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Höhere Technische Bundeslehr- und Versuchsanstalt, Wiener Neustadt, A-2700 Austria
Kirk T. McDonald

Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544
(May 7, 2018; updated May 25, 2018)

1 Problem

Discuss the vertical motion of a leaky bucket of water that is suspended by a spring.
This is an extension of the classic example of Torricelli [1]-[4] of water emerging from a

hole in a water tank.

2 Solution

We take the bucket to be a right circular cylinder of mass M and base area A and height
H, whose point of suspension is at distance zs below the upper, fixed point of a spring of
constant k and (for simplicity) zero rest length. Initially, the bucket is filled to height h0

with (incompressible, inviscid) water of constant mass density ρ and negligible viscosity. A
circular hole of area a, not necessarily small compared to area A, exists in the center of the
base of the bucket.

The variable mass of the bucket plus the water still inside it is,

Mtot(t) = M + ρAh(t), (1)

when the water level above the base of the bucket is h(t) at time t.
The velocity of the water level in the bucket is, in the convention that the z-axis is

positive downwards,

v = −dh

dt
ẑ ≡ −ḣ ẑ (v = −ḣ). (2)
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and the velocity of the efflux (water leaving the bucket) at the hole a is, according to the
equation of continuity,

V =
A

a
v = −A

a
ḣ ẑ

(
V =

A

a
v = −A

a
ḣ

)
. (3)

where both velocities are measured in the rest frame of the bucket.
The system of bucket plus water therein has two degrees of freedom, h and zs, so we seek

two equations of motion.

2.1 Energy and Momentum Analysis

In this section we follow the spirit of Bernoulli [2, 3, 4] in using an energy argument to obtain
one equation of motion, and then follow Newton to obtain a second equation of motion via
a momentum analysis.

2.1.1 Energy Analysis

The bucket has downwards acceleration equal z̈s, so in the instantaneous (accelerated) rest
frame of the bucket the effective gravitational acceleration (downwards) is,

g�(t) = g − z̈s(t). (4)

We apply Bernoulli’s method (an innovation in 1738) in the rest frame of the bucket,
arguing that, in this frame, the rate at which work is done on the water in the bucket by the
effective gravitation g� is equal to the rate of change of kinetic energy of the water in the
bucket plus the rate at which kinetic energy exits the bucket through the hole. That is, the
method is based on conservation of energy.

The rate dW/dt of gravitational work on the water in the tank at time t is the product
of the rate ρg�v of effective gravitational work per unit volume, and the volume Ah of the
water in the bucket,

dW

dt
= ρg�vAh = ρg�V ah. (5)

The total kinetic energy of the water in the bucket (in its rest frame) is the product of
the kinetic energy per unit volume ρv2/2 and by the volume of the water in the tank,

KEtank =
ρv2

2
Ah =

ρV 2

2

a2

A
h, (6)

dKEtank

dt
=

ρV 2

2

a2

A

dh

dt
+ ρV

dV

dt

a2

A
h = −ρV 3

2

a3

A2
+ ρV

dV

dt

a2

A
h, (7)

using eq. (3) to obtain the last form of eq. (7).
The rate at which kinetic energy exits the bucket (in its rest frame) is given by,

dKEexit

dt
= ρV a

V 2

2
. (8)
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Conservation of energy now implies that,

dW

dt
= ρg�V ah =

dKEtank

dt
+

dKEexit

dt
= −ρV 3

2

a3

A2
+ ρV

dV

dt

a2

A
h + ρV a

V 2

2
. (9)

If we divide eq. (9) by ρV a, we obtain,

g�h = (g − z̈s)h =

(
1 − a2

A2

)
V 2

2
+

a

A
h
dV

dt
= −hḧ +

ḣ2

2

(
A2

a2
− 1

)
. (10)

Time t can be replaced as the independent variable in this equation by the depth h, by
combining the first form of eq. (10) with eq. (3) to yield,1

dV

dt
=

dV

dh

dh

dt
= − a

A
V

dV

dh
= −1

2

a

A

dV 2

dh
, (15)

2g�h =

(
1 − a2

A2

)
V 2 − a2

A2
h
dV 2

dh
. (16)

2.1.2 Momentum Analysis

Following Newton, the total force on the system of bucket plus water therein equals the rate
of change of momentum of the system, Ftot = dp/dt. In the inertial lab frame, the force on

1The last term in eq. (10) involves the derivative of V 2 with respect to h, which term captures the effect
of the fluid acceleration in the tank that is omitted in the steady-flow version of the Bernoulli equation.

There exists a so-called extended Bernoulli equation, which can be applied to examples like the present in
which the (incompressible, inviscid) system of interest is in a noninertial frame, and in which the flow is not
steady. In this case, the nominal Bernoulli equation is supplemented by a “correction” term obtained by an
appropriate integration along the streamline,

P1 +
ρu2

1

2
+ ρgh1 = P2 +

ρu2
2

2
+ ρgh2 +

∫ 2

1

“correction”, (extended Bernoulli), (11)

where u(r, t) = −ḣ ẑ is the unsteady velocity of the fluid in the system, and the (complicated) “correction”
term is displayed in eq. (12) of [9].

In the present example, the “correction” term is,∫ 2

1

ρ

(
∂u
∂t

+
d2O
dt2

)
· dl, (12)

where O is the origin of the coordinates of the noninertial frame of the system with respect to an inertial
lab frame. The origin O of the coordinate system of the accelerated frame is at (0, 0, zs), so d2O/dt2 = z̈s ẑ.

Taking point 1 at the center of the upper surface of the water in the bucket (z1 = zs + H − h), and
point 2 at the center of the hole at the bottom of the bucket (z2 = zs + H), we ignore the tiny difference in
atmospheric pressure between these points, and note that u1 = −ḣ = aV/A, u2 = V , and,∫ 2

1

ρ

(
∂u
∂t

+
d2O
dt2

)
· dl = ρ

(
−ḧ + z̈z

) ∫ zs+H

zs+H−h

dz = −ρh
d2h

dt2
+ ρhz̈s = ρ

a

A
h

dV

dt
+ ρhz̈s. (13)

Then, eq. (11) becomes, after dividing by ρ,

(g − z̈s)h =
(

1 − a2

A2

)
V 2

2
+

a

A
h

dV

dt
=
(

1 − a2

A2

)
V 2

2
− a2

2A2
h

dV 2

dh
. (14)

as in eqs. (10) and (16).
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the system consists not only of the external force,

Fext = Mtotg − kzs, Fext,z = Mg + ρAhg − kzs, (17)

but also the reaction force of the momentum leaving the system through the hole in the
bucket (a kind of “rocket propulsion”),

Freact = −dpleaving

dt
= −dmleaving

dt
(żs + V) = ρah

(
żs − A

a
ḣ ẑ

)
, (18)

Freact,z = ρah

(
żs − A

a
ḣ

)
. (19)

The momentum of the system, and its rate of change, are,

p = M żs + ρAh(żs − ḣ ẑ),
dpz

dt
= (M + ρAh)z̈s + ρAḣżs − ρAḣ2 − ρAhḧ. (20)

The Newtonian equation of motion of the system is, hence,

ρAḣ2

(
A

a
− 1

)
− ρAhḧ = (M + ρAh)(g − z̈s) − kzs. (21)

Recalling the last form of eq. (10) for (g − z̈s)h, we can rewrite eq. (21) as,2

ρAḣ2

(
A

a
− 1

)
− ρAhḧ = M(g − z̈s) + ρA

[
−hḧ +

ḣ2

2

(
A2

a2
− 1

)]
− kzs. (23)

ρAḣ2

[
1

2
+

A

a

(
A

2a
− 1

)]
= kzs − M(g − z̈s). (24)

2.1.3 a = A

For the limiting case that a = A, the water just falls free of the bucket,3 and eq. (24) becomes
the equation of motion for the bucket in the absence of any water,

Mz̈s = Mg − kzs, z̈s = −ω2zs + g, zs =
Mg

k
+

(
zs0 − Mg

k

)
cos ω0t +

żs0

ω
sin ω0t, (25)

where ω2
0 = k/M .

For example, if the bucket plus water were initially at rest, zs0 = (M + ρah0)/k and
żs0 = 0, and the bottom of the bucket were somehow removed at time t = 0, the subsequent
oscillation of the bucket would be described by,

zs =
Mg

k
+

ρAh0

k
cos ω0t. (26)

2March 3, 2023. If instead of a spring, the system were subject to a vertical force F (positive downwards),
this would replace the force −kzs in eqs. (17), (21) and (23)-(24). Then, eq. (24) would be,

ρAḣ2

[
1
2

+
A

a

(
A

2a
− 1
)]

= −F − M(g − z̈s). (22)

This equation does not depend on the vertical velocity żs, and hence the system is invariant under a (Galilean)
transformation in coordinate z. Such invariance does not generally hold for systems in which some form of
Bernoulli’s equation is relevant [5, 6, 7].

3The top surface of the falling water is at ztop = zs0 + H − h0 + (żs0 − ḣ0)t + gt2/2.
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2.1.4 a � A

In this case, eq. (16) becomes,

2g�h = 2(g − z̈s)h ≈ V 2 =
A2

a2
ḣ2, (27)

and with this, eq. (24) becomes,

ρAh(g − z̈s) ≈ kzs − M(g − z̈s), z̈s ≈ −ω2zs + g, (28)

zs ≈ Mtotg

k
+

(
zs0 − Mtotg

k

)
cos ωt +

żs0

ω
sin ωt, (29)

where ω2 = k/Mtot = k/(M + ρAh) increases slowly with time as the water drains out of
the bucket. Then, eq. (27) can be rewritten as,

V 2 =
A2

a2
ḣ2 ≈ 2(g − z̈s)h ≈ 2ω2hzs ≈ 2gh, (30)

and V 2 oscillates about the value 2gh(t), which would be its value if the bucket were at rest.
The water has completely drained from the bucket after a time that is approximately the
same as if the bucket remained at rest, namely,

ḣ ≈ − a

A

√
2gh,

√
h ≈

√
h0 − a

A

√
g

2
t, tdrain ≈ A

a

√
2h0

g
. (31)

For example, if the bucket plus water were initially at rest, zs0 = (M + ρah0)/k and
żs0 = 0, and the small hole were opened at time t = 0, the subsequent oscillation of the
bucket would be described by,4

zs ≈ Mg

k
+

ρAh0

k
cos ωt. (32)

2.1.5 Motion When M � ρAh

The motion in the general case of 0 < a/A < 1 consists of an oscillation in zs as the water
level h decrease with time. We don’t pursue analytic description of the general motion
further, but we note that if the mass ρAh of the water in the bucket is large compared to
the mass M of the bucket, eq. (24) simplifies to,

ρAḣ2

[
1

2
+

A

a

(
A

2a
− 1

)]
= kzs, (33)

so that zs ∝ ḣ2 ∝ V 2, while all of these quantities oscillate in time. However, when the mass
of the water in the bucket is small compared to M , the correlation of zs with ḣ2 no longer
holds.

4The case a � A has been discussed in [8].
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2.2 A Lagrangian Approach

A Lagrangian approach to variable-mass problems has been given in [10, 11].
For the present example, it seems appropriate to consider the system to be only the

bucket plus water therein, which can be characterized by two coordinates, zs and h. The
velocity V of the efflux of water from the bucket is related, in the rest frame of the bucket,
by the continuity equation for incompressible fluids, as in eq. (4) above,

V =
av

A
= −aḣ

A
. (34)

The kinetic energy of the system is,

T =
Mż2

s

2
+

ρAh(żs − ḣ)2

2
. (35)

While one can give an expression for the gravitational potential energy of this system, the
force on the system is not simply related to this potential energy, so the latter is not used
in the method of [10]. Rather, one uses generalized forces, Qzs and Qh, as introduced by
Lagrange.

We recall that for a system with a set of coordinates qk (which could be functions of time
t) and kinetic energy T (qk, q̇k, t), Lagrange’s equations can be written as,

d

dt

∂T

∂q̇k
− ∂T

∂qk
= Qk =

∂

∂qk

∑
i

Fext
i · ri ≡ ∂U

∂qk
, (36)

where ri is the (x, y, z) coordinate of the ith particle in the system, Fext
i is the external force

on particle i, and U =
∑

i F
ext
i · ri was called the force function by Hamilton, p. 249 of [12],

following Lagrange [13], who built on a principle of d’Alembert [14].
In a variable-mass problem such as the present example, the flow of water out of the

hole in the bucket is associated with a reaction force on the water still in the bucket. In
the Newtonian approach, this reaction force must be included in the equation(s) of motion
(sec. 2.1.2 above), but in Lagrangian approach the reaction force is not considered to be an
external force, and so is not to be included in the generalized forces.

In the present example, a molecule i of the bucket has position rbucket,i = (xi, yi, zs+Δzi),
and a molecule j of the water in the bucket has position rwater,j = (xj, yj, zs + H − hj). The
external force on a molecule of the bucket is Fext

bucket,i = −kzs + mmol,i g ẑ, due to the spring
and to gravity, but we (delicately) consider that the spring does not exert an external force on
molecules of water, such that Fext

water,j = mmol,j g ẑ, due only to gravity.5 Then, the generalized
force Qh is given by,

Qh =
∂

∂h

(
−
∑

i

kzs · ri +
∑

i

mmoli g ẑ · ri +
∑

j

mmolj g ẑ · rj

)

=
∑

j

mmolj g ẑ · (−ẑ) = −mg = −ρAgh. (37)

5In the present approximation, the bucket is a rigid body, such that while the spring is connected to the
bucket at a single point, we consider that the (external) spring force acts on the entire bucket. The bottom
of the bucket exerts a normal force on the water above, which we consider to be an internal force, not to be
included in the generalized force.
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Similarly, the generalized force Qzs is given by,

Qzs = −
∑

i

kzs · ∂ri

∂zs
+
∑

j

mmolj g ẑ · ∂rj

∂zs
+
∑

j

mmolj g ẑ · ∂rj

∂zs

= −
∑

i

kzs · ẑ +
∑

j

mmolj g ẑ · ẑ +
∑

j

mmolj g ẑ · ẑ = −kzs + (M + ρAh)g. (38)

In the method of [10, 11], the left side of eq. (36) is modified for a variable-mass system,
whose (control) volume has velocity w, according to eq. (5.6) of [10] and eq. (1) of [11],6

d

dt

∂Tw

∂q̇k
− ∂Tw

∂qk
+

∫
∂T̃

∂q̇k
(v − w) · dArea−

∫
T̃

∂(v −w)

∂q̇k
· dArea = Qk, (39)

where Tw is the kinetic energy within the control volume, T̃ is the kinetic energy per unit
volume, and v is the velocity of the material at a point in the system.

In the present example, the control volume is the bucket and water therein, so w = żs,
Tw is given in eq. (35), and inside the control volume v = żs − ḣ ẑ and T̃ = ρbucket ż

2
s/2 +

ρ(żs− ḣ)2/2. However, for eq. (39) we must consider the surface of the control volume, where
v = w except at the hole, at which v − w = V = V ẑ = −Aḣ ẑ/a and,

T̃ =
ρ(żs + V )2

2
=

ρ

2

(
ż2

s − 2
A

a
żsḣ +

A2

a2
ḣ2

)
(hole). (40)

2.2.1 Equation of Motion for Coordinate h

Recalling eq. (35),

d

dt

∂Tw

∂ḣ
= ρAh(ḧ − z̈s) + ρAḣ2,

∂Tw

∂h
=

ρA(żs − ḣ)2

2
, (41)

and at the hole, where the area vector is direction outwards, with dArea = a ẑ,

∂T̃

∂ḣ
= ρḣ

A2

a2
− ρ

A

a
żs, v − w = V = −A

a
ḣ ẑ,

∂(v − w)

∂ḣ
= −A

a
ẑ. (42)

Hence, the equation of motion (39) for the coordinate h is,

ρAh(ḧ− z̈s) + ρAḣ2 − ρA

2
(ż2

s − 2żsḣ + ḣ2) − ρAḣ

(
ḣ
A2

a2
− A

a
żs

)

+
ρA

2

(
ż2

s − 2
A

a
żsḣ +

A2

a2
ḣ2

)
= −ρAgh, (43)

h(ḧ − z̈s) −
(

A2

a2
− 1

)
ḣ2

2
= −gh. (44)

as previously found in eq. (16).

6An earlier discussion of Lagrange’s equations for systems of variable mass was given in [15] (1947),
where the context was rocket motion. It was noted that although the system of rocket plus fuel has variable
mass, the center of mass of this system remains constant to a reasonable approximation, relative to the
system, which permits a simpler form of the equations of motion than eq. (39).
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2.2.2 Equation of Motion for Coordinate zs

From eq. (35),

d

dt

∂Tw

∂żs
= Mz̈s − ρAh(ḧ − z̈s) − ρAḣ(ḣ − żs),

∂Tw

∂zs
= 0, (45)

and at the hole, where the area vector is direction outwards, with dArea = a ẑ,

∂T̃

∂żs
= ρżs − ρ

A

a
ḣ, v − w = V = −A

a
ḣ ẑ,

∂(v − w)

∂żs
= 0. (46)

Hence, the equation of motion (39) for the coordinate zs is,

Mz̈s − ρAh(ḧ − z̈s) − ρAḣ(ḣ − żs) − ρAḣ

(
żs − A

a
ḣ

)
= −kzs + (M + ρAh)g, (47)(

A

a
− 1

)
ρAḣ2

2
− ρAhḧ = −kzs + (M + ρAh)(g − z̈s), (48)

as previously found in eq. (21).
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