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1 Problem

What is the electric potential in rectangular coordinates (x,y, z) when a charge ¢ is located
at (zo,vo0,0,) and there is a grounded conducting plane at y = 0 that has a (conducting)
hemispherical boss of radius a < b = \/a? + y2 whose center is at the origin? What is the
electrostatic force on the charge ¢ for the case that xy = 0?7

Consider also the case of a grounded conducting plane with a half-circular, conducting
ridge of radius a.

2 Solution

2.1 Hemispherical Boss

This example is posed as prob. 23, p. 284 of [2], prob. 13, p. 224 of [3], and as prob. 17 p. 232
of [4].

We use the image method [1].

First, we bring the hemispherical boss to zero potential by imagining that a charge

¢ = —qa/b is placed at distance a?/b along the line from the origin to charge ¢q. The
rectangular coordinates of charge ¢’ are (a®/b?)(zo, yo,0). Next, to bring the plane y = 0 to
zero potential, we add images charges for both ¢ and ¢’. Namely, we imagine charge ¢ = —¢

at (zo, —yo0,0), and charge ¢ = —¢' = qa/b at (a®/b*)(x0, —v0,0). Then, both the plane
y = 0 and the spherical shell of radius a about the origin are at zero potential.
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The electric scalar potential V' at an arbitrary point (z,y, z) outside the conductor is

therefore,
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where,
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When 2y = 0, then yo = b and the force on charge ¢ is in the —y direction, with
magnitude,
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The electric field at the origin in the absence of the boss would be Ey = 2q/y2 = 2q/b*.
With the boss present, the electric potential along the y-axis is,
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so the electric field at the pole of the boss, (0, a,0) has magnitude,

= 2E, (5)
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where the approximation holds for b > a. The field at the pole of the boss is roughly twice
that at the origin in its absence.

If the conducting plane with the hemispherical boss of radius a were part of a parallel-
plate capacitor, with separation b > a between the plates, the above results indicate that
the peak electric field at the pole of the boss would be ~ 2F,, where Ej is the field inside
the capacitor in the absence of the boss.!

2.2 Half-Cylindrical Ridge

We now consider the case of a conducting plane y = 0 with a conducting, half-cylindrical
ridge of radius @ and axis (0,0, 2), together with a line charge ¢ per unit length in the
z-direction, located at (zo,yo,2). Again, we use an image method, now for 2-dimensional
conductors.?

Here, the image of the line charge at distance b = /3 + y2 from the z-axis is a line charge
¢’ = —q per unit length at distance a?/b from that axis, with coordinates (a?/b*)(z0, yo, 2)-

The solution is completed by the image line charges ¢” = —q and ¢"” = ¢ at coordinates

'The potential difference between the capacitor plates is V =~ Eyb. In contrast, an isolated conducting
sphere of radius a at potential V' = Egb has electric field of strength V/a = Egb/a > Ey at its surface.
Note that for large b, the potential takes the form V = Eqo(r — a®/r?) cos@ = Egy(1 — a®/r?), where angle
6 is measured with respect to the y-axis, and r = /22 + 32 + 22.
Compare also to the case of a conducting sphere in an otherwise uniform external field Eg, where the peak
field at the surface of the sphere is 3Eq. See, for example, sec. 2.3 of [5].
2See, for example, prob. 11(a) of [6].



(w0, —yo, 2) and (a?/b?)(zo, —yo, 2), respectively. The electric scalar potential V' at an arbi-
trary point (z,y, z) outside the conductor is therefore (to within a constant),

V =-2¢(Inr; —Inry —Inrs+Inry), (6)

where,
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When 27 = 0, then yy = b and the force per unit length on charge ¢ (per unit length) is
in the —y direction, with magnitude,
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The electric field strength at the origin in the absence of the boss would be Fy = 4q/yy =
4q/b. With the boss present, the electric potential in the plane = 0 is (to within a constant),

V(0,y >a,2) =—2¢[In|b—y| —In|b+y| — In|by — a*| +1n|by + a°|] , (9)
so the electric field long the peak of the ridge, (0, a, z) has magnitude,
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where the approximation holds for b > a. The peak field along the ridge is roughly twice
that at the origin in its absence.

If the conducting plane with the half-cylindrical ridge of radius a were part of a parallel-
plate capacitor, with separation b > a between the plates, the above results indicate that
the peak electric field at the pole of the boss would be ~ 2F,, where Ej is the field inside
the capacitor in the absence of the boss.?
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