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1 Problem

Dirac has written [1] Each photon then interferes only with itself. Interference between
two different photons never occurs. Indeed, a practical definition is that “classical” optics
consists of phenomena due to the interference of photons only with themselves. However,
photons obey Bose statistics which implies a “nonclassical” tendency for them to “bunch”.

For a simple example of nonclassical optical behavior, consider two pulses containing
n1 and n2 photons of a single frequency that are simultaneously incident on two sides of a
lossless, 50:50 beam splitter, as shown in the figure. Deduce the probability that N1 photons
are observed in the direction of beam 1, where 0 ≤ N1 ≤ n1 + n2 for a lossless splitter.

Hint: a relatively elementary argument can be given by recalling that the phase of a
reflected photon (i.e., of the reflected wave from a single input beam) is 900 different from
that of a transmitted photon [2]. Consider first the cases that one of n1 or n2 is zero.

2 Solution

An elegant solution can be given by noting the the creation and annihilation operators
relevant to a beam splitter obey an SU(2) symmetry [3, 4]. Here, we give a more elementary
solution, in the spirit of Feynman (Vol. I, sec. 33-6 of [5]).

Experimental demonstration of the case where n1 = n2 = 1 was first given in [6], and the
case of n1 = n2 = 2 has been studied in [7].
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2.1 A Single Input Beam

We first consider the case of a single input beam with n1 > 0. Then, of course, n2 = 0.
In a classical view, the input beam would have energy u1 = n1�ω, where ω is the angular

frequency of the photons. Then, the effect of the 50:50 beam splitter would be to create
output beams of equal energies, U1 = U2 = u1/2. In terms of photon numbers, the classical
view would imply that the only possibility for the output beams is N1 = N2 = n1/2.

But in fact, the transmitted beam can contain any number N1 of photons between 0 and
n1, while the reflected beam contains N2 = n1 − N1 photons.

If the photons were distinguishable, we would assign a probability of (1/2)n1 to each
configuration of transmitted and reflected photons in the 50:50 splitter. But the photons
are indistinguishable, so that the probability that N1 out of n1 photons are transmitted is
larger than (1/2)n1 by the number of ways the n1 photons can be arranged into a group
of N1 transmitted and n1 − N1 reflected photons without regard to their order, i.e., by the
binomial coefficient,

Cn1
N1

=
n1!

N1!(n1 − N1)!
. (1)

Thus, the probability P (N1, n1−N1|n1, 0) that N1 out of n1 photons (in a single input beam)
are transmitted by the beam splitter is,

P (N1, n1 − N1|n1, 0) = Cn1
N1

(
1

2

)n1

. (2)

The result (2) is already very nonclassical, in that there is a small, but nonzero probability
that the entire input beam is transmitted, or reflected. However, in the limit of large n1 the
largest probability is that the numbers of photons in the reflected and transmitted beams
are very nearly equal. We confirm this by use of Stirling’s approximation for large n,

n! ≈ e−nnn
√

2πn. (3)

For large n, and k = (1 + ε)n/2, we have,

Cn
k ≈ 1√

2πn
(

k
n

)k+1/2 (
1 − k

n

)n−k+1/2
=

2n+1

√
2πn(1 − ε2)(n+1)/2

(
1+ε
1−ε

)nε/2

≈ 2n+1

√
2πn(1 + nε2/2)

. (4)

The probability of k photons out of n being transmitted drops to 1/2 the peak probability
when ε ≈ √

2/n. Hence, for large n the number distribution of photons in the transmitted
(and reflected) beam is essentially a delta function centered at n/2, in agreement with the
classical view.

The most dramatic difference between the classical and quantum behavior of a single
beam in a 50:50 beam splitter occurs when n1 = 2,

P (0, 2|2, 0) =
1

4
, P (1, 1|2, 0) =

1

2
, P (2, 0|2, 0) =

1

4
. (5)
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In the subsequent analysis we shall need to consider interference effects, so we note that
the magnitude of the probability amplitude that k out of n photons in a single beam are
transmitted by a 50:50 beam splitter can obtained by taking the square root of eq. (2),

|A(k, n − k|n, 0)| =
√

Cn
k

(
1

2

)n/2

. (6)

These amplitudes have the obvious symmetries,

|A(k, n − k|n, 0)| = |A(n − k, k|n, 0)| = |A(k, n− k|0, n)| = |A(n− k, k|0, n)| . (7)

We must also consider the phases of these amplitudes, or at least the relative phases. The
hint is that we may consider the phase of a reflected photon to be shifted with respect to that
of a transmitted photon by 90◦, as follows from a classicalanalysis of waves in a 50:50 beam
splitter [2] (see also the Appendix). In this problem, we define the phase of a transmitted
photon to be zero, so that the probability amplitude should include a factor of i =

√−1 for
each reflected photon. Thus, we have,

A(k, n− k|n, 0) = in−k
√

Cn
k

(
1

2

)n/2

, (8)

A(n − k, k|n, 0) = ik
√

Cn
k

(
1

2

)n/2

, (9)

A(k, n− k|0, n) = ik
√

Cn
k

(
1

2

)n/2

, (10)

A(n − k, k|0, n) = in−k
√

Cn
k

(
1

2

)n/2

. (11)

2.2 Two Input Beams

We now calculate the general probability P (N1, n1 +n2 −N1|n1, n2) that N1 output photons
are observed along the direction of input beam 1 when the number of photons in the input
beams in n1 and n2.

We first give a classical wave analysis. The input waves have amplitudes a1,2 =
√

n1,2�ω,
and are in phase at the center of the beam splitter. The output amplitudes are the sums
of the reflected and transmitted parts of the input amplitudes. A reflected amplitude has a
phase shift of 90◦ relative to its corresponding transmitted amplitude, as discussed in sec. 2.1.
In the 50:50 beam splitter, the magnitude of both the reflected and transmitted amplitudes
from a single input beam are 1/

√
2 times the magnitude of the amplitude of that beam.

Hence, the output amplitudes are,

A1 =
1√
2
(a1 + ia2), (12)

A2 =
1√
2
(ia1 + a2). (13)
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Taking the absolute square of eqs. (12)-(13), we find the output beams to be described by,

N1,2 =
|A1,2|2

�ω
=

a2
1 + a2

2

2�ω
=

n1 + n2

2
. (14)

The classical view is that a 50:50 beam splitter simply splits both input beams, when they
are in phase.

For a quantum analysis, we proceed by noting that of the N1 photons in output beam 1,
k of these could have come by transmission from input beam 1, and N1−k by reflection from
input beam 2 (so long as N1 − k ≤ n2). The probability amplitude that k out of N1 photons
are transmitted from beam 1 while N1 − k photons are reflected from beam 2 is, to within
a phase factor, the product of the amplitudes for each of these configurations resulting from
a single input beam,

A(k, N1 − k|n1, 0)A(N1 − k, n2 − N1 + k|0, n2) = (−1)n1−k
√

Cn1
k Cn2

N1−k

(
1

2

)(n1+n2)/2

, (15)

referring to eqs. (8)-(11). The most dramatic nonclassical features to be found below can be
attributed to the presence of the factor (−1)n1−k that arises from the 90◦ phase shift between
reflected and transmitted photons.

Since photons obey Bose statistics, we sum the sub-amplitudes (15), weighting each one
by the square root of the number of ways that k out of the N1 photons in the first output
beam can be assigned to input beam 1, namely CN1

k , time the square root of the number
of ways that the remaining n1 − k photons from input beam 1 can be assigned to the N2

photons in output beam 2, namely CN2
n1−k to obtain,1

A(N1, n1 + n2 − N1|n1, n2) =
∑

k

√
CN1

k CN2
n1−kA(k, N1 − k|n1, 0)A(N1 − k, n2 − N1 + k|0, n2)

= (−1)n1

(
1

2

)(n1+n2)/2 ∑
k

(−1)k
√

Cn1
k Cn2

N1−kC
N1
k CN2

n1−k. (16)

When evaluating this expression, any binomial coefficient Cn
m in which m is negative, or

greater than n, should be set to zero.
The desired probability is, of course,

P (N1, n1 + n2 − N1|n1, n2) = |A(N1, n1 + n2 −N1|n1, n2)|2 (17)

Some examples of the probability distributions for small numbers of input photons are
given below.

1Delicate to justify not also including factors CN1
N1−k, and CN2

N2−(n1−k), these being the ways of assigning
photons to output beam 2 – but these factors are the same as those already included, and so should not be
counted twice...
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2.2.1 Two Input Photons

Input Output (N1, N2|
|n1, n2) (0, 2| (1, 1| (2, 0|
|2, 0) 1

4
1
2

1
4

|1, 1) 1
2

0 1
2

|0, 2) 1
4

1
2

1
4

When n1 or n2 is zero, the probability distribution is binomial, as found in sec. 2.1. When
n1 = n2 = 1 there is complete destructive interference between the cases where both photons
are reflected (combined phase shift = 180◦) and when both are transmitted (combined phase
shift = 0). This quantum result is strikingly different from the classical expectation that
there would be one photon in each output beam.

2.2.2 Three Input Photons

Input Output (N1, N2|
|n1, n2) (0, 3| (1, 2| (2, 1| (3, 0|
|3, 0) 1

8
3
8

3
8

1
8

|2, 1) 3
8

1
8

1
8

1
8

|1, 2) 3
8

1
8

1
8

1
8

|0, 3) 1
8

3
8

3
8

1
8

2.2.3 Four Input Photons

Input Output (N1, N2|
|n1, n2) (0, 4| (1, 4| (2, 2| (3, 1| (4, 0|
|4, 0) 1

16
1
4

3
8

1
4

1
16

|3, 1) 1
4

1
4

0 1
4

1
4

|2, 2) 3
8

0 1
4

0 3
8

|1, 3) 1
4

1
4

0 1
4

1
4

|0, 4) 1
16

1
4

3
8

1
4

1
16

2.2.4 Symmetric Input Beams: n1 = n2 ≡ n

In this case there is zero probability of observing an odd number of photons in either output
beam.
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To see this, note that when n1 = n2 = n, the magnitudes of the subamplitudes are equal
for having k photons appearing in output beam 1 from either input beam 1 or input beam
2. However, the phases of these two subamplitudes are 180◦ apart, so that they cancel. In
particular, when k photons are transmitted into output beam 1 from input beam 1, then
N1 − k photons are reflected from input beam 2 into output beam 1; meanwhile, n − k
photons are reflected from input beam 1 into output beam 2. So, the overall phase factor of
this subamplitude is iN1−k+n−k = (−1)k in+N1 . Whereas, if k photons are reflected from input
beam 2 into output beam 1, then N1 − k photons are transmitted from input beam 1 into
output beam 1, and so n−N1 +k photons are reflected from input beam 1 into output beam
2. So, the overall phase factor of this subamplitude is ik+n−N1+k = (−1)k in−N1 . The phase
factor between these two subamplitudes (whose magnitudes are equal) is i2N1 = (−1)N1,
which is −1 for odd N1, as claimed.

For the case of observing an even number of photons in the output beams, a remarkable
simplification of eq. (16) holds [3]. We have not been able to show this by elementary means.
It does follow by inspection when m = 0 or n, in which case eq. (16) contains only a single
nonzero term. In general, the index k in eq. (16) for A(2m, 2n − 2m|n, n) runs from 0 to
2m if 2m ≤ n, or from 2m − n to n if 2m ≥ n. There are an odd number of terms, the
central one having index k = m. By a strange miracle of combinatorics, the sum collapses
to a simplified version of the central term of the series.... Namely,

A(2m, 2n − 2m|n, n) = (−1)n−m

(
1

2

)n √
C2m

m C2n−2m
n−m . (18)

Therefore, the n + 1 nonvanishing probabilities for symmetric input beams are.

P (2m, 2n − 2m|n, n) =

(
1

2

)2n

C2m
m C2n−2m

n−m ≈ 1

nπ
√

m
n
(1 − m

n
)
, (19)

where the approximation holds for large m and large n. Note that
∫ 1

0
dx/

√
x(1 − x) = π.

This probability distribution peaks for m = 0 or n, i.e., for all photons in one or the other
output beam, with value,

P (0, 2n|n, n) = P (2n, 0|n, n) =

(
1

2

)2n

C2n
n . (20)

The probability of finding all output photons in a single beam when the input beams are
symmetric is larger by a factor C2n

n than when there is only a single input beam (of the
same total number of photons), because there are C2n

n ways of assigning the n photons from
input beam 1 to the 2n photons in the output beam. This is an extreme example of photon
bunching caused by the beam splitter.

It is noteworthy that the result (19) does not agree with the classical prediction (14) in
the large n limit.

Of course, as pointed out by Glauber [8], a classical wave corresponds to a photon state
with minimum uncertainty products ΔEΔB, where E and B are the electric and magnetic
field amplitudes of the wave, respectively. In case of a pulse, we expect classically that both
its energy U and phase φ are well defined, but the closest quantum equivalent is a coherent
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state with minimal uncertainty to the product ΔUΔφ. This state is a superposition of states
of various photons numbers n whose expectation value for n follows a Poisson distribution
with 〈n〉 = U/�ω. For large n, the variance in photon number is

√
n.

Hence, in an experiment in which large numbers N1 and N2 of photons are observed at
the two output ports of the beam splitter, we can say that the numbers n1 and n2 of photons
at the input ports obeyed n1 + n2 = N1 + N2, but we cannot know n1 and n2 separately
(if the inputs beams are “classical”). All we can know are the mean values 〈n1〉 and 〈n2〉.
Therefore, we should rewrite the probability distribution (17) as,

P (N1, N2| 〈n1〉 , 〈n2〉) =

∣∣∣∣∣
∑
n1,n2

an1an2A(N1, N2|n1, n2)

∣∣∣∣∣
2

, (21)

where ani is the amplitude that input beam i contained ni photons when the mean number
of photons in this beam is 〈ni〉. We conjecture that a detailed calculation of eq. (21) would
agree with the classical prediction (14), but we have not confirmed this.

3 Appendix: Phase Shift in a Lossless Beam Splitter

We give a classical argument based on a Mach-Zehnder interferometer, shown in the figure
below, that there is a 90◦ phase shift between the reflected and transmitted beams in a
lossless, symmetric beam splitter. Then, following Dirac’s dictum [1], this result applies to
a single photon.

A beam of light of unit amplitude is incident on the interferometer from the upper left.
The reflected and transmitted amplitudes are r eiφr and t eiφt , where magnitudes r and t are
real numbers. The condition of a lossless beam splitter is that,

r2 + t2 = 1. (22)

The reflected and transmitted beams are reflected off mirrors and recombined in a second
lossless beam splitter, identical to the first.
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Then, the amplitude for transmission at the first beam splitter, followed by reflection at
the second, is tr, ei(φt+φr), etc. Hence, the recombined beam that moves to the right has
amplitude,

A1 = 2rt ei(φr+φt), (23)

while the recombined beam that moves downwards has amplitude,

A2 = r2 e2iφr + t2 e2iφt . (24)

The intensity of the first output beam is,

I1 = |A1|2 = 4r2t2, (25)

and that of the second output beam is,

I2 = |A2|2 = r4 + t4 + 2r2t2 cos 2(φt − φr). (26)

For lossless splitters, the total output intensity must be unity,

I1 + I2 = 1 = (r2 + t2)2 + 2r2t2[1 + cos 2(φt − φr)]. (27)

Recalling eq. (22), we must have,

φt − φr = ±90◦, (28)

for any value of the splitting ratio r2 : t2.
The preceding argument does not clarify where that phase difference (28) is 90◦ or −90◦,

but more detailed arguments [2] show the phase difference to be −90◦. That is,

φr = φt + 90◦. (29)

Furthermore, if the beam splitter is thin compared to a wavelength, then φt ≈ 0 and φr ≈ 90◦.
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