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1 Problem

What is the electric potential in rectangular coordinates (x, y, z) when a charge q is located
at (x0, y0, 0, ) and there is a grounded conducting plane at y = 0 that has a (conducting)
hemispherical boss of radius a < b =

√
x2

0 + y2
0 whose center is at the origin? What is the

electrostatic force on the charge q for the case that x0 = 0?
Consider also the case of a grounded conducting plane with a half-circular, conducting

ridge of radius a.

2 Solution

2.1 Hemispherical Boss

This example is posed as prob. 23, p. 284 of [2], prob. 13, p. 224 of [3], and as prob. 17 p. 232
of [4].

We use the image method [1].
First, we bring the hemispherical boss to zero potential by imagining that a charge

q′ = −qa/b is placed at distance a2/b along the line from the origin to charge q. The
rectangular coordinates of charge q′ are (a2/b2)(x0, y0, 0). Next, to bring the plane y = 0 to
zero potential, we add images charges for both q and q′. Namely, we imagine charge q′′ = −q
at (x0,−y0, 0), and charge q′′′ = −q′ = qa/b at (a2/b2)(x0,−y0, 0). Then, both the plane
y = 0 and the spherical shell of radius a about the origin are at zero potential.
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The electric scalar potential V at an arbitrary point (x, y, z) outside the conductor is
therefore,

V =
q

r1
− q

r2
− qa

br3
+

qa

br4
, (1)

where,

r1,2 =
√

(x − x0)2 + (y ∓ y0)2 + z2, r3,4 =
√

(x − a2x0/b2)2 + (y ∓ a2y0/b2)2 + z2. (2)

When x0 = 0, then y0 = b and the force on charge q is in the −y direction, with
magnitude,

F =
q2

4b2
+

q2a/b

(b − a2/b)2
− q2a/b

(b + a2/b)2
=

q2

4b2
+

4q2a3b3

(b4 − a4)2
. (3)

The electric field at the origin in the absence of the boss would be E0 = 2q/y2
0 = 2q/b2.

With the boss present, the electric potential along the y-axis is,

V (0, y > a, 0) =
q

|b − y| −
q

b + y
− qab

|by − a2| +
qab

by + a2
, (4)

so the electric field at the pole of the boss, (0, a, 0) has magnitude,

|Ey(0, a, 0)| =

∣
∣
∣
∣−

dV (0, a, 0)

dy

∣
∣
∣
∣ =

2q(2b2 + a2)

(b2 − a2)2
≈ 4q

b2
= 2E0, (5)

where the approximation holds for b � a. The field at the pole of the boss is roughly twice
that at the origin in its absence.

If the conducting plane with the hemispherical boss of radius a were part of a parallel-
plate capacitor, with separation b � a between the plates, the above results indicate that
the peak electric field at the pole of the boss would be ≈ 2E0, where E0 is the field inside
the capacitor in the absence of the boss.1

2.2 Half-Cylindrical Ridge

We now consider the case of a conducting plane y = 0 with a conducting, half-cylindrical
ridge of radius a and axis (0, 0, z), together with a line charge q per unit length in the
z-direction, located at (x0, y0, z). Again, we use an image method, now for 2-dimensional
conductors.2

Here, the image of the line charge at distance b =
√

x2
0 + y2

0 from the z-axis is a line charge
q′ = −q per unit length at distance a2/b from that axis, with coordinates (a2/b2)(x0, y0, z).
The solution is completed by the image line charges q′′ = −q and q′′′ = q at coordinates

1The potential difference between the capacitor plates is V ≈ E0b. In contrast, an isolated conducting
sphere of radius a at potential V = E0b has electric field of strength V/a = E0b/a � E0 at its surface.

Note that for large b, the potential takes the form V = E0(r − a3/r2) cos θ = E0y(1− a3/r3), where angle
θ is measured with respect to the y-axis, and r =

√
x2 + y2 + z2.

Compare also to the case of a conducting sphere in an otherwise uniform external field E0, where the peak
field at the surface of the sphere is 3E0. See, for example, sec. 2.3 of [5].

2See, for example, prob. 11(a) of [6].
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(x0,−y0, z) and (a2/b2)(x0,−y0, z), respectively. The electric scalar potential V at an arbi-
trary point (x, y, z) outside the conductor is therefore (to within a constant),

V = −2q(ln r1 − ln r2 − ln r3 + ln r4), (6)

where,

r1,2 =
√

(x − x0)2 + (y ∓ y0)2, r3,4 =
√

(x − a2x0/b2)2 + (y ∓ a2y0/b2)2. (7)

When x0 = 0, then y0 = b and the force per unit length on charge q (per unit length) is
in the −y direction, with magnitude,

F =
q2

b
+

2q2b

b4 − a4
. (8)

The electric field strength at the origin in the absence of the boss would be E0 = 4q/y0 =
4q/b. With the boss present, the electric potential in the plane x = 0 is (to within a constant),

V (0, y > a, z) = −2q
[
ln |b − y| − ln |b + y| − ln

∣
∣by − a2

∣
∣ + ln

∣
∣by + a2

∣
∣] , (9)

so the electric field long the peak of the ridge, (0, a, z) has magnitude,

|Ey(0, a, 0)| =

∣
∣
∣∣−

dV (0, a, z)

dy

∣
∣
∣∣ =

8qb

b2 − a2
≈ 8q

b
= 2E0, (10)

where the approximation holds for b � a. The peak field along the ridge is roughly twice
that at the origin in its absence.

If the conducting plane with the half-cylindrical ridge of radius a were part of a parallel-
plate capacitor, with separation b � a between the plates, the above results indicate that
the peak electric field at the pole of the boss would be ≈ 2E0, where E0 is the field inside
the capacitor in the absence of the boss.3
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