lends itself to the interpretation that the force creates a flow of energy
into whatever system exists beyond the point of application. If F and v are along the same
direction, and the system has a cross sectional area A perpendicular to that direction, we
are led to speak of a mechanical (vector) energy flux in the system given by,

F -
Smech - TV . (2)

This energy flux can be parallel or antiparallel to the velocity v.
We recall that a mechanical energy flux Syeecn implies a mechanical momentum density

Pmech Which is related by,
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This relation follows from the equivalence of energy and mass, £ = mc?, on writing the
energy flux Speen as the product of an energy density u = p,c? times the velocity vg of the
energy flow, where p,, is the mass density equivalent to energy density u. Hence, there exists
a momentum density Pmech = Py VE = UVE/C* = Smeen/c?.

Consider a bimetallic strip, made of two metals of unequal coefficients of thermal expan-
sion. At a temperature different from nominal, the differential expansion of the two strips
puts one into compression and the other into tension. The strip then takes on a curvature,
as illustrated in the sketch below. The strip is at rest in the lab frame.
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According to an observer who moves parallel to the long axis of the strip, the strip has ve-
locity v and the compressive and tensile forces inside the strip are associated with momentum
densities given by eq. (3). The two momentum densities are in opposite directions and are
offset transversely with respect to one another. Hence, there appears to be a nonzero angu-
lar momentum associated with the moving strip. The magnitude of this angular momentum
depends on the temperature, which seems to imply nonconservation of angular momentum.



The problem is to clarify whether or not the bimetallic strip possesses angular momentum,
according to moving observers.

The insights (2) and (3) of nonrelativistic mechanics can be embedded in a relativistic
context via the (symmetric) mechanical energy-momentum-stress tensor of the system, which
can be written as,
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where the mechanical energy density is Umech = meQ, the mass density is p,,, the speed of
light is ¢, and T’ éfech is the 3-dimensional mechanical stress tensor.

For example, if the velocity v, where v < ¢, is along the z axis (axis 3), and the only
stress in the system is due to the force ¥ = F'z, then the energy-momentum-stress tensor in
the rest frame of the system is given by,
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where pf, is not simply the rest mass density in the absence of the stress F'/A, but includes
the relativistic correction u?, ;./c* where u,.;. is the density of elastic energy stored in the
stressed system. In eq. (5), F' is positive for a compressive stress and negative for a tensile
stress.

The Lorentz transformation L, from the rest frame to a frame in which the system has
velocity vz can be expressed in tensor form as,

v 10 0 B8
0|10 0
L = ; (6)
0101 0
Y810 0 ~

where 3 = v/c. Hence, the energy-momentum-stress tensor in that frame is given by,
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The total mechanical energy flux has only a z component,

Swmech,z = V0(ph¢* + FJA) = v(p),c* + F/A), (8)
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where the approximation holds for v < c. As expected, the energy flux Specn . consists of a
the transport of energy/mass density pf,c* at velocity v plus the energy flux Fv/A associated
with the compressive or tensile force whose point of application is moving with velocity v.

2 Solution

This problem illustrates aspects of the relativity of steady energy flow [1], and was inspired
by the solution to problem 59 of the first edition of Spacetime Physics by Taylor and Wheeler
2] (but not by the problem itself).

The resolution of the apparent paradox follows from a slightly more realistic model of
the stress in the bent bimetallic strip. In particular, the longitudinal stresses in a bent beam
are not uniform over a cross section of the beam. The compressive stress is greatest in the
region of smallest radius of curvature, and the tensile stress is greatest in the region of largest
radius of curvature. There may or may not be a radius at which the stress is zero, but such
is assumed in the sketch below.

The thickness of the tensile region in the upper strip is equal to that of the compressive
region in the lower strip. The energy fluxes and momentum densities in these two regions
imply an angular momentum whose sense is counterclockwise in the sketch. Similarly, the
thickness of the compressive region in the upper strip is equal to that of the tensile region
in the lower strip. The energy fluxes and momentum densities in these two regions imply an
angular momentum whose sense is clockwise in the sketch. Since the stress in the upper strip
is predominantly compressive, while that in the lower strip is largely tensile, the thickness of
the second pair of regions greater than that of the first pair. The moment arm is, however,
greater for the first pair than for the second pair, such that the angular momenta associated
with the two pairs of regions are equal and opposite.

The total angular momentum of the system is zero according to all observers.

3 Comments

This problem illustrates the consistency of the notion that stress in a moving body is associ-
ated with an internal energy flux and an internal momentum density. Yet, one can question
to what extent this energy flux is “real”, since there is no net energy/mass transfer.
Furthermore, we cannot identify a well-defined velocity vg of the energy flow, since no
energy is actually flowing relative to the body itself.
A more formal statement of this difficulty is that the energy density component T of
the energy-momentum-stress tensor and the momentum density components 7%, i =1,2,3



do not constitute an energy-momentum four-vector (u, cp) that has a velocity vg = ¢*p/u,
if the medium has nonzero stress in its rest frame.

Indeed, the concept of the 3-dimensional mechanical stress tensor 7% for objects at rest is
based on a simplified view of matter as rigid bodies with instantaneous propagation of force
and energy. Despite this 3-dimensional stress tensor being embedded in the 4-dimensional
energy-momentum-stress 7", it retains the underlying assumption of instantaneous prop-
agation of mechanical effects, which is, of course, inconsistent with the speed of light as a
limiting velocity.

In a medium, whether at rest or in motion, through which net energy flows, it must
be possible to identify an energy flow velocity vg that is bounded by the speed of light.
Mechanical disturbances in an elastic medium propagate at the velocity of sound, which is
independent of frequency in the first approximation, so that the energy flow velocity, which
is equal to the group velocity, is close to the phase velocity of sound. At the beginning of
a net energy flow in an elastic medium, transient sound waves are present and the initial
energy flow velocity is evidently the speed of sound. But once the transients die away, the
energy flow velocity is much less evident, and it is reasonably consistent to describe the
medium by the energy-momentum-stress tensor 7" which gives no indication of the energy
flow velocity or the path of that flow.!
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