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1 Problem

A “magnetic bottle” is a quasisolenoidal magnetic field, perhaps created by a pair of coils as
in the figure below, such that a charged particle of sufficiently low velocity is “trapped” in
the region between the coils, which act as “magnetic mirrors”. See, for example, sec. 12.5 of
[1].

Show that a charged particle orbiting a charged needle with sufficiently low velocity is
similarly “trapped” in an “electric bottle”. A delightful demonstration of this effect in the
NASA Space Station is at [2].1,2

2 Solution

We take the needle to be a uniform line of length 2a and total charge Q, centered on the
origin and along the z-axis of a cylindrical coordinate system (r, θ, z).

1A related example of a charged needle inside a coaxial conductor cylinder is discussed in [3]. Such traps
were first considered by Kingdon in 1923 [4]. A trap with a potential U(r, θ, z) = A(z2 − r2/2 + B ln r) was
discussed in [5], and is now commercialized as the Orbitrap [6, 7].

2For a very simplified analysis of this problem, see [8].
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The electric scalar potential V at a point (r, θ, z) is, in Gaussian units,

V (r, z) =

∫ a
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R
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Q
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∫ a

−a

dz′√
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= − Q
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ln
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ln
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, where R1,2 =

√
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If we write,

u =
R1 + R2

2
, v =

R1 − R2

2
, with −∞ < u < ∞, −a ≤ v ≤ a, (2)

then surfaces of constant u are prolate spheroids, surfaces of constant v are hyperboloids,

R1 = u + v, R2 = u − v, az = uv, (3)

and,
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such that the electric potential is constant on surfaces of constant u,

V =
Q

2a
ln

u + a

u − a
, (5)

and the electric field lines lie on surfaces of constant v with no azimuthal component Eθ.

The coordinates (u, θ, v) form a prolate spheroidal coordinate system.
The electric field in the symmetry plane (v = 0 = z) has only a radial component,

Er(r, z = 0) = −∂V (r, z = 0)
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which falls off as 1/r2 at large radii.
An electric charge −q with mass m can have a circular orbit in the plane z = 0 with any

radius r0 if its azimuthal speed v0θ = r0ω0 is related by,
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0

√
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0 + a2

, v2
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qQ

m
√
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2
. (7)

It is useful to note the angular-momentum L = r×mv of the moving charge/mass obeys,

dL

dt
= τ = r × F = (r r̂ + z ẑ) × (Fr r̂ + Fz ẑ) = (zFr − rFz) θ̂, (8)

as the force F = −qE = q∇V (r, z) has no θ-component. Recalling that,

dr̂

dt
= θ̇ θ,

dθ̂

dt
= −θ̇ r, (9)

we have,

v =
dr

dt
≡ ṙ =

d

dt
(r r̂ + z ẑ) = ṙ r̂ + rθ̇ θ̂ + ż ẑ, (10)

L = r × mv = m(r r̂ + z ẑ) × (ṙ r̂ + rθ̇ θ̂ + ż ẑ) = −mrzθ̇ r̂ + m(ṙz − rż) θ̂ + mr2θ̇ ẑ, (11)

dL

dt
= −mz(2ṙθ̇ + rθ̈) r̂ + m(r̈z + rz̈ − rzθ̈) θ̂ + mr(2ṙθ̇ + rθ̈) ẑ, (12)

and hence from eq. (8), both the r and z-components of eq. (12) lead to,

2ṙθ̇ + rθ̈ = 0, and Lz = mr2θ̇ = constant. (13)

The z-component of the magnetic moment of the orbital motion of the charge q is,

μz =
I⊥A⊥

c
=

1

c

qθ̇

2π
πr2 =

qr2θ̇

2c
=

q

2mc
Lz. (14)

That is, the magnetic moment μz is a constant of the motion whether or not the particle is
trapped by the electric field.3 This contrasts with the case of trapping in a magnetic bottle,
where angular momentum Lz is not strictly conserved, and the magnetic moment is only an
adiabatic invariant (for motion in magnetic fields that vary sufficiently slowly in space).4

We next consider perturbations about circular orbits in the plane z = 0, first for per-
turbations in this plane, and then (more interestingly) for perturbations perpendicular to
it.

3The result (13), that the angular momentum Lz is constant, holds for any axially symmetric electric
field (where the magnetic field is zero, which implies that the electric field is static). The mass m in eq. (14)
is the “relativistic mass”, m0/

√
1 − v2/c2, where m0 is the rest mass, such that the magnetic moment is not

strictly invariant for motion at high velocity v.
4Since motion in a magnetic field does not change the magnitude v of the charge’s velocity v, and hence

the relativistic mass m is constant in a magnetic field, the magnetic moment can be an adiabatic invariant at
high velocity, provided the spatial variation of the magnetic field is small enough that adiabatic invariance is
a good approximation. However, the magnetic field must be more uniform for adiabatic invariance to hold
at high velocity, compared to that sufficient for at low velocity.
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2.1 Perturbed Motion in the Symmetry Plane

For motion in the plane z = 0, we have that,

r̈ − rθ̇
2

= r̈ − L2
z

m2r3
= Fr = − qQ

r
√

r2 + a2
. (15)

The equilibrium circular orbit has r̈ = 0, and hence the equilibrium radius r0 and angular
velocity ω0 = θ̇0 are related by,
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=
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For small perturbations about the equilibrium orbit, we expand the radial equation of motion
as,
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which has oscillatory solutions of the form,

r ≈ r0(1 + ε sinωt) where ω2 = ω2
0

r2
0 + 2a2

r0 + a2
> ω2

0, (18)

with period shorter than that of the equilibrium orbit. The angular velocity is given by,

θ̇ =
Lz

mr2
= ω0

r0

r2
≈ ω0(1 − 2ε sinωt). (19)

The perturbed orbits are ellipse-like with retrograde precession of the pericharge (to coin a
phrase).

2.2 Perturbed Motion Perpendicular to the Symmetry Plane

We now consider motion that includes nonzero velocity ż parallel to the axis of the charged
rod. In particular, we consider motion with constant angular momentum Lz = mr2θ̇, such
that when z = 0, then r = r0, ṙ = 0, rθ̇ = v0θ according to eq. (16), Lz = mr0v0θ, and
ż = v0z. The subsequent motion is qualitatively helical, and the total energy U is conserved,
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, (20)

where u0 =
√

r2
0 + a2, recalling the electric potential (5) and that,

u =

√
r2 + (z + a)2 +

√
r2 + (z − a)2

2
. (21)
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An interesting question is whether there exists a maximal value z1 for the helical motion, such
that the charge −q is “trapped” in an “electric bottle”, oscillating axially between “turning
points” ±z1. The video [2] suggests that such “trapping” is possible for some values of v0z.

If the turning point z1 of the motion exists, then here r = r1, ṙ = 0, ż = 0, and the
energy equation (20) becomes,
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1
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=
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z
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0
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ln
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. (22)

The value of z1 increases with increasing v0z, and is infinite for the maximum axial speed
v0z,max for which a turning point exists. At infinite z1 the electrical potential energy is zero,
and eq. (22) becomes,
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1
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. (23)

Since r1 < r0 we have, recalling eq. (7),
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where the approximation holds for r0 � a. Thus, turning points ±z1 exist; for r0 � a,
the ratio v0z,max/v0θ can be large compared to unity, and the case v0z,max = v0θ holds for
r0 ≈ a

√
e/2 ≈ 0.75a. The latter result is qualitatively consistent with the NASA video [2].

2.2.1 Frequency of Small Axial Oscillations

Although the main interest in this problem is the existence of large-amplitude axial per-
turbations to the orbital motion, we also consider small axial perturbations for which an
approximate calculation of the frequency can be given.

The axial equation of motion is,

mz̈ = −qEx = q
∂V
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∂

∂z
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u − a
= − qQ
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∂u
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For |z| �
√
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0 + a2 we approximate,
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√
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=
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.
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Hence,

z̈ ≈ − qQz

mr2
0

√
r2
0 + a2

r2
0

r2
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= −ω2
0

r2
0

r2
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z, (28)

recalling eq. (7). Thus, for |z| � √
r2
0 + a2, we have simple harmonic motion with angular

frequency ωz given by,

ω2
z = ω2

0

r2
0

r2
0 + a2

. (29)

For equilibrium orbits with r0 � a, where the charged needle appears to be a point
charge, we have that ωz ≈ ω0 as expected for small oscillations, while for small r0 the
frequency of small axial oscillations is smaller than the equilibrium orbital frequency ω0; the
charge −q can complete several spiral turns per each cycle of axial oscillation, as seen in the
video [2].
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