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1 Problem

In 1896, Birkeland reported [15]-[18] studies of a Crookes tube [5] when a strong, cylindrical
electromagnet was placed outside and to the left, as in lower figure below.
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In Fig. 1, the cathode was the cross in the center of the tube, from which cathode rays
emanated both to the left and to the right, following lines of the magnetic field (which
diverges from the magnet pole to the left of the tube). In Fig. 2 the cathode was at the far
right of the tube, and the cathode rays simply converged towards the magnet pole at the
left. In Fig. 3a the anode was the cross near the center of the tube, with the cathode at the
right end; only those cathode rays that didn’t intercept the anode proceeded past it to the
left, converging towards the magnet pole. Further, in experiments with the configuration of
Fig. 3a, the size of the shadow on the left face of the tube due the anode cross varied in an
oscillatory manner with the distance between the magnet and the tube, illustrated below
where Fig. 4a corresponds to a 20-cm gap between the magnet pole and the tube, while the
magnet pole touched the tube in Fig. 4e.

Birkeland also remarked “When a cylindrical discharge tube is placed in a uniform mag-
netic field between the poles of large hose-shoe magnet, there is no convergence of the cathode
rays to a focus; it is therefore, possible that this effect in the experiments described above
is due to the convergence of the lines of force in the field at the end of a straight magnet.”

Experiments similar to those of Birkeland were being conducted elsewhere in 1896. In-
deed, the lower figure on p. 1 is from Swinton [20], and corresponds to fig. 2 above of
Birkeland, in which the pole of a magnet located far from the cathode resulted in a conical
beam converging on the pole.

The nature of cathode rays was not understood in 1896, which were “discovered” to be
electrons by J.J. Thomson in 1897 [21, 22] (in experiments with Crookes tubes and magnets).

Approximate the magnetic field inside the Crookes tube as due to a single magnetic pole
of strength p, and discuss the motion of an electron (in vacuum) subject to this magnetic
field.

Birkeland’s scientific efforts are honored on the 200-kroner Norwegian banknote.
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2 Poincaré’s Solution

This section follows a rather brilliant paper by Poincaré (1896) [19] (under whom Birkeland
had studied in 1892), which seems to be based on a much earlier paper by Darboux (1878)
[4],1 into which it is possible to read more than was perhaps understood at the time.

2.1 General Relations

Taking the magnetic pole p to be at the origin, its magnetic field is (in Gaussian units),

B =
p r

r3
. (1)

Using the Lorentz force law (1892) [9, 12] for a particle of electric charge e and mass m, its
equation of motion is, with c being the speed of light in vacuum,2

m
d2r

dt2
=

e

c

dr

dt
× B =

ep

cr3

dr

dt
× r (Poincaré’s 1st equation, Darboux’s 1st equation). (2)

Taking the scalar product of eq. (1) with dr/dt (see also pp. 22-24 of [29]), and then also
with r, we have that,
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min (Poincaré’s 2nd equation, Darboux’s 3rd). (3)

where rmin, B and v0 are constants, with rmin being the distance of closest approach between
the charge and the pole, and v0 being the constant magnitude of the charge’s velocity.3

Next, we take the vector cross product of eq. (2) with r,
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=

d

dt

(
r × dr

dt

)
=

ep

mcr3
r ×

(
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)
=

ep
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2mcr3

dr2
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r =

ep

mc

d
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r

r
,

r × m
dr

dt
=

ep

c

r

r
+ J (Poincaré’s 3rd equation, Darboux’s 4th equation), (4)

where J is a constant vector that can be determined from the initial conditions. Then, taking
the scalar product of eq. (4) with r, we find that,

r̂ · J = −ep

c
(Poincaré’s 4th equation, Darboux’s 5th equation), (5)

1Darboux was 8 years older than Poincaré, and survived him to write a scientific biography (eulogy) of
the latter [30].

2Note the implication that Darboux intuited the Lorentz force law in 1878.
3That the velocity dr/dt of an electric charge in a magnetic field remains constant in magnitude (such

that its kinetic energy is constant) is a now-familiar feature of the Lorentz force law, but was perhaps
not well known in 1896. Since the velocity v0 of the electric charge is constant, its “relativistic mass”
m = m0/

√
1 − v2

0/c2 is constant, where m0 is the rest mass of the electron, and Poincaré’s analysis actually
holds for relativistic motion of the electron, assuming that the magnetic pole remains fixed at all times.
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which implies that the trajectory (i.e., velocity dr/dt) of the electric charge lies on the surface
of a cone whose axis is parallel to the constant vector J. If the velocity dr/dt of the electric
charge points toward the magnetic charge the motion is in a straight line, passing through
the magnetic charge; hence the magnetic charge is at the apex of the cone and lines of the
magnetic field are generatrices of the cone. Then, eq. (2) tells us that the acceleration d2r/dt2

of the electric charge is perpendicular to the surface of the cone, such that the motion of the
charge is on a straight line (geodesic) on the surface of the cone.4

Suppose the electric charge originated at r0 = (x0, 0, z0 � x0) with initial velocity
dr0/dt = −v0 ẑ. That is, we choose the directions of x- and z-axes accordingly.5 Then,
the constant vector J is,

J = −mv0x0 ŷ − ep

c
ẑ (Poincaré’s 6th equation). (6)

Considering the vector J to be the axis of the cone on whose surface the electric charge
travels, we take J as pointing away from the magnetic pole at the origin. Then,

J · r̂0 = −J cos θ =
Jzz0√
x2

0 + z2
0

≈ Jz, cos θ ≈ |Jz|
J

, sin θ ≈ |Jy|
J

, (7)

which is the general case of Poincaré’s 7th equation.

2.1.1 Angular Velocity of Rotation about the Constant Vector J

Poincaré did not carry the general discussion further in [19], but he later gave indications
on pp. 22-26 of [29] of how this could be continued.

The (constant) vector J can be decomposed into components parallel and perpendicular
to r̂ according to,

J = (J · r̂)r̂ + r̂ × (J × r̂) = −ep

c
r̂ + r̂ × (J × r̂), (8)

using eq. (5). Then, since,

r × dr

dt
= r2 r̂ × dr̂

dt
, (9)

eq. (4) can be rewritten as,

r̂ ×
(

dr̂

dt
− J

mr2
× r̂

)
= 0, (10)

Now, neither dr̂/dt nor J × r̂ have components along r̂, so we learn that,

dr̂

dt
=

J

mr2
× r̂ ≡ Ω × r̂, (11)

4That is, if the cone were unrolled into a sector on a plane, the trajectory would consist of straight line
segments on this planar sector. See the figure on p. 7.

5The distance x0 is called the impact parameter in the language of scattering theory.
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where,

Ω =
J

mr2
=

J

m(v2
0t

2 + Bt + r2
min)

, (12)

is the angular velocity of rotation of the unit vector r̂ about the axis J of the cone on which
the electric charge moves.

We can use eq. (11) to deduce a relation for the distance rmin of closest approach of the
electric charge to the magnetic pole.

Recall that in the first line of eq. (4) we found,

dr̂

dt
=

1

r

dr

dt
− r̂

r

dr

dt
. (13)

Then, when r = rmin we have that dr/dt = 0 and r̂ lies along a generatrix of the cone, such
that,

1

rmin

dr

dt
=

dr̂

dt
= Ω × r̂,

v0

rmin
= Ωsin θ =

J sin θ

mr2
min

, (14)

Hence, recalling eq. (7),6

rmin =
J sin θ

mv0
=

|Jy|
mv0

= x0 (Poincaré’s 8th equation). (15)

Furthermore, we can define the time t = 0 to be moment when the electric charge is
closest to the magnetic pole, such that eq. (3) can be written as,

r2 = v2
0t

2 + x2
0. (16)

Then, we can integrate eq. (12) to find the azimuth Δφ of the electric charge on the cone,
relative to the azimuth of rmin = the point of closest approach between the charge and the
pole,

Δφ =

∫ t

0

Ω dt =

∫ t

0

J

m(v2
0t

2
0 + x2

0)
dt =

J

mv0x0
tan−1 v0t

x0
, v0t = x0 tan

mv0x0 Δφ

J
. (17)

2.2 Considerations of Birkeland’s Experiment

In his analysis of Birkeland’s experiment, Poincaré appears to have assumed tacitly that
mv0x0 � ep/c for a strong magnetic pole p (see sec. 3.16 for the case that mv0x0 � ep/c).
Note that in this approximation,

J ≈ ep

c
, and θ ≈ mv0x0

J
� 1

(
mv0x0 � ep

c

)
. (18)

6If x0 = 0 then the initial velocity of the electric charge is along a field line and the electron moves along
this line, colliding with the magnetic pole. In this case the minimum distance of approach of the charge to
the pole is x0 = 0.

It turns out that for extremely small but nonzero x0 a charged particle with spin (such as an electron or
proton) also collides with the pole in a classical analysis, as discussed in sec. 3.21.
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In this section we suppose that the electric charge is an electron.
In this case, the half angle of the cone is greater than 90◦, so it is more convenient to

consider its complement θ < 90◦, which is related by,

sin θ =
|Jy|
J

=
|Jy|√

J2
y + J2

z

≈ |Jy|
|Jz| =

mcv0x0

ep
≈ θ (Poincaré’s 7th equation). (19)

Although angle θ is small, it is much larger than the angle tan−1(x0/z0) between the z-axis
and the initial vector r0, so it is a good approximation in (most of) the rest of the discussion
to suppose that r0 is essentially along the z-axis. Then, the z-axis is (approximately) a
generatrix of the cone, and as the electron moves on this cone it can/will cross (or at least
come extremely close to) the z-axis at various places. Extending the argument to a ring
source of electrons with radius x0 in the plane z0 (with z0 � x0), we see that these z-
intercepts are foci of the electron beam. Of course, the location of the foci in z depends
on the value of x0, so the experimental evidence of such foci is somewhat dependent on the
details of the cathode disk/ring (and of the anode cross that blocks some of the cathode
rays).

To apply eq. (17) here, we first need to know the azimuth of the point of closest approach
between the electron and the pole. For this, we use eq. (17) for time t0 when the charge is
as distance r0 =

√
v2

0t
2
0 + x2

0 ≈ v0t0 ≈ z0 from the pole,

r0 ≈ v0t0 = x0 tan
mv0x0 Δφ0

J
≈ z0 , tan

mv0x0 Δφ0

J
≈ z0

x0
� 1, (20)

which requires Δφ0 ≈ π/2. Hence, the trajectory of the electron crosses the z-axis whenever
its azimuth relative to that of the point of closest approach to the pole is Δφ = 2nπ − π/2.
Labeling the times at which this occurs as tn, we have that,

v0tn = x0 tan
(2nπ − π/2)mv0x0

J
≈ x0 tan[(2nπ − π/2) sin θ], (21)

r2
n = v2

0t
2
n + x2

0 = x2
0

(
1 + tan2[(2nπ − π/2) sin θ]

)
=

x2
0

cos2[(2nπ − π/2) sin θ]
(22)

rn =
x0

cos[(2nπ − π/2) sin θ]
≈ x0

cos(2nπ sin θ)
(Poincaré’s 9th equation). (23)

This is Poincaré’s 9th equation [19], except with cos(2nπ sin θ) rather than sin(2nπ sin θ).

An argument that emphasizes the focus at the largest distance from the magnetic pole
is based on unrolling the cone of half angle θ onto a planar sector of angle 2πθ, as shown
below.

We recall that an electron which starts at z0 with velocity v0 in the −z direction does
not have velocity parallel to the generatrix r0 of the cone, but makes tiny angle x0/z0 to this
generatrix. So, when we approximate this generatrix as the z-axis we should consider that
the initial velocity of the electron makes angle x0/z0 to the generatrix/z-axis.
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As noted earlier, the trajectory of the electron is a geodesic on the cone, so a straight line
on the unfolded planar sector. This straight line intercepts the upper boundary of the cone
at distance z1 from the origin = location of the magnetic pole p. Since this upper boundary
is equivalent to the z-axis, the first intercept/focus is at z1, which is related by,

2πθz1 ≈ (z0 − z1)
x0

z0
, z1 =

z0

1 + 2πθz0/x0
≈ z0

1 + 2πmv0z0/J
. (24)

This argument then predicts a series of foci (crossings of the z-axis by the electron’s trajec-
tory) at decreasing distance from the magnetic pole related by,

zn = zn−1
2(n − 1)πθ + x0/z0

2nπθ + x0/z0

, (25)

so long as 2nπθ + x0/z0 < 90◦, after which the successive foci are farther from the pole.
The construction above also illustrates that rmin = x0, and that φmin ≈ π/2 when x0 � z0.

2.3 What Poincaré (and Darboux) Didn’t Say

Poincaré’s discussion of Birkeland’s experiments assumed the validity of the emerging “elec-
tron theory” of Lorentz (and others, particularly J.J. Thomson and O. Heaviside), but did
not claim that Birkeland’s experiments, or his own analysis, established this theory as the
then-best description of Nature. Only in the following year (1897), when J.J. Thomson
presented evidence that cathode rays consist of negatively charged particles with a unique
charge-to-mass ratio [21, 22], did the “electron theory” become generally accepted.

We have written eq. (4) such that the lefthand side is “obviously” the mechanical angular
momentum of the electron, which suggests that the constant vector J is the total (conserved)
angular momentum of the system. In this interpretation, the quantity −ep r̂/c, where the
unit vector r̂ points from the magnetic pole p to the electric charge e, would be the angular
momentum associated with the electromagnetic fields of the system (whether or not the elec-
tric charge is at rest). In particular, if the electric charge is at rest, such that the mechanical
angular momentum of the is zero, eq. (4) suggests that the total angular momentum of the
system is nonzero.7

7This phenomenon was later popularized as the Feynman disk paradox [49, 68] (with the magnetic field
due to a small, cylindrical electromagnet, as in Birkeland’s experiments).
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However, Poincaré indicated no awareness of this physical interpretation in his 1896
paper [19] (nor did Darboux in 1878 [4].). The notion that the electromagnetic field of an
apparently static system might contain nonzero angular momentum, ostensibly a dynamical
quantity, was effectively “hidden” even from such a brilliant commentator as Poincaré.

Furthermore, there is no indication that Poincaré considered a nominally static electrome-
chanical system might contain nonzero electromagnetic field momentum, which possibility
has since been characterized as “hidden” momentum [83].

2.3.1 Poincaré on Action and Reaction Involving the Lorentz Force

Like Ampère in the 1820’s [2, 51], Poincaré was bothered in the 1890’s by the apparent
violation of Newton’s 3rd law by the Lorentz force, which may be why he hesitated to give a
full endorsement of the new “electron theory”. Perhaps his first statement of this is on p. 294
of [13].8 That he had still not resolved this issue in 1899 is indicated by sec. 352 (p. 453)
of [23]. In 1900, Poincaré provided his own deduction of electromagnetic field momentum,
stating its density to be,

p
(Poincare)
EM =

D × H

4πc
=

S

c2
, (26)

where S is the Poynting vector [6] in the notation of Lorentz [9, 12], who wrote that the
force on electric charge e is e(D + v/c×H). Poincaré’s form (26) is the same as eq. (33) of
J.J. Thomson [8].

Then, Newton’s law reads,

Ftotal =
dPtotal

dt
, Ptotal = Pmech + PEM =

∑
mivi +

∫
pEM dVol, (27)

and in a broad sense Newton’s principle of action and reaction is restored.9

Poincaré followed his later discussion of the motion of an electric charge in the field
of a magnetic pole, pp. 22-26 of [29], by a review (pp. 26-32) of action and reaction in
Lorentz’ electron theory. On p. 30 he described the electromagnetic field momentum PEM =∫

pEM dVol as the quantité de mouvement électro-magnétique. On p. 32 he noted that the
Poynting vector has dimensions of energy density times velocity, which suggested that the
momentum density (26) of the electromagnetic is associated with a flow of energy (mouve-
ment électro-magnétique).

Poincaré seemed uncomfortable with this interpretation, and ended his discussion with
the paragraph: C’est là une fiction pure; car une partie de l’énergie peut disparâıtre en so
transformant on chaleur par exemple; tandis que dans les quantités de mouvement la masse
mécanique reste invariable. This concern is a precursor to the ongoing debates on the theme
of “hidden” momentum [83] mentioned earlier.10

8On that same page, Poincaré refers to work by J.J. Thomson [10, 86] which includes the first statement,
eq. (33), of the concept of electromagnetic field momentum, but Poincaré apparently did not realize this.

9Poincaré’s efforts on this topic are reviewed in [73]. See [40] for an example of how this issue is resolved.
10Field energy is transformed to heat only in cases of resistive media. See [88], particularly secs. 2.6.2 and

2.7, for a “static” example involving a nonconducting medium, in which the flow of field energy (described
by the Poynting vector) must be accompanied by a “hidden” flow of “mechanical” energy (and “hidden”
momentum) in the medium.
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Poincaré seems not to have understood that his 3rd equation, (4),

J = r ×m
dr

dt
− ep

c
r̂ = Lmech + LEM, (28)

is a related illustration that conservation of angular momentum involves action and reaction
between mechanical angular momentum and electromagnetic-field angular momentum.

2.3.2 Motion of an Electron in the Field of a Magnetic Dipole at Rest

The extrapolation of Birkeland’s experiment to the case of an electron moving in the field
of a magnetic dipole at rest was mentioned by Poincaré on p. 24 of [29]. No analysis was
given, but it was noted that this case is relevant to the aurora borealis (a major interest of
Birkeland after 1896).

For a “point” magnetic dipole m = pd that consists of magnetic poles ±p separated by
tiny distance d such that m = pd is finite, an immediate extension of the analysis of sec. 2.1
is that the system of an electron plus the magnetic dipole, with the latter at rest, has the
constant vector,

J = r × m
dr

dt
− ep

c
r̂+ +

ep

c
r̂− = r × m

dr

dt
− ep

c

(
r+

r+
− r−

r−

)
. (29)

Referring to the figure above, we see that r± = r r̂ ∓ d/2 and r± ≈ r(1 ∓ r̂ · d/2), such
that,

J − r × m
dr

dt
= −ep

c

(
−d

r
+

(r̂ · d) r̂

r

)
=

e

cr
[m − (r̂ · m) r̂] =

e

cr2
r × (m × r̂)

= r × E× m

c
(30)

where E = −e r̂/r2 is the electric field of the charge e at the magnetic dipole m. This
suggests that the electromagnetic field angular momentum of an electric charge together
with a magnetic dipole is,

LEM = r × E ×m

c
(31)

and further that the electromagnetic field momentum of this system is,

PEM =
E × m

c
. (32)
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Both of these quantities can be nonzero when the electron (and magnetic dipole) are at rest.
The latter result is particularly disconcerting, as we expect the total momentum of a system
“at rest” to be zero. However, Poincaré appears not to have commented on this issue (unless
his remark, C’est là une fiction pure, mentioned above refers to the notion of electromagnetic
momentum and angular momentum for “static” systems).

3 Subsequent Discussions

The compact brilliance of Poincaré’s discussion [19] was such that it was roughly 50 years
before others came to appreciate some of the subtle aspects of his arguments. Meanwhile, a
few other discussions emerged of electric charges together with magnetic poles.

3.1 J.J. Thomson

In 1891, Thomson noted [8] that a sheet of electric displacement D (parallel to the surface)
which moves perpendicular to its surface with velocity v must be accompanied by a sheet
of magnetic field H = v/c × D according to the free-space Maxwell equation ∇ × H =
(1/c) ∂D/∂t.11 Then, the motion of the energy density of these sheets implies there is also
a momentum density, eqs. (2) and (6) of [8],

p
(Thomson)
EM =

D × H

4πc
. (33)

In 1893, Thomson transcribed much of his 1891 paper into the beginning of Recent Researches
[10], adding the remark (p. 9) that the momentum density (33) is closely related to the
Poynting vector [6, 11],12,13

S =
c

4π
E × H. (34)

In vacuum, the field momentum density is simply,

p
(E−B)
EM =

E × B

4πc
, (35)

which we consider now. Then, the total field momentum of a system is,

P
(E−B)
EM =

∫
E ×B

4πc
dVol. (36)

11Variants of this argument were given by Heaviside in 1891, sec. 45 of [7], and much later in sec. 18-4 of
[49], where it is noted that Faraday’s law, ∇×E = −(1/c) ∂B/∂t, combined with the Maxwell equation for
H implies that v = c in vacuum, which point seems to have been initially overlooked by Thomson, although
noted in sec. 265 of [14].

12The idea that an energy flux vector is the product of energy density and energy flow velocity seems to
be due to Umov [3], based on Euler’s continuity equation [1] for mass flow, ∇ · (ρv) = −∂ρ/∂t.

13Thomson argued, in effect, that the field momentum density (35) is related by pEM = S/c2 = uv/c2

[8, 10]. See also eq. (19), p. 79 of [7], and p. 6 of [31].
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In 1904, Thomson [86, 25, 26, 27] considered the field momentum, and field angular
momentum,

L
(E−B)
EM =

∫
r × E × B

4πc
dVol, (37)

for various examples, including an electric charge together with a magnetic pole, both at rest.
He computed that the field momentum in zero in the latter example according to eq. (35),
while the field angular momentum is,

L
(E−B)
EM = −ep

c
r̂, (38)

according to eq. (36). That is, Thomson clarified in 1904 that the term −ep r̂/c in Poincaré’s
eq. (4) has the physical significance of angular momentum stored in the electromagnetic
field of the system. However, Thomson did not reference either Birkeland or Poincaré in his
discussion.

Thomson also discussed the case of an electric charge together with either an Ampèrian
or Gilbertian magnetic dipole m, finding that,

P
(G)
EM = 0, P

(A)
EM =

E × m(A)

c
′ (39)

Thomson did not compute the electromagnetic field angular momentum for these cases, but
the result is,

LEM =

∫
r × E× B

4πc
dVol = r × E× m

c
, (40)

for both Ampèrian and Gilbertian magnetic dipoles.14

Thomson’s insights, like those of Darboux and Poincaré on this topic, were ahead of their
time, and also went largely unnoticed for many years.15

3.2 Størmer

Birkeland’s work on the effect of magnetic fields on cathode rays led him to an interest in the
effect of terrestrial magnetism on electrons in the Earth’s upper atmosphere, in particular
on the aurora borealis (frequently observable in Norway). Beginning in 1904, a younger
colleague, C. Størmer, was inspired by Birkeland to make extensive modeling [28, 45] of the
trajectories of electrons in the Earth’s magnetic field, approximated as that of a magnetic
dipole.

On p. 1 of [28] and p. 210 of [45], Størmer made brief mention of Birkeland’s cathode-ray
studies, of Poincaré’s analysis, and then identified Darboux [4] as the source of this analysis.16

14The electromagnetic field angular momentum (31) deduced via a Darboux-Poincaré analysis is correct,
but the inference (32) about the electromagnetic field momentum for an electric charge together with a
Gilbertian magnetic dipole is incorrect. Perhaps Poincaré was wise to avoid any inferences of this type,
whose eventual clarification is extremely subtle.

15Thomson’s comments on electric-magnetic charge pairs are cited in [43, 57, 59, 61, 65, 69, 71, 74, 78, 79].
16Størmer studied under Darboux and Poincaré in 1898-1900.
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Størmer was interested in numerical integration of electron trajectories in complex magnetic
fields, so did not emphasize the constant vector J of Darboux and Poincaré.

The photo below is of Størmer and Birkeland in 1910.

3.3 Dirac

Perhaps the most well known paper on magnetic charges is Dirac’s 1931 comment [36, 42]
that if magnetic poles of strength p are to be introduced into quantum electrodynamics,
while the usual gauge invariance and phase invariance of the wavefunction [32, 33] is to be
retained, then,

ep

c
=

n�

2
(41)

must hold for any physical electric charge e, where n in a integer. This gave a perspective
on how/why all observed electric charges are integer multiple of the charge of the electron.

Dirac made no mention of Poincaré or Thomson, but noted that Tamm [35] had recently
worked out the quantum wavefunction of this system.

3.4 Saha

In 1936, Saha published a paper on the possible electromagnetic origin of the mass of the
proton and neutron [38]. Section 3, on free magnetic poles, commented on Dirac’s paper,
that the classical, field angular momentum of an electric charge together with a magnetic
pole is ep/c, so if this is quantized as integer multiples of �/2, Dirac’s relation is obtained.
Details of the calculation were not given, and no reference was made to Poincaré or Thomson.

Saha also speculated (p. 146) that the magnetic moment of the neutron might be due to
a pair of opposite magnetic poles, apparently unaware that Fermi had argued in 1930 [34]
that this is not the case.17 An added note discussed the energy levels of e+e−, first computed

17See [87] for a review of the evidence that the permanent magnetism of matter is Ampèrian rather than
Gilbertian.
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in 1934 by Mohoroviĉiĉ [37].

3.5 Fierz

In a 1943 commentary on Dirac’s paper, Fierz [39] included a classical analysis of an electric
charge together with a magnetic pole. This analysis was presented in vector notation, and
identified the constant vector J of our eq. (4) as the angular momentum of the system (calling
this d in eq. (1.2)).

No mention was made of Poincaré or Thomson.

3.6 Banderet

In a 1946 commentary on the papers of Dirac and Fierz, Banderet [41] made brief mention
of a classical analysis that the half angle of the cone on which the electric charge moves is
given by the first version of our eq. (19), which Banderet attributed to Poincaré.18

3.7 Wilson

In 1949, Wilson published a brief note [43] pointing out that Thomson (1904) had deduced
the field angular momentum of an electric charge together with a magnetic pole, commenting
that this leads quickly to Dirac’s 1931 quantum condition.

Saha then claimed [44] that he had also pointed this out in 1936 [38].

3.8 Ford and Wheeler

In 1959, Ford and Wheeler [46] gave a Hamilton-Jacobi analysis of the scattering of an
electric charge by a magnetic pole, and commented on the quantum analyses mentioned
above. Poincaré and Thomson were not mentioned, but Fierz was cited.

3.9 Lapidus and Pietenpol

The classical scattering of an electric charge by a magnetic pole was given a pedagogic
treatment in 1960 by Lapidus and Pietenpol [47], who referred to the quantum treatments
mentioned above, but not to the classical analysis of Ford and Wheeler. They made the
statement that “the problem has been treated in a somewhat different manner by Poincaré”
(who did not explicitly discuss scattering).

3.10 Nadeau

Nadeau (1960) [48] made a comment on the paper of Lapidus and Pietenpol [47] that the
classical motion of an electric charge in the field of a magnetic pole can readily deduced
via vector analysis, without mention of Poincaré or Fierz. He gave arguments equivalent to

18This is the first reference I have found to Poincaré’s paper [19] after the year 1896 (except for the papers
of Størmer, which were outside the mainstream of the emerging subject of elementary particle physics.
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eqs. (1)-(12) above, which constituted the most complete vectorial discussion of Poincaré’s
analysis at the time.

3.11 Goldhaber

In the Introduction to a 1965 paper on quantum monopoles, Goldhaber [50] mentioned the
result (38) for the field angular momentum of an electric charge together with a magnetic
pole, attributing this classical result to Wilson [43].

3.12 Schwinger

In 1966, Schwinger [52] argued that Dirac’s quantum condition should read ep/c = n�

rather than n�/2. On p. 1089 he said “The discrepancy has arisen from our use of an infinite
discontinuity line, in accordance with space-reflection considerations, rather than the semi-
infinite line employed by Dirac.” He made tangential reference to the semiclassical argument
of Wilson.

In a 1968 comment in Schwinger’s paper, Peres [53] argued that the constant vector J
should be written as r × (pcanonical − eA/c) − ep r̂/c in quantum discussions.

3.13 Rossi and Olbert

In the 1970 text Introduction to the Physics of Space, Rossi and Olbert [55] discussed the
motion of an electric charge in the field of a magnetic pole (sec. 2.5) with no references, and
without physical interpretation of the constant vector J (their eq. (2.80)).

Chapter 3 is an extensive review of the work of Størmer [45].

3.14 Kerner

In 1970, Kerner [54] made some remarks about the case of relativistic motion, and referenced
Poincaré for the nonrelativistic case (apparently not realizing that Poincaré’s analysis holds
for any velocity of the charge, so long as the magnetic pole remains fixed, if one interprets
the mass m of the charge as its relativistic mass). He found a second constant vector for the
system, and compared this to the Runge-Lenz vector of the Kepler problem; like the Runge-
Lenz vector, Kerner’s new vector does not appear to have a simple physical interpretation.

Kerner may have been the first, 74 years after Poincaré’s paper, to note explicitly that
Poincaré’s constant vector J (our eq. (4)) is the total angular momentum of the system, but
he does not claim that Poincaré was aware of this.

3.15 Carter and Cohen

In 1973, Carter and Cohen [57] presented a classical discussion, aimed in part in distinguish-
ing the classical and quantum cases. Birkeland, Poincaré and Thomson are referenced. They
also did not find a useful physical interpretation for Kerner’s constant vector.

Appendix A of [57] presents a cumbersome calculation of the field angular momentum of
a charge plus pole (given much more succinctly by Thomson [26]). Appendix B argues that
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attributing Dirac’s quantum condition (41) to quantization of the field angular momentum
is oversimplified. This theme was continued by Cohen in [56].

3.16 Jackson

In sec. 6.13 of the 1975 (2nd) edition (sec. 6.12 of the 3rd (1999) edition) of his text Clas-
sical Electrodynamics, Jackson [59] gave a derivation, eqs. (6.158)-(6.159), of our eq. (38),
referencing J.J. Thomson [27], as part of his discussion of Dirac’s quantum condition.

Jackson began sec. 6.13 with a discussion of an experiment much like that of Birke-
land, but with a weak magnetic pole p and large initial mechanical angular momentum
mv0x0 � ep/c of an electric charge e that originated at (x0, 0, z0) for large negative z0.
Then, the constant vector J = Lmech + ep r̂/c = −mv0x0 ŷ − ep ẑ/c is essentially just the
initial mechanical angular momentum −mv0x0 ŷ, the half angle of Poincaré’s cone is θ ≈ 90◦,
and this cone is approximately the x-z plane. As the electric charge moves on this cone/plane
in roughly a straight line, passing the magnetic pole19 and heading off to large positive z,
the field angular momentum ep r̂/c changes from −ep ẑ/c to ep ẑ/c. Since J = Lmech + ep r̂/c
is constant, we infer that the change in mechanical angular momentum is ΔLmech = 2ep ẑ/c.
Jackson computed this change, eq. (6.156), by first estimating the change ΔPy ≈ 2ep/cx0,
eqs. (6.154)-(6.155), in the mechanical momentum of the charge due to the Lorentz force on
it as it passes the magnetic pole.20

Thus, Jackson’s example confirms Poincaré’s analysis in the other limit from that consid-
ered in sec. 2.2. However, Jackson seemed unaware of Poincaré’s priority here (and Poincaré
himself was unaware of such priority).

Jackson found it awkward to associate half-integral quanta of � with the field angular
momentum as an “explanation” of Dirac’s quantum condition (13), but made no reference
to Schwinger’s claim [52] that the quantization is actually in integer multiples of �.

3.17 Adawi

In 1975, Adawi [61] gave a short review of computations of the field angular momentum of
an electric charge in field of a magnetic pole at rest, mentioning Thomson but not Poincaré.

3.18 Goddard and Olive

In 1978, Goddard and Olive [63] gave a review of magnetic monopoles in gauge field theories,
discussing the motion of an electrically charged particle in a radial magnetic field in sec. 2.2,
referencing Poincaré.

19The closest approach of the charge to the pole is x0 in this case, as also found in sec. 2.2 when
mv0x0 � ep/c. In the language of particle scattering, the cross section for capture of the charge particle by
the magnetic pole is zero.

20Jackson notes that his calculation (6.155) of the momentum “kick” was given in eq. (2.1) of [50].
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3.19 Boulware et al.

In 1976, Boulware et al. discussed the quantum scattering of and electric charge by a magnetic
pole, including a long sec. 2 on the classical case (for mv0x0 � epc) in which Poincaré, Fierz,
Lapidus and Pietenpol, and Nadeau are cited, but not Ford and Wheeler (whose work most
closely anticipated theirs). Their fig. 2, shown below, is a nice illustration of the motion
of the electric charge on the cone near the point of closest approach to the magnetic pole.
However, this figure does not assume that the z-axis is a generatrix of the cone.

3.20 Zia

In 1979, Zia [64] gave a pedagogic discussion of the classical motion of an electric charge in
the field of a magnetic pole, citing Dirac, Lapidus and Pietenpol, Nadeau, Ford and Wheeler,
Boulware et al., Carter and Cohen, but not Poincaré.

3.21 Salam

In his opening address [65] to the 1981 Monopole Conference, Salam stated that around
1895, Poincaré and J.J. Thomson had published the result that the static field generated
by a charge +e placed at a distance r from the pole of charge +g gives rise to an angular
momentum eg/4π. Presumably he was referring to the papers [19, 26] from 1896 and 1904.
He also cited Saha [38].

3.22 Davis and Perkins

Interest in monopoles received a big boost in the mid 1970’s when ‘tHooft [58] and Polyakov
[60] noted that superheavy monopoles (which obey the Dirac quantum condition (41)) arise
in many grand-unified gauge-field theories. Such monopoles are grand-unified partners with
the ordinary fermions, so transitions exist among all of these. Of particular interest is the
possibility, noted by Rubakov [66] and Callan [67], that a monopole could interact with a
proton, leading to the “decay” of the latter with a cross section typical of the size of the
proton, rather than the much smaller cross sections typical of the grand-unified mass/energy
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scale.21

In 1989, Davis and Perkins [70] considered an extension of the analysis of Poincaré (whom
they did not mention) to include a charged particle (of mass m and electric charge e) with
spin angular momentum S and magnetic moment μ = ΓeS/mc, where Γ ≈ 1 for an electron
and 2.79 for a proton. Unlike the case of a spinless charged particle which has a nonzero
distance of closest approach to the monopole (Poincaré’s 8th equation, our eq. (15)), the
claim of [70] is that a charged particle with spin can reach the origin, such that the capture
cross section of a pointlike charged particle with spin by a superheavy monopole is nonzero.

To examine this claim, we note that the spatial equation of motion for a charged particle
with spin and a superheavy monopole at rest is modified from eq. (2) to become,

m
d2r

dt2
=

e

c

dr

dt
× B + ∇(μ · B) =

ep

cr3

dr

dt
× r − Γep

mc

3(S · r̂) r̂ − S

r3
. (42)

In addition, the magnetic moment obeys the torque equation,

dS

dt
= τ = μ × B =

Γep

mcr2
S× r ≡ ΩS × S, where ΩS = − Γep

mcr2
r. (43)

That is, the spin vector S precesses about the radial lines of magnetic field from the monopole.
As in sec. 2.1, we take the vector cross product of eq. (42) with r,

r× m
d2r

dt2
=

d

dt

(
r × m

dr

dt

)
=

ep

cr3
r ×

(
dr

dt
× r

)
+

Γep

mcr2
r × S

=
ep

cr

dr

dt
− ep

2cr3

dr2

dt
r− dS

dt
=

ep

c

d

dt

r

r
+

dS

dt
,

r × m
dr

dt
=

ep

c

r

r
− S + J, (44)

where,

J = r × m
dr

dt
+ S− ep

c

r

r
(45)

is the constant total angular momentum vector that can be determined from the initial
conditions.

For example, consider a magnetic monopole p at the origin, and a spin-1/2 particle with
electric charge e, initial velocity v0 x̂, and impact parameter b in the x-y plane, as shown in
the figure below. Suppose also that the intimal spin direction is away from the monopole,
S0 = � r̂/2, and that the charge and monopole obey the Dirac condition (41), ep/c = �/2.
Then, the constant total angular momentum vector is J = mv0 b ẑ, and the initial polar
angle of the charge, in spherical coordinates (r, θ, φ) is θ0 = π/2.

21Even if the monopole has extremely short range interaction with the quarks inside a proton, the extended
spatial distribution of these quarks leads to an effective cross section of order πr2

p, where rp is the strong-
interaction radius of the proton.

17



Poincaré’s 4th equation, (5), is now,

r̂ · J = S · r̂ − ep

c
, (46)

which is not constant for nonzero spin, and the motion of the charged particle is no longer
exactly on the surface of a cone.

In the example above, r̂ · J = (�/2)(cos α − 1) where α is the angle between S and r.
Initially, r̂ · J = 0 and the “cone” is simply the x-y plane. However, as the particle moves
angle α takes on a small nonzero value, the spin vector precesses, and the motion in not
precisely in the x-y plane.

Using eq. (45) in (42),

m
d2r

dt2
=

ep

cr3

dr

dt
× r − Γep

mc

3(J · r̂) r̂ − J

r3
− Γep

mcr3
r × m

dr

dt
− 2Γe2p2r

mc2r4
, (47)

d2r

dt2
=

(Γ + 1)ep

mcr3

dr

dt
× r − Γep

m2c

3(J · r̂) r̂ − J

r3
− 2Γe2p2 r̂

m2c2r3
, (48)

In a spherical coordinate system (r, θ, φ) with the polar axis along J (as for the example
above), the component equations of motion for the electric charge e in the field of the fixed
monopole p are,

r̈ − r(θ̇
2
+ φ̇

2
sin2 θ) = − 2Γep

m2cr3
J cos θ − 2Γe2p2

m2c2r3
, (49)

rθ̈ + 2ṙθ̇ − rφ̇
2
cos θ sin θ =

(Γ + 1)ep

mcr3
r2 φ̇ sin θ − Γep

m2cr3
J sin θ, (50)

rφ̈ sin θ + 2ṙφ̇ sin θ + 2rθ̇φ̇ cos θ = −(Γ + 1)ep

mcr3
r2 θ̇. (51)

The last equation can be multiplied by r sin θ to give,

r2φ̈ sin2 θ + 2rṙφ̇ sin2 θ + 2r2θ̇φ̇ sin θ cos θ =
d

dt

(
r2φ̇ sin2 θ

)
= −(Γ + 1)ep

mc
θ̇ sin θ, (52)

which integrates to,

r2φ̇ sin2 θ =
(Γ + 1)ep

mc
cos θ + C, (53)

where the constant C can be evaluated from the initial conditions. For the example above,
cos θ0 = 0, φ0 ≈ −b/r, so φ̇0 = bv0/r

2, and the initial value of r2φ̇ sin2 θ is bv0 = C .
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Equation (50) can be multiplied by 2r3θ̇ to give,

2r4θ̇θ̈ + 4r3ṙθ̇
2

=
d

dt

(
r4θ̇

2
)

= 2r4θ̇φ̇
2
cos θ sin θ + 2

(Γ + 1)ep

mc
r2θ̇ φ̇ sin θ − 2

Γep

m2c
Jθ̇ sin θ

= 2

([
(Γ + 1)ep

mc

]2

+ C2

)
θ̇ cos θ

sin3 θ
+ 2C

(Γ + 1)ep

mc
θ̇

(
2

sin3 θ
− 1

sin θ

)
− 2

Γep

m2c
Jθ̇ sin θ, (54)

which integrates to,

r4θ̇
2

= −
([

(Γ + 1)ep

mc

]2

+ C2

)
1

sin2 θ
− 2C

(Γ + 1)ep

mc

cos θ

sin2 θ
+ 2

Γep

m2c
J cos θ + D. (55)

Since r4θ̇
2 ≥ 0, and in the example above, C = bv0, ep/c = �/2, and cos θ0 = 0, the constant

of integration obeys D ≥ (Γ + 1)2
�

2/4m2 + b2v2
0.

Multiplying eq. (49) by r3 and using eqs. (53) and (55), we now have,

r3r̈ = r4(θ̇
2
+ φ̇

2
sin2 θ) − 2Γep

m2c
J cos θ − 2Γe2p2

m2c2

= D −
[
(Γ + 1)ep

mc

]2

− 2Γe2p2

m2c2
= k = const. (56)

That is, the radial motion is independent of θ and φ and the orientation of the magnetic
moment μ = ΓeS/mc (which this author finds to be a surprising result).

The differential equation r3r̈ = k has the general solution (courtesy of Mathematica),

r(t) =

√
k + c2

1(t + c2)2

√
c1

, ṙ =
dr

dt
=

c1(t + c2)

r
. (57)

The motion has a minimum for ṙ(−c2) = 0, at which rmin =
√

k/c1. This minimum is
physical only if k/c1 ≥ 0.

We are interested in the case with initial conditions r(0) = r0 (large) and ṙ(0) = −v0

(negative), for which,

c1 = v2
0 +

k

r2
0

, c2 = −r0v0

c1

, rmin =

√
kr2

0

k + r2
0v

2
0

=

√
k/v2

0

1 + k/r2
0v

2
0

. (58)

The minimum radius rmin is physical and positive for k > 0 and k < r2
0v

2
0.

In the example above, where sin θ ≈ 1, ep/c = �/2 and C = bv0, we have that,

r3r̈ = k ≥ b2v2
0 −

Γ�
2

2m2
. (59)

For a spinless charged particle, Γ = 0, and r3 r̈ = k = b2v2
0 > 0. Here, a minimum radius

exists, with value rmin = b/
√

1 + b2/r2
0 ≈ b, in agreement with Poincaré’s 8th equation (our

eq. (15) and footnote 19, where the impact parameter b was called x0).
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For a particle with charge e, spin angular momentum �/2, and a monopole that obeys
the Dirac condition ep/c = �/2, the constant k can be negative for impact parameter,

b <

√
Γ�

2mv0
=

√
Γλmc

2v0
, where λm =

�

mc
= Compton wavelength. (60)

In this case, the charged particle reaches the origin22 and collides with the magnetic monopole
there, leading to some interaction (“decay”) of the charged particle in grand-unified theories
[66, 67]. The classical capture cross section for this is,

σ = πb2 =
πΓλ2

m

4

c2

v2
0

. (61)

For a proton, Γ = 2.79 and λp = 1.32 fm ≈ 1.5rp, so the capture cross section for a relativistic
proton with v0 ≈ c is σ ≈ 1.6πr2

p, in agreement with footnote 19.
Of course, the electrons in Birkeland’s experiments [16] had spin, even if this wasn’t yet

recognized. However, the low velocities v0 and large impact parameters (b = x0) in those
early experiments were such that the constant k was positive and there existed a nonzero
distance r0 of closest approach to the magnetic pole.

3.23 Goldhaber and Trower

In a 1990 review of literature on magnetic monopoles, Goldhaber and Trower [71] cited
Poincaré and Thomson as refs. 98 and 99. Their associated reprint volume [72] has the
figure below on its cover.

They describe the figure as a projection of the figure of, for example, sec. 3.19 onto a
plane perpendicular to a generatrix of the cone on which the electric charge moves. However,
the reverse curve at the bottom of the figure that gives it a form like a ? mark is “artistic
license”.

22Formally, if Γ is extremely large such that 1 + k/r2
0v

2
0 < 0 there again exists a minimum radius of the

motion, and the particle would not reach the origin.
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3.24 Lochak

In 1995, Lochak [74] gave a review in his sec. 3 of the Birkeland-Poincaré discussion, and
commented that Thomson was the first to identify the field angular momentum of an electric
charge and magnetic pole, although this appeared without interpretation in Poincaré’s 3rd

equation (our eq. (4)).

3.25 Swarthmore Honors Exam

The motion of an electric charge in the field of a magnetic pole at rest was posed (by
D. Griffiths) as prob. 4 on an Honors Exam at Swarthmore College in 1998 [75]. Poincaré
was mentioned has having solved this problem.

3.26 Sivardière

In 2000, Sivardière [77] presented a pedagogic discussion of the motion of an electric charge
in the field of a magnetic pole. In his eq. (6), Sivardière quoted Nadeau’s results (12) [48],
without noticing that this describes the angular velocity of the rotating frame which he
desires in his sec. 2. Instead, he claimed that his eq. (15) describes the kinetic energy in the
rotating frame, failing to see that in this frame there is no mechanical angular momentum,
although he comments that the motion is along a straight line through the origin. He then
incorrectly concluded (top of p. 186) that Ω = (J − L)/mr2, where L is the magnitude of
the mechanical angular momentum in the lab frame.

Sivardière called the constant vector J the Poincaré vector, and attributed the physical
interpretation of this as the total angular momentum of the system to Goldhaber [50] and
Jackson [59] (although it seems to me that neither mentioned the constant vector J).

3.27 Shnir

In a 2005 monograph on magnetic monopoles, Shnir [78] reviewed Poincaré’s argument in
sec. 1.1, also mentioning Thomson (but not Darboux), and extended the discussion to the
case of dyons in sec. 1.2.

3.28 Milton

In 2006, Milton [79] gave a review of searches for magnetic monopoles, with an introductory
sec. 2 that mentioned Poincaré and Thomson.

3.29 Pilling

In a 2008 e-print, Pilling [82] gave a partial translation, with commentary, of Poincaré’s 1896
paper, claiming that the term −ep r̂/c in the constant vector J is “spin” angular momentum.
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3.30 Béché et al.

In 2014, Béché et al. [85] reported an experiment somewhat similar to that of Birkeland,
claiming the novel discovery that electrons can have orbital angular momentum (aka the
“electron vortex state”). No mention was made of Birkeland, Poincaré or Thomson.
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